1. (12 points)

(a) For the two derivative questions below, you do NOT have to simplify your final answer. *Put a box around your final answers.*

i. Find
$$f'(x)$$
, if $f(x) = 5\left(\frac{4}{x^2} + \frac{x^2}{3}\right)^4 = 5\left(4 \times \frac{2}{3} + \frac{1}{3} \times \frac{2}{3}\right)^4$

$$f'(x) = 20(4x^{-2} + \frac{1}{3}x^{2})^{3}(-8x^{-3} + \frac{2}{3}x)$$

ii. Find
$$\frac{dy}{dx}$$
, if $y = \frac{3x}{8} + \sqrt[3]{x}\sqrt{x^7 - 4x^3}$. = $\frac{3}{8} \times + \times \sqrt[3]{(x^7 - 4x^3)}$

$$\frac{dy}{dx} = \frac{3}{8} + \frac{1}{2} x^{3} (x^{7} - 4x^{3})^{\frac{1}{2}} (7x^{6} - 12x^{2}) + \frac{1}{3} x^{-\frac{3}{2}} (x^{7} - 4x^{3})^{\frac{1}{2}}$$

(b) Write the equation of the tangent line to the graph of $y = \frac{3x^5 - 3x - 9}{4 - x^2}$ at x = 1. Simplify your final answer into the form y = mx + b.

$$y(1) = \frac{3-3-9}{4-1} = \frac{-9}{3} = -3$$
 = HEIGHT

$$+2 \left\{ y' = \frac{(4-x^2)(15x^4-3)-(3x^5-3x-9)(-2x)}{(4-x^2)^2} \right\}$$

$$+ |y'(1)| = \frac{3 \cdot 12 - (-9)(-2)}{(3)^2} = \frac{36 - 18}{9} = \frac{18}{9} = 2$$
 SLOPE

$$y = 2(x-1)-3$$

$$+ 2$$
ANSWER: $y = 2x-5$

2. (11 pts) Parts (a) and (b) below are NOT related.

(a) Let
$$f(x) = 3x - 2x^2$$
.

Write out, expand and *completely simplify* the following: $\frac{f(x+h)-f(x)}{h}$. Then **also** give f'(x). (Feel free to check your work!)

$$\frac{[3(x+h)-2(x+h)^{2}]-[3x-2x^{2}]}{h} + 2$$

$$= \frac{3x+3h-2(x^{2}+2xh+h^{2})-3x+2x^{2}}{h}$$

$$= \frac{3h-2x^{2}-4xh-2h^{2}+2xx}{h}$$

ANSWERS
$$\frac{f(x+h)-f(x)}{h} = \frac{3-4 \times -2h}{3-4 \times }$$

$$+ \int f'(x) = \frac{3-4 \times -2h}{3-4 \times }$$

- (b) For a different function, g(x), you are told that $g(x+h) g(x) = 2h^3 + 6h^2x + 6hx^2 h$ for all values of x and h (you are NOT given g(x)). Answer the following questions:
 - i. Give the value of g(3) g(2).

$$x = 2, h = 1$$

$$\Rightarrow g(2+1) - g(2) = 2(1)^{3} + 6(1)(2) + 6(1)(2)^{2} - (1)$$

$$= 2 + 12 + 24 - 1 = 37$$
ANSWER: $g(3) - g(2) = 37$

ii. Give the value of g'(5).

$$\frac{g(x+h)-g(x)}{h} = 2h^2 + 6hx + 6x^2 - 1$$

$$h \to 0 \implies g'(x) = 6x^2 - 1 \implies g'(s) = 6(s)^2 - 1 = 150 - 1$$

ANSWER
$$g'(5) = 149$$

3. (12 pts) You sell Items. If you sell q hundred Items, you are given:
demand curve (i.e. price): $p=81-2q$ dollars/Item total cost: $TC(q)=q^3-20q^2+141q+2$ hundred dollars
Note: Pay attention to units. + \ UNITS
(a) Find the quantity and price that correspond to maximum total revenue (round to the nearest Item and dollar/Item)
$TR(q) = 81q - 2q^2$
MR(q) = 91 - 4q = 0
81 = 4 gr 9 = = = 20.25 hundred Items +1
D-91-2(20.25) = 40,5
P = 91 - 2(20.25) = 40.5 ANSWER: Quantity: 2,025 Items
Price: 40.50 dollars/Item
(b) Find the longest interval on which marginal revenue exceeds marginal cost.
MR(q) = MC(q) 1411
$81-49 = 39^2-409+141 + 3$
0 = 322 - 36g + 60
$0 = q^2 - (2q + 20)$ $0 = (q - 2)(q - 10)$
ANSWER: From $q = \frac{2}{2}$ to $q = \frac{10}{2}$ hundred Items (c) What is the maximum value of profit to the nearest dollar?
OCCURS AT QUANTITY WHERE MA >MC SWITCHES "TO
MREME WHICH I' 9=10 From para (b).
$P(10) = T12(10) - TC(10)$ $= (81(10) - 2(10)^{2}) - ((10)^{3} - 20(10)^{2} + 141(10) + 2)$ $= (610) - (412)$
= (610) - (412) ANSWER: max profit = 19,800 dollars = 198 hundred dollars

(a) Let
$$f(x) = 3\sqrt{x} - 4x$$
.

i. Find the second derivative of
$$f(x)$$
.

$$f'(x) = \frac{3}{2} x^{-\frac{1}{2}} - 4$$

ANSWER:
$$f''(x) = \frac{-\frac{3}{4} \times -\frac{3}{2}}{4}$$

ii. The graph of $f(x) = 3\sqrt{x} - 4x$ is below. Use a derivative to find the x-coordinate that corresponds to the maximum point shown on the graph (shown below).

$$\frac{3}{2} \times \frac{7}{2} - 4 \stackrel{?}{=} 0$$

$$\frac{3}{2\sqrt{x}} - 4 \stackrel{?}{=} 0$$

$$\frac{3}{2\sqrt{x}} = 4$$

$$3 = 4$$

$$3 = 8\sqrt{x}$$

ANSWER:/x =

(b) . Two functions
$$g(x)$$
 and $h(x)$ have derivatives

$$g'(x) = -x^2 + 5x - 4$$
 and $h'(x) = -5x + 12$.

The derivative graphs are shown, including the locations where they intersect each other (2 and 8). Note that the formulas for g(x) and h(x) are not given.

i. Assume g(0) = h(0) (i.e. original functions start at the same height). For each part, circle the true statement:

A. Circle one:
$$g(2) > h(2)$$
 or $g(2) = h(2)$ or $g(2) < h(2)$.

B. Circle one:
$$h(1) > h(0)$$
 or $h(1) = h(0)$ or $h(1) < h(0)$.

ii. Name the longest interval over which g(x) is increasing and h(x) is decreasing.

$$g'(x) \stackrel{?}{=} 0 = -x^2 + 5x - 4$$

 $x^2 - 5x + 4 = 0$
 $(x - 1)(x - 4) = 0$

g'(x) = 0 =
$$-x^2 + 5x - 4$$
] = g'(x) positive from x=1 to x=4
 $x^2 - 5x + 4 = 0$ | h'(x) negative from x=2.4 onw Ann
 $(x-1)(x-4) = 0$

$$h'(x) = 0 = -5x + 12$$

 $x = \frac{12}{5} = 2.4$

ANSWER: from
$$x = 2.4$$
 to $x = 4$