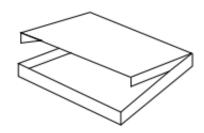

#### **Ch 7: Quadratics**

but first...


**Entry Task** on "polynomials"

A 20 inch by 50 inch piece of cardboard is going to be used to make a box.

The box will be made by cutting out four squares with side length x as shown.



remove shaded squares and fold to get:



For both parts below find the function in terms of x.

(a) Find the volume, V(x), of the resulting box

(b) Find the exposed surface area, A(x)?

### **Ch 7: Quadratics**

Goal: Learn about second degree polynomials, which are great for modeling the path of a thrown ball and for applied max/min problems.

$$y = ax^2 + bx + c$$
 (general form)

$$y = a(x - h)^2 + k$$
 (vertex form)

Examples 1: Plot points and graph

$$y = x^2$$

### **Key Facts**

• 
$$h = -\frac{b}{2a}$$
 (x-coord. of vertex)

• 
$$a > 0 \Rightarrow \text{ open upward (smile)}$$

• 
$$a < 0 \Rightarrow$$
 open downward (frown)

• 
$$a = 0 \Rightarrow \text{not a quadratic!}$$

Examples 2: Plot points and graph

$$y = -2(x+1)^2 + 2$$

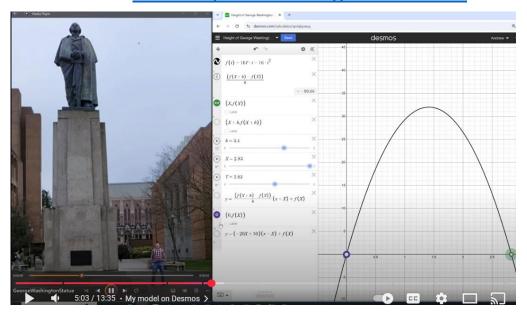
### Completing the Square and the Vertex Derivation

Expanding 
$$y = a(x - h)^2 + k$$
 gives  $y = ax^2 - 2ahx + ah^2 + k$ 

Example: Find a, h, and k if

$$y = 3x^2 - 2x + 1$$

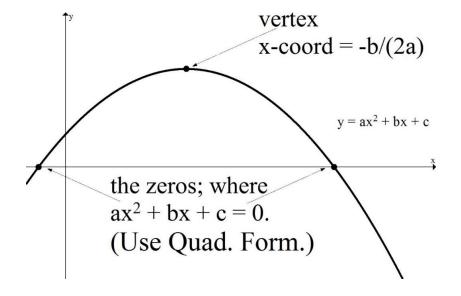
Example: Find 
$$a$$
,  $h$ , and  $k$ 


$$y = ax^2 + bx + c$$

Example (height of Washington Statue):

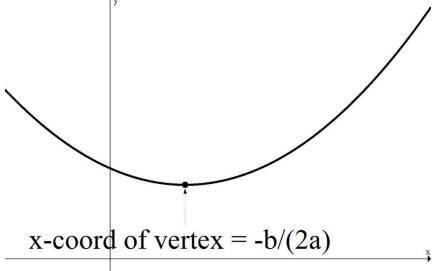
Find the t and y coordinates of the vertex of the following function

$$y = -16t^2 + 48t + 6$$


# Click for video clip of throwing a tennis ball



#### **Parabola Summary**


If *a* is negative, the parabola opens downward.

For example:  $y = -5x^2 + 20x + 30$ .



If a is positive, the parabola opens upward.

For example:  $y = 2x^2 + 28x + 4$ .



Note: A **quadratic equation** is an equation that can be written in the form

$$ax^2 + bx + c = 0.$$

The solution(s) are given by the *quadratic formula* 

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

# **Optimization Problems**

- Draw/Label,
- What do we want?
- What are we given?

| Example: You have 500  | ofeet of | tencing | gand     |
|------------------------|----------|---------|----------|
| you want to build a ca | ge with  | one wal | I in the |
| middle as shown.       |          |         |          |
|                        |          |         |          |

How should you build it to maximize area?

*Example*: You run a petting zoo.

If you charge \$8, you will sell 300 tickets/day giving a revenue of \$2400 for that day.

If you charge \$9, you will sell 280 tickets/day giving a revenue of \$2520 for that day.

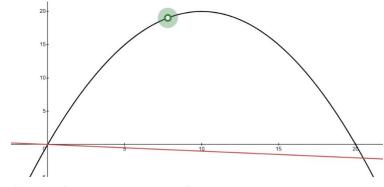
Assume tickets sold is a linear function of price, x.

How many tickets should you sell to maximize revenue?

Find the formula for tickets sold base on x.

(what is the max revenue? what is the price?)

### Example:


A ball follows the path  $y = -\frac{1}{5}x^2 + 4x$ .

In addition, the ground is sloping downward given by  $y = -\frac{1}{10}x$ . This is shown at right.

How would you find the following:

(a) The highest y-value of the ball.

(b) The location of the ball when it is farthest above the sloping ground.



Link to desmos visual.

(c) The location where the ball hits the ground.