Ch 10/11: Exponential Functions and Models

Goal: Graph and find exponential functions.

Entry Task:

a. Compute the following (no calculator):

$$2^22^3 =$$

$$(4^{1/2})^3 =$$

$$9^{-1/2} =$$

$$\frac{20}{5} \cdot \frac{15}{2^3} \cdot \frac{1}{30} =$$

Note any "rules" you observe...

Key Ideas in Chapter 10 (Exponential Model)

 $y=ab^x$, where a= "y-intercept" and b= "base" (or "multiplier") $b>1 \ {\rm gives\ exponential\ growth}$ $0< b<1 \ {\rm gives\ exponential\ decay}$

b. Simplify/Rewrite

$$x^2x^3 =$$

$$(3^x)^4 =$$

$$4^{-x/2} =$$

$$\frac{6}{2^{-3x-1}}$$

Can you do this homework now?

Problem 10.2. Put each equation in standard exponential form:

(a)
$$y = 3(2^{-x})$$

(b)
$$y = 4^{-x/2}$$

(c)
$$y = \pi^{\pi x}$$

(d)
$$y = 1 \left(\frac{1}{3}\right)^{3 + \frac{x}{2}}$$

(e)
$$y = \frac{5}{0.345^{2x-7}}$$

(f)
$$y = 4(0.0003467)^{-0.4x+2}$$

[&]quot;standard form" means $y = ab^x$

Exponential Functions and Graphs

Example 1: Let $y = f(x) = 5 \cdot 3^{2x}$

- (a) What is a and what is b?
- (b) Sketch a graph.

Example 2: Let $y = g(x) = 6 \cdot 2^{-x-1}$

- (a) What is a and what is b?
- (b) Sketch a graph.

Finding the model

Example 1: (from Fall 2017 Final Exam)

- In 2008 the population of a town was 1200.
- In 2012 the population was 1414.

Give an exponential model for the population, $f(t) = ab^t$, where t is years since 2008 (i.e. take t = 0 in 2008).

Example 2: (from Winter 2018 Ostroff Midterm 2)

You placed some plums in an icebox.

- 10 hours from now, the plums will be 11° Celsius.
- 22 hours from now, the plums will be 5° Celsius.

Give an exponential model for the temperature, $p(t) = ab^t$, of the plumbs t hours from **now**.

Doubling, Tripling, & Percentage change

Key fact: Percentage change is unaffected by the initial value.

Example 1:

- The population of Rabbitown doubles every 3 months.
- The initial population (now) is 50 Rabbits

Give an exponential model for the population, $R(t) = ab^t$

Example 2:

- The population of Squirrelville triples every 10 months.
- The initial population is unknown.

Find the base in the exponential, $S(t) = ab^t$

Changes as percentages

Example 3:

Your lab has 10 grams of plutonium that has been sealed and stored away since 1984.

In 2004, it was measured that 80% of the sample remained (i.e. it had decayed by 20%).

Give an exponential model for the mass of plutonium in terms since 1984, $m(t)=ab^t$

Follow-up:

How many grams of plutonium will there be in 2034?

Next time: Chapter 11...

We will talk about the special base

$$e \approx 2.71828182 \dots$$

For now,

- sketch a graph of $y = e^x$ and
- sketch a graph of $y = e^{-x}$.

Both of those are example of exponential functions and you have the tools to sketch a rough graph now. Those two graphs are important to know as you go into Math 124.