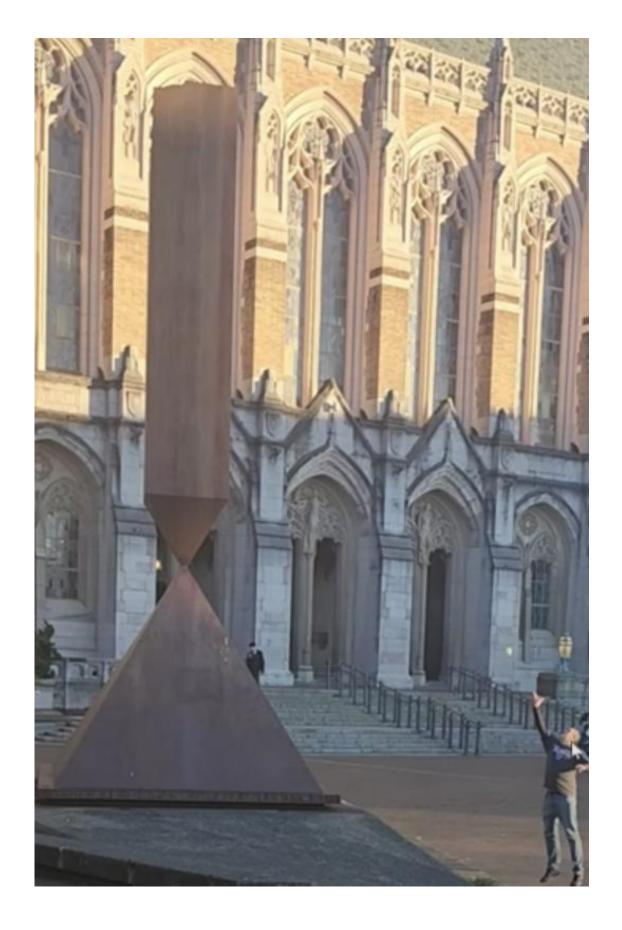
Ch 9: Inverse Functions

<u>Video Link</u>

Goal: Learn the general ideas of inverse functions


Entry Task (motivation) A ball is thrown in the air. The height in feet after x seconds is given by $y = f(x) = -16x^2 + 43x$.

Try to answer the following questions...

1. "Plug in question" What is the height after 1 second?

2. "Inverse question" When is the ball 20 feet high?

3. *Challenge*: Can you solve for x in terms of y in general?

General Notes and Observations

Q: The sol'n for x in terms of y is NOT a function in the last problem, why?

In general: A parabola does not have one inverse *function*.

Horizontal Line Test and One-to-One

We say that parabolas function is not *one-to-one*. Meaning there is not just one x-value for every y-value. Visually, a one variable function is one-to-one if it passes the **horizontal line test**.

You do:

• Draw an example of a curve that is not a function.

• Draw two examples of functions that are one-to-one.

• Draw two examples of functions that are not one-to-one.

Notation:

When a function y = f(x) is one-to-one, then we say it is **invertible**. That means we can solve for x in terms of y and get one function. We call this function the inverse and write

$$x = f^{-1}(y).$$

Example 1: Find the inverse of

$$y = f(x) = 5x + 1.$$

Checking work:

Plug in x = 2 to y = f(x), then plug that y into $x = f^{-1}(y)$.

What happens?

Observation: If are answer is correct, then

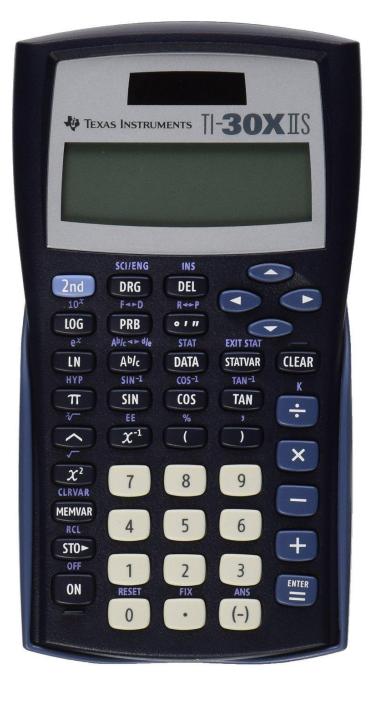
$$f^{-1}(f(x)) = x$$
 and $f(f^{-1}(y)) = y$

Example 2: Find the inverse of

$$y = g(x) = \frac{5}{x+3}.$$

Intermission – A brief review of inverse pairs

Do you know your current toolbox of solving skills?


Fill in the table below...

Equation	Inverse?
x + 3 = 14	x =
y - 5 = 22	y =
3t = 16	t =
$\frac{m}{0.2} = 100$	m =
$x^2 = 7$	x =
$\sqrt{y} = 3$	y =
$t^5 = 20$	t =
$\sqrt[5]{w} = 3$	w =

Example: If you know your inverses you can solve this by pushing five operations buttons in the correct order on your calculator.

Try it...

$$\sqrt[3]{(2x-1)^5 - 5} = 3$$

Non-invertible functions and how we split them up

If a function is not one-to-one, we typical split the domain into parts where the function is one-to-one and give an inverse for each part.

For each example below: Split up into two intervals, find both inverses, give domains.

Example 1:
$$y = g(x) = x^2$$

Graphical note: The inverse function is the mirror image of the function reflected across the line y = x.

Domain note: The domain of the inverse is the same as the range of the original function

Example 2:
$$y = f(x) = -16x^2 + 43x$$

Example 3: $y = h(x) = \sqrt{4 - x^2}$

Homework Challenges...

(c)
$$g(x) = 3\sqrt{5-x} - 6$$

$$g^{-1}(x) =$$

Domain:

- $\bigcirc \quad 0 \leq x < \infty$
- $\bigcirc -\infty < \chi \leq 0$
- \bigcirc $-6 \le x < \infty$
- $\bigcirc -\infty < x < \infty$
- $\bigcirc \ \ 0 \leq x \leq 4$

(d)
$$j(x) = \sqrt{x} + \sqrt{x-1}$$

$$j^{-1}(x) =$$


Domain:

- $\bigcirc \ \ 1 \leq x < \infty$
- $\bigcirc -\infty < \chi < \infty$
- $0 \le x \le \infty$
- \bigcirc $-6 \le x < \infty$
- $\bigcirc \ \ 0 \leq x \leq 4$

Homework Challenges

5. [- / 14 Points]

A trough has a semicircular cross section with a radius of 4 feet. Water starts flowing into the trough in such a way that the depth of the water is increasing at a rate of 3 inches per hour.

(a) Give a function w = f(t) relating the width w, in feet of the surface of the water to the time t, in hours. Make sure to specify the domain and compute the range too.

Domain:

- $0 \le t \le 16$
- \bigcirc $-8 \le t \le 8$
- \bigcirc -16 \leq $t \leq$ 32
- $\bigcirc \ \ 0 \leq t \leq 8$
- $\bigcirc -\infty < t < \infty$