Math 111 Refresher for Math 112 Students

1. Rates of Change for some function $f(t)$

- $\frac{f(b)-f(a)}{b-a}=$ "Rate of Change from $t=a$ to $t=b$ "
$=$ "the slope of the secant line through the graph at $t=a$ and $t=b$ ".
- If $a=0$, then we call this the overall rate of change. Otherwise we call it the average rate of change over an interval.
- The equation $\frac{f(t)}{t}=$ "The slope of the diagonal line through the graph of $f(t)$ ".

2. Business Terms and Techniques

- Basic Functions Relating to Business: For these functions, you plug in a quantity, q, and the function outputs a dollar amount which is related to the amount of money in, the amount of money out, or both.
- TR = TR $(q)=p q=$ total revenue for selling q Things (money brought in before cost)
- TC $=T C(q)=V C(q)+F C=$ total cost for selling q Things.
* $F C=T C(0)=$ fixed cost $=$ ' y '-intercept of the $T C$ graph.
* $V C=V C(q)=$ variable cost $=$ cost not including the fixed cost.
- $P=P(q)=$ Profit $=T R(q)-T C(q)$.
- Average Business Functions: For these functions, you plug in a quantity, q, and the function outputs the dollars per item.
- $A R=A R(q)=\frac{T R(q)}{q}=$ average revenue $=$ price per item when selling q items.
- $A C=A C(q)=\frac{T C(q)}{q}=$ average cost $=$ cost per item when producing q items.
- $A V C=A V C(q)=\frac{A V C(q)}{q}=$ average variable cost $=$ variable cost per item when producing q items.
- Marginal Functions: For these functions, you plug in a quantity, q, and the function outputs the dollar amount that comes about when the quantity increases by 'one unit'.
- $M R=M R(q)=T R(q+$ 'one unit' $)-T R(q)$
$=$ "change in revenue when selling one more item after q "
$=$ "slope of the secant line through the $T R$ graph from q to $q+$ 'one unit'."
- $M C=M C(q)=T C(q+$ 'one unit' $)-T C(q)$
$=$ "change in cost when selling one more item after q "
$=$ "slope of the secant line through the $T C$ graph from q to $q+$ 'one unit'."
- Maximum Profit: We have many ways to find the maximum profit. Here are a few:
- Graphically
* Find the quantity where the $T R$ graph is above the $T C$ graph by the greatest difference.
* Find the quantity where the slope of the $T R$ graph is the same as the slope of the $T C$ graph.
- Symbolically
* Solve for q in the equation $M R(q)=M C(q)$.
* If $P(q)=T R(q)-T C(q)$ is a quadratic function, then we can use the vertex formula.

3. Quadratic Functions

- A quadratic function is any expression of the form $a x^{2}+b x+c$ with $a \neq 0$.
- If $a<0$, then the parabola opens downward (it is frowning).
- If $a>0$, then the parabola opens upward (it is smiling).
- To find x coordinate of a vertex, we use the vertex formula: $x=-\frac{b}{2 a}$. To get the maximum/minimum value of the function, we then plug this value back into the function. The vertex is a maximum if the parabola opens downward and a minimum if the parabola opens upward.
- To solve an equation involving a quadratic, get everything to one side of the equation so that it looks like: $a x^{2}+b x+c=0$ and use the quadratic formula (if you are entering it into your calculator remember to put parentheses where I have indicated):

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{\left(-b \pm \sqrt{\left(b^{2}-4 a c\right)}\right)}{(2 a)} .
$$

