Ch 20: Inverse Trig Functions

Goal: Define and use inverse trig functions.

Entry Task

Gavin's (broken) oven has a temperature that behaves sinusoidally.

- At *t=0*: temp is 425°F and rising
- First max 450° F at t = 8.75 minutes
- First min 400°F at t = 26.25 minutes
- 1. Find the sinusoidal model.
- 2. Sketch the graph for 0–70 minutes.
- 3. Consider the two questions:
 - $_{\circ}$ What is the temperature at t = 20 minutes?
 - When is the temperature 440°F?

• Times in [0,70] when $T(t)=440^{\circ}\mathrm{F}$: $t\approx 3.58,\ 13.92,\ 38.58,\ 48.92$ minutes

A motivating example

Find all solutions to $sin(x) = \frac{1}{2}$.

Step 1: Draw $y = \sin(x)$ and the horizontal line $y = \frac{1}{2}$

Step 2: Find the "principal solution" (closest to phase shift)

Step 3: Find the "symmetric solution" (next closest)

Step 4: Use the period to summarize the rest.

The *inverse trig functions* are defined to give the "principal solution"

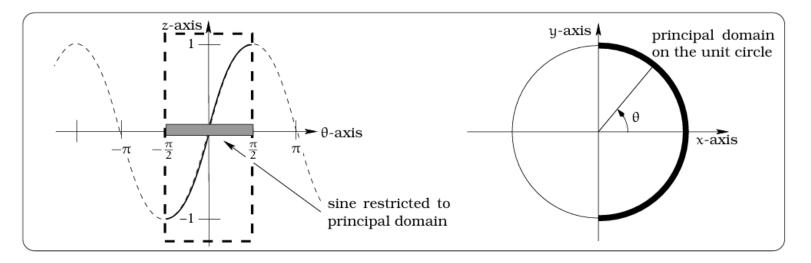


Figure 20.5: Principal domain for $sin(\theta)$.

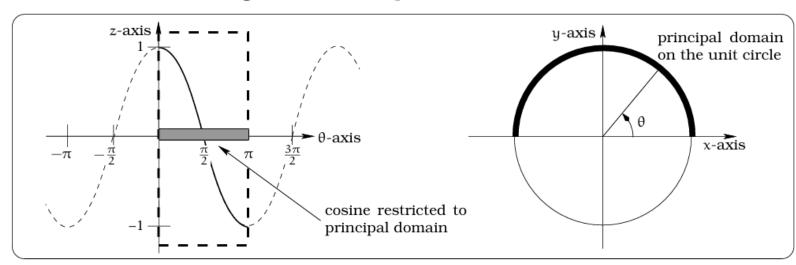


Figure 20.6: Principal domain for $cos(\theta)$.

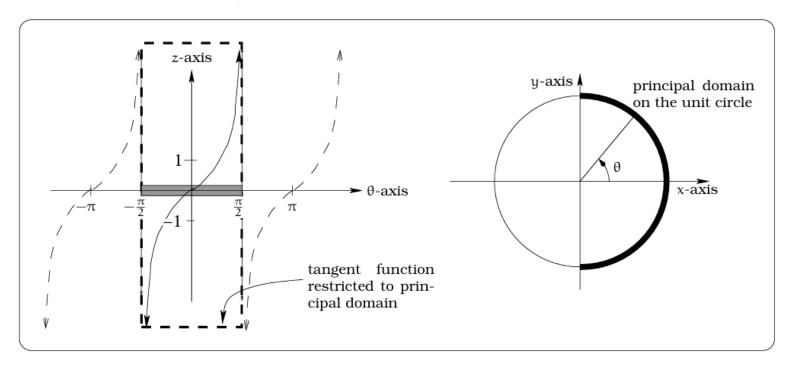


Figure 20.7: Principal domain for $tan(\theta)$.

Solving Mechanics: Using your calculator, find the principal solution of the following equations (in radians):

1.
$$3\tan(x) = 4$$

4.
$$e^{\tan(x^3)} = 10$$

2.
$$4\cos(2x - 1) = 1$$

5.
$$tan(sin(cos(x)) = 0.2$$

$$3. \sin(x) = 3$$

6.
$$\sin^2(x) = 0.09$$

1.
$$3\tan(x) = 4$$
 \rightarrow $x \approx 0.9273$

 2. $4\cos(2x - 1) = 1$
 \rightarrow $x \approx 1.1591$

 3. $\sin(x) = 3$
 \rightarrow no solution

 4. $e^{\wedge}(\tan(x^3)) = 10$
 \rightarrow $x \approx 1.0510$

 5. $\tan(\sin(\cos(x))) = 0.2$
 \rightarrow $x \approx 1.3708$

 6. $\sin^2(x) = 0.09$
 \rightarrow $x \approx 0.3047$

Okay, now how do we find other solutions?

Option 1: Graphical Reasoning Method

- 1. Find the principal solution.
- 2. Sketch a graph and find the nearest max/min.
- 3. Reflect horizontally for the symmetric solution.
- 4. Add the period for all solutions.

Example: Solve $3 \sin \left(\frac{2\pi}{35} (t - 10) \right) + 4 = 5$.

- ' ' '	
First few so	MILITIANCI
1 11 21 15 15 20 20	nuilonis.

 $t \approx 11.89, 25.61, 46.89, 60.61$ (minutes)

You try: Give *all* solutions to sin(x) = 0.6.

Option 2: Algebraic Method

Step	Sine case	Cosine case	Tangent case
1. Find principal solu- tion	$\theta = sin^{-1}(c)$	$\theta = \cos^{-1}(c)$	$\theta = \tan^{-1}(c)$
2. Find symmetry solu- tion	$\theta = -\sin^{-1}(c) + \pi$	$\theta = -\cos^{-1}(c)$	not applicable
3. Write out multiples of period $k = 0, \pm 1, \pm 2, \cdots$	$2k\pi$	2kπ	kπ
4. Obtain general princi- pal solutions	$\theta = sin^{-1}(c) + 2k\pi$	$\theta = \cos^{-1}(c) + 2k\pi$	$\theta = tan^{-1}(c) + k\pi$
5. Obtain general sym- metry solutions	$\theta = -\sin^{-1}(c) + \pi + 2k\pi$	$\theta = -\cos^{-1}(c) + 2k\pi$	not applicable

Full applied example: A weight hanging from a spring moves sinusoidally.

Lowest Point: 15 cm at t = 5 seconds.

Highest Point: 37 cm at t = 9.4 seconds.

During the first 20 seconds, how much time is the weight

above 28 cm?

During the first 20 seconds, time above 28 cm:

- Crossings with 28 cm in [0,20]: $t pprox 2.54,\ 7.46,\ 11.34,\ 16.26$ s
- Above 28 cm on intervals: $[0, 2.54], \; (7.46, 11.34), \; (16.26, 20]$

Total time above 28 cm:

 $pprox 10.18 \ {
m seconds}$

Another Example: Given $y = 22 \sin \left(\frac{2\pi}{18}(t-3)\right) + 46$.

Find the first four positive values of t when this function equals 50.