$\qquad$
$\qquad$

Math 112<br>Group Activity: Multivariable Functions

So far, in Math $111 / 112$, we've investigated functions that have only one input variable, like $T R(q)=25 q-0.5 q^{2}$, which has one input variable, quantity $q$. For the remainder of the quarter, we'll study functions with more than one input variable. These are known as multivariable functions.

1. The balance in a savings account with continuously-compounded interest is given by the formula

$$
A(P, r, t)=P e^{r t}
$$

where $P$ is the principal (the amount initially invested), $r$ is the annual interest rate expressed as a decimal, and $t$ is time in years that the account has been accruing interest.
(a) Compute $A(5000,0.06,8)$ and write a sentence or two describing what it represents.
(b) Suppose you have exactly $\$ 10,000$ to use as principal and the only account available pays $4 \%$ interest, compounded continuously. Then the only variable that can change is time $t$.

For each of the following, translate into functional notation and compute.
i. the change in the balance from $t=4$ to $t=9$ years
ii. the average rate at which the balance changes (in dollars per year) from $t=4$ to $t=9$ years
(c) Suppose you've found an investment that promises $5 \%$ annual interest, compounded continuously, for a term of exactly 10 years. Then, the only variable that can change is the principal $P$.
i. You have $\$ 1000$ of your own to invest. Your friend offers to give you another $\$ 500$. How much would adding your friend's $\$ 500$ to the principal increase the pay-off amount of the investment?
ii. By how much will the pay-off amount increase if you increase the principal by one dollar: from $P$ to $P+1$ ?
2. In a certain math course, the final grade is determined by computing a weighted average of homework, participation, two midterm exams, and a final exam. The total number of points available for each component and its weighting is given in the following table.

| Component | Points Earned | Points Possible | Weighting |
| :---: | :---: | :---: | :---: |
| Homework | $h$ | 600 | $15 \%$ |
| Participation | $p$ | 16 | $5 \%$ |
| Exam I | $x$ | 50 | $22 \%$ |
| Exam II | $y$ | 50 | $22 \%$ |
| Final | $z$ | 100 | $36 \%$ |

At the end of the quarter, a student's total percentage is given by:

$$
C(h, p, x, y, z)=\left(\frac{h}{600}\right) 15+\left(\frac{p}{16}\right) 5+\left(\frac{x}{50}\right) 22+\left(\frac{y}{50}\right) 22+\left(\frac{z}{100}\right) 36
$$

which simplifies to

$$
C(h, p, x, y, z)=0.025 h+0.3125 p+0.44 x+0.44 y+0.36 z
$$

This percentage is then converted into a grade as follows:

- If $C \geq 97$, then the student receives a 4.0 in the course.
- If $94 \leq C \leq 96$, then the student receives a 3.9 in the course.
- If $70 \leq C \leq 92$, then the student's grade is $0.1 C-5.5$.
(a) Terry earns 567 homework points, has a perfect participation score, and scores 43,39 , and 85 on the exams.
i. Compute Terry's total percentage: $C(567,16,43,39,85)$. (Round to the nearest whole number.)
ii. What grade does Terry receive in the course?
(b) Chris needs to earn at least a 2.7 in the course to keep a scholarship.
i. What total percentage $C$ must Chris earn to receive a 2.7 in the course?
ii. Before the final, Chris has earned 576 homework points, 15 participation points, and midterm scores of 41 and 40 . What must Chris earn on the final in order to receive a 2.7 in the course? (Round to the nearest whole number.)
(c) Pat requests a regrade on Exam II and receives 2 additional points on that exam. If no other scores change, how much will Pat's total percentage $C$ increase?
(d) Which will lead to the largest increase in a student's total percentage: a 50-point increase in homework or a 5 -point increase on the final exam?

