Ch 17: The Trig and Circular Functions

Goal: Learn how to find the (x,y) coordinates on a circle given an angle and radius.

Consider a right triangle with one angle θ .

We give the following names to the six ratios of the sides...

Sine	$sin(\theta)$
Cosine	$cos(\theta)$
Tangent	$tan(\theta)$
Cosecant	$csc(\theta)$
Secant	$sec(\theta)$
Cotangent	$cot(\theta)$

Some Nice Triangles and Angles

(45-45-90, 30-60-90)

Easy ways to remember (0-1-2-3-4 method)

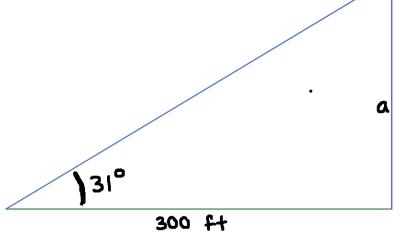
Calculator Mode warning
Get your calculator out and compute...

$$sin\left(\frac{\pi}{6}\right)$$
 and $sin(30)$

Trig Problems

Example:

A right triangle has an angle of 31 degrees. The side adjacent to that angle has length 300 ft. What is the length of the side opposite that angle?



Example:

You are looking up at the Smith Tower.

- From your location the top is 34 degrees above horizontal.
- You walk forward 110 feet. Then you measure the angle to the top is 39 degrees.

How tall is the Smith Tower?

Trig Tips:

- Label the side(s) and angle(s) you are *given* and *want*.
- You likely will write an equation for every right triangle.
 - Ocombine and solve!
- There is often more than one way to do it!

Locations on a circle

Example: **Motivation**

Harry is standing on the easternmost edge of a circular track with radius 40 feet. Harry rotates 10 degrees per second counterclockwise.

- Where will be in 3 seconds?
- Where will be in 5 seconds?
- Where will be in 9 seconds?
- Where will be in 1 minute?

Observations...

Important Note:

• Sine and Cosine are defined to give the correct value on unit circle *beyond* 90 degrees. This extends the definition of trig functions.

General Facts

If an object is on a circle of radius r with center at the origin and its angle in standard position is θ , then the (x,y) location of the object is given by

- $x = r \cos(\theta)$
- $y = r \sin(\theta)$

The challenge in practice is finding the angle, which involves

- Finding the starting location angle = θ_0
- Finding angular speed = ω

Then using change in angle = ωt

and computing:

$$\theta = \omega t + \theta_0$$

If the center of the circle is at (x_c, y_c) , then we the only change is...

•
$$x = x_c + r \cos(\theta)$$

•
$$y = y_c + r \sin(\theta)$$

And the most general version is...

•
$$x = x_c + r \cos(\omega t + \theta_0)$$

•
$$y = y_c + r \sin(\omega t + \theta_0)$$

Example: Ron starts at the southmost edge of a merry-goround of radius 8 feet and is rotating at 2 rad/sec. Assume the center of the merry-go-round is the origin and south is the negative y-axis.

(a) Where will Ron be located in 3 seconds?

(b) Find the general formula for Ron's location, (x(t),y(t)), in t seconds.

