Chapter 13 Formula Overview

- $\int f(x) dx$ = indefinite integral = general antiderivative of f(x) (will include a +C)
- $\int_{a}^{b} f(x) dx$ = definite integral = signed area between f(x) and x axis from x = a to x = b (this will be a number).
- $\int_{a}^{b} f(x) dx = F(b) F(a)$, where F(x) is any antiderivative of f(x) (that means F'(x) = f(x)). This is the fundamental theorem of calculus.

Notable business uses of the fundamental theorem:

$$- TR(x) = \int_0^x MR(q) \, dq$$

- $VC(x) = \int_0^x MC(q) \, dq$
- $TC(x) - TC(0) = \int_0^x MC(q) \, dq$, so $TC(x) = \int_0^x MC(q) \, dq + FC$
- $P(x) = \int_0^x MR(x) \, dx - \int_0^x MC(x) \, dx - FC = \int_0^x MR(x) - MC(x) \, dx - FC$

• If f(x) is above g(x) from x = a to x = b, then the area between f(x) and g(x) from x = a to x = b is given by

Area between $= \int_{a}^{b} f(x) - g(x) dx.$