1. (12 pts)
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(a) Find the derivative of f(z) = z* 1n(5:r+1)—§—5+5 = X \r\ (Sx-r m ":%‘
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(b) Assume the selling price per item is given by p =
items. (Hint: Write down T'R first!)
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aq +2 Find the marginal revenue at g = ¢

(c) Find the equation for the tangent line to y = Ve 4+ 3 at « = 0.
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2. (13 pts)
(a) Expand and integrate / z(3z + 2)%dz.
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(c) Find the area of the region bounded by y =z + 6 and y = x
(Give your final answer as a decimal)
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3. (13 pts) You watch a balloon rise and fall. The height of the balloon (in feet) after ¢ minutes is
given by A(t) = 18t — 3% + 25.

(a) Write out and completely simplyfy the formula, in terms of ¢ and A, for the change in height
from ¢ to ¢t + A
A(t+h) — A(t)
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ANSWER: A(t+h) ] 8\'\ (aJc\a z \r\i

(b) Find the average rate of ascent for the balloon from t = 0 5 min to ¢ ~ 2.5 min. (mclude
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ANSWER: q Units=__MJA

(c) Fmd the instantaneous rate of ascent for the balloon at ¢ = 5 minutes. (include units)
R = \8 -6k AUl =18-(is) = 18 -20
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ANSWER: __— | 2. Units = __ " MM /‘

(d) Find the height of the balloon at the moment, it changes from rising to falling. (inlude units)
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and the supply function is p = 2+ 0.5z,

4. (11 pts) The demand function for a product is p = 1
T
where p is the price per item, in dollars/item, and 2 in the number of items.

(a) Find the price and quantity that cotrespond to market equilibrium.
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(b} Compute the supplier’s surplus.
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5. (16 pts) Below are the graphs of marginal revenue and marginal cost for selling Things;
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Also assume that fixed cost is FC' = T'C{0) = 25 dollars.

(a) Estimate as accurately as possible from the graph:
i TC(20) 5 mdq_\c\i +28 = %20(%?2&‘)-!-2:: 600 +2 ¢

=[625]
ii. 7C'(30) = M (3& =2 OF{
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(b) Give the quantity at which each of the following occur (estimate from the graph)
1. The graph of M R has a local maximum at g = (ZO g

ii. The graph of Profit has a local maximum at g = ,] = I'* '
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iii. The graph of TR has a local maximum at g = / 5 5 !

iv. On the interval ¢ = 5 to ¢ = 33, the absolute maximum of T'C' occurs at g } 33 }
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(c) Give the longest interval of time over which the graph of T'R is concave up.
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6. (12 pts) Consider the function
3

f(x) f——4'r + 12z,

{a) Find all critical numbers of f(z) (there are twol).
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(b) Classify the critical numbers from the previous part as local max, or local min, or horizontal
points of inflection. Clearly indicate your answers and show your reasoning.
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(¢) Consider the function D(x) = i(—f—) Find the absolute minimum and absolute maximum
z

values of D{z) on the interval z =1 to 2 — 12,
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7. (12 pts) Let 2 = f(z,y) = l4z — 12In(y) = |4 % -2} [J') + Lj X

(a) Write out the formulas for f,(z,y) and f,,(:c y).

-4 _ = 3 -3
{b) Use a partial derivative to approximate the value of f(2.0001,1) - f(2,1)
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(c) If y = 1 is fixed, the function g(z) = f(z,1) is a one variable function of z. By showing

appropriate calculations, answer the following questions:

i. Is g(z) increasing, decreasing, or neither at o = 37
C%@A = |4y +2x7*
0= 1o bt = A
g (g = |4 - Jw = 299 >0
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ANSWER: (circle one\INCREASING) DECREASING NEITHER

ii. Is g(x) concave up, concave down, or neither at £ —= 37
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ANSWER: (circle one@CA\/E UP / CONCAVE DOWN NEITHER
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8. (11 pts) A company manufactures two products, A and B. If z is in thousands of units of A and
1 18 in thousands of units of B, then the total cost and total revenue in thousands of dollars are:

Clz,y) =22% — 2zy + 4y — 8z — 10y + 11
R(z,y) = 8z + 6y

The profit function has one critical point and the maximum profit oceurs at this point. Find the
maximum profit.
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Maximum profit = 30 q thousand dollars which occurs when

r = J_L thousand units of 4 and y = AL thousand units of B



