Chapters 1 and 2 Summary and Review

This document provides a quick summary and review for Chapters 1 and 2.

Chapter 1: Rates and Unit Conversion

Key Formulas

- Speed: speed = $\frac{\text{dist}}{\text{time}}$
- Rate: rate = $\frac{\Delta \text{quantity}}{\Delta \text{time}}$
- Conversions:
 - Distance (imperial): 12 in = 1 ft, 3 ft = 1 yd, 5280 ft = 1 mi
 - Distance (metric): 100 cm = 1 m, 1000 m = 1 km
 - Time: 60 s = 1 min, 60 min = 1 hr, 24 hr = 1 day

Tips: "Given-and-Want" Method

- Identify what we want
- Identify what we are given
- Fact finding: label variables and units; write related formulas
- Solve systematically, check units and reasonableness

Example: Lead Sphere (Problem 1.3)

Lead has a density of 11.34 g/cm³. Find the radius of a lead sphere with a mass of 50 kg.

Solution:

- Want: r = radius
- Given: $d = 11.34 \text{ g/cm}^3$, m = 50 kg
- Fact finding:
 - $\text{ density} = \frac{\text{mass}}{\text{volume}}$ $V = \frac{4}{3}\pi r^3$
- Solve:
 - Convert mass: 50 kg = 50000 g

 - $\begin{array}{ll} \text{ Volume: } V = \frac{50000}{11.34} \approx 4409.17 \text{ cm}^3 \\ \text{ Radius: } r^3 = \frac{4409.17}{4/3\pi} \approx 1052.61 \implies r \approx 10.17 \text{ cm} \end{array}$

Chapter 2: Distance and Coordinate Systems

Key Formulas

• Distance: dist = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

• Speed: speed = $\frac{\text{dist}}{\text{time}}$

• Quadratic formula: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Tips: V.E.T.S. Method

• Visualize: Draw axes, label points, assign variables

• Equations: Write equations for lines, curves, or paths

• Translate: Convert words into math expressions

• Solve: Compute distances/intersections; check answers

Example: Steve & Elsie Walking (Problem 2.3)

Steve and Elsie start at the same campsite. Steve heads north at 3 mph starting at 6 AM; Elsie sleeps in then walks west at 3.5 mph starting at 8 AM. Find when distance between them is 25 miles.

Solution:

• Visualize:

- Draw axes, origin at campsite

- Positive y-axis north, negative x-axis west

- Label times: t_1 = time since 6 AM, t_2 = time since 8 AM

– Locations: Steve $(0,3t_1)$, Elsie $(-3.5t_2,0)$

• Equations:

$$\sqrt{(3t_1)^2 + (3.5t_2)^2} = 25$$

• Translate: Steve has been walking 2 hours longer, so $t_1 = t_2 + 2$:

$$\sqrt{(3(t_2+2))^2 + (3.5t_2)^2} = 25$$

• Solve:

$$9(t_2 + 2)^2 + 12.25t_2^2 = 625$$
$$21.25t_2^2 + 36t_2 - 589 = 0$$

Solve for t_2 , then $t_1 = t_2 + 2$. I am going to leave that to you. Or ask me on the discussion board if you need a review.

Observations:

• Draw diagrams and label distances to help you get started.

• Define variables clearly, in this problem that was vital.

• At the end check that your answer is reasonable.