Name:

Section:

Math 112
Group Activity: Local vs. Global Optima

1. Below is the graph of altitude, A(t), for a balloon that is rising and falling.

altitude (feet)

15,000 \ / \

TN A

10,000 \ / \

5000 \ /

time (minutes)

List all critical values of the function A(t).

Which of these give local (relative) maxima? local minima? horizontal points of inflection?

On the interval from ¢t = 0 to ¢ = 5.5, the balloon is at its highest altitude at ¢ = 0. We say that the
global maximum of A(t) occurs at t = 0. What is that altitude?

At what time does the global minimum of A(t) (the lowest altitude) occur? What is the lowest altitude
the balloon reaches on the interval shown?

We're now going to restrict our attention to smaller time intervals. Fill in the following chart with the
values of ¢4z, the value of ¢ that gives the global maximum altitude on the given interval, and ¢,,;,, the
value of ¢ that gives the global minimum altitude on the given interval.

Interval H tmaz ‘ tmin
fromt=0tot=>5.5 0 3
from ¢t =0.75to t = 2.25
from t =1.75 to t = 2.75
from ¢t = 4.5 tot =4.75




The previous exercise demonstrates the following fact: On the interval from x = a to = b, the global maximum
value of a function f(x) occurs either at a critical value or at one of the endpoints of the interval. That is, the
global maximum value of f(x) is either a local maximum value of f(x) OR it is f(a) or f(b). Similarly, the
global minimum value of f(x) is either a local minimum value of f(z) OR it is f(a) or f(b).

This gives a convenient process to find the local and global maximum and minimum vlaues of a
function f(z) on the interval from = = a to x = b.

Step 1: Compute f/(z), set f'(z) = 0, and solve for z. This gives the critical values for f(z).

Step 2: Evaluate f(z) at each of the critical values that lie between a and b (you can ignore
any critical values that are not in your interval). Also, compute f(a) and f(b).

Step 3: Use the information gathered in Steps 1 and 2 to SKETCH A ROUGH GRAPH of f(x) on
the interval from a to b. You should be able to see on your graph all local and global optima.

2. The total revenue and total cost (both in hundreds of dollars) for selling ¢ hundred Shrubnods are given by:
TR(q) = —0.08¢° + 2.35¢ and T'C(q) = 0.01¢> — 0.3¢> + 3¢ + 4.

(a) Compute the formula for profit P(q) and its derivative P’(q).

(b) Find all critical values of the profit function. (You may round your answers to 2 digits after the decimal.)

(c¢) If you produce between 10 hundred and 15 hundred Shrubnods, what production level will yield the largest
profit? (Follow the three-step method given above: You've already done Step 1. Evaluate P(g) at any
relevant critical values and the endpoints of your interval. Use that information to sketch the graph of
P(q) from ¢ = 10 to ¢ = 15. Then you can see the optima.)



(d) If you produce between 9 hundred and 10 hundred Shrubnods, what production level will yield the largest
profit?

(e) If you can produce any number of Shrubnods, what production level will yield the largest profit? What
is the largest possible profit for producing Shrubnods? (To answer this question, sketch a rough graph of

[199%3)

the entire profit function. Include the correct “y”-intercept and all critical points.)

(f) What is the global minimum value of profit on the interval from ¢ = 0 to ¢ = 5 hundred Shrubnods?
(NOTE: Your answer should be negative. If the smallest possible profit is negative, then its absolute value
is the largest possible loss.)

(g) If you can produce any number of Shrubnods, what production level will cause you to lose the most money?
What is the largest possible loss for producing Shrubnods?



