Precalculus Models and Curves

By the end of Math 120 you should know these curves well.

1. Lines:

- $y = m(x x_1) + y_1$
- y = mx + b

Perpendicular lines have negative reciprocal slopes.

2. Circles:

- $(x-h)^2 + (y-k)^2 = r^2$
- Upper semicircle: $y = k + \sqrt{r^2 (x h)^2}$
- Lower semicircle: $y = k \sqrt{r^2 (x h)^2}$

3. Parabolas:

- $\bullet \ y = ax^2 + bx + c$
- $y = a(x-h)^2 + k$

Vertex: h = -b/(2a)

4. Cubics and Higher Polynomials:

$$y = ax^3 + bx^2 + cx + d$$

5. Rational Functions:

•
$$y = \frac{ax+b}{x+d}$$

6. Exponential & Logarithmic:

- $\bullet \ \ y = a \cdot b^x$
- $x = \ln(y)$ is equivalent to $y = e^x$

7. Trigonometric Functions:

- $y = \sin(x), x = \sin^{-1}(y)$
- $y = \cos(x), x = \cos^{-1}(y)$
- $y = \tan(x), x = \tan^{-1}(y)$

8. Sinusoidal Model:

•
$$y = A \sin\left(\frac{2\pi}{B}(x - C)\right) + D$$

9. Uniform Motion (Parametric):

- Linear: x = a + bt, y = c + dt
- Circular: $x = r\cos(\theta_0 \pm \omega t), y = r\sin(\theta_0 \pm \omega t)$

Problem-Solving Toolbox

By the end of Math 120 you should know these concepts well.

1. Unit Conversions:

- Length: inches \leftrightarrow feet \leftrightarrow miles, cm \leftrightarrow meters \leftrightarrow km
- Time: seconds \leftrightarrow minutes \leftrightarrow hours
- Angles: revolutions \leftrightarrow radians \leftrightarrow degrees

2. Areas and Volumes:

- Triangle: $\frac{1}{2}bh$
- Circle: πr^2
- Circular wedge: $\frac{1}{2}\theta r^2$
- Cone: $\frac{1}{3}\pi r^2 h$
- Cylinder: $\pi r^2 h$
- Sphere: $\frac{4}{3}\pi r^3$
- 3. Triangle Facts: Similar triangles, trig functions, Pythagorean theorem.
- 4. Visualization: Draw diagrams, label variables, write equations.

5. Linear Speed and Rates:

- rate = $\frac{\text{change in quantity}}{\text{change in time}}$
- linear speed = $\frac{\text{distance}}{\text{time}}$

6. Distance Between Points:

•
$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

7. Angular Speed and Circular Motion:

- angular speed = $\omega = \frac{\text{angle}}{\text{time}}$
- arc length $= s = r\theta$ (θ in radians)
- linear speed $= v = \omega r$ (ω in radians/time)
- 8. **Functions:** Functional notation, composition, inverses, shifting, dilating, reflecting, multipart functions, graphing and analyzing.
- 9. Fitting a Model: Plug in data points to solve for constants.

10. Solving Equations:

- Isolate variable using inverses in the correct order.
- Quadratic $ax^2 + bx + c = 0$: factoring, completing the square, or quadratic formula

2