Name: \qquad Section: \qquad

Math 112

Group Activity: Total Revenue and Total Cost from Marginal Revenue and Marginal Cost
Recall:

- The graphs of total revenue and variable cost go through the origin:
- $T R(0)=0$
- $V C(0)=0$
- The " y "-intercept of total cost is fixed cost: $T C(0)=F C$.
- Total cost is the sum of variable cost and fixed cost, which means that the graph of total cost is a vertical shift of the graph of variable cost.

$$
T C(q)=V C(q)+F C
$$

- The derivative of total revenue is marginal revenue: $M R(q)=T R^{\prime}(q)$.
- The derivative of total cost and the derivative of variable cost are the same. Both are equal to marginal cost:

$$
T C^{\prime}(q)=V C^{\prime}(q)=M C(q)
$$

1. (a) Find $M R(q)$ if $T R(q)=-\frac{3}{2} q^{2}+20 q$.
(b) Find $T R(q)$ if $M R(q)=100-9 q$.
(c) Find $F C, V C(q)$, and $M C(q)$ if $T C(q)=\sqrt{q+64}$.
(d) Find $V C(q)$ and $T C(q)$ if $M C(q)=30 \sqrt{q+100}$ and $F C=50,000$.
2. The graph below shows the graphs of marginal revenue and marginal cost to sell and produce Framits.

(a) Define a function

$$
A(q)=\text { the area under } M R \text { from } 0 \text { to } q
$$

Fill in the values in the following table:

q	0	5	10	15	20	25	30	35	40	45	50	55	60	65	70
$A(q)$	0	67.5	130			287.5			400		450				490

(b) Sketch the graph of $A(q)$ on the following set of axes:

We've learned in previous activities that such an area function gives us an anti-derivative of $M R(q)$. Moreover, this is the anti-derivative of $M R(q)$ that goes through the origin. Thus, you have just sketched the graph of total revenue. Label this graph $T R(q)$.

FACT: The area under $M R$ from 0 to q always gives $T R(q)$.

Getting from $M C$ to $T C$ will be harder. For one thing, in this scenario, the graph of $M R$ is a line - we can easily compute, for example, the area under $M R$ from 0 to 45 as the area of a single trapezoid. To compute the area under $M C$, however, we will have to break the region up into smaller pieces that approximate trapezoids. Further, the area under $M C$ will give an anti-derivative of $M C$-we'll need to consider how $V C$ and $F C$ fit into this picture.
(c) Fill in the following table with the area under the $M C$ graph on the indicated interval.

Interval	0-5	5-10	10-15	15-20	20-25	25-30	30-35	35-40	40-45	45-50	50-55	55-60	60-65	65-70
Area under MC	25.5	18	13		10.5		18			48	63			123

(d) Add together the appropriate areas from part (c) to fill in the following table with the area under the $M C$ graph from 0 to q.

q	0	5	10	15	20	25	30	35	40	45	50	55	60	65	70
area under $M C$ from 0 to q	0	25.5	43.5	56.5											

(e) We know that the table in part (d) gives values of a function that is an anti-derivative of $M C$. Moreover, this function goes through the origin. The anti-derivative of $M C$ that goes through the origin is variable cost. On the axes in part (b), sketch and label the graph of $V C(q)$.

FACT: The area under $M C$ from 0 to q always gives $V C(q)$.
(f) Fixed costs are $\$ 100$. Sketch and label the graph of $T C(q)$ on the axes in part (b).
(g) What quantity gives the largest possible profit?
(h) What is the largest possible profit?
(i) What is the largest quantity at which you won't be forced to take a loss?

