MATH 112 Exam I Spring 2015

Name		
Student ID #	Section	

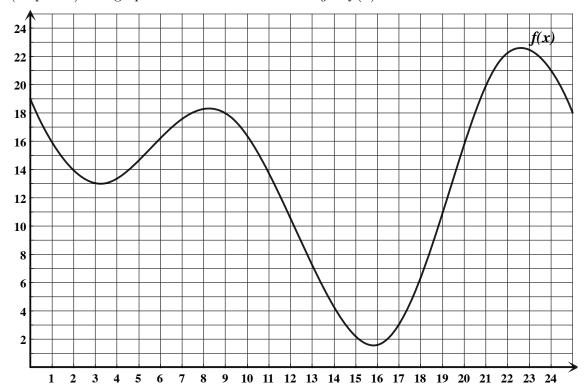
HONOR STATEMENT

"I affirm that my work upholds the highest standards of honesty and academic integrity at the University of Washington, and that I have neither given nor received any unauthorized assistance on this exam."

SIGNATURE:		
SIGNALURE:		

1	12	
2	12	
3	14	
4	12	
Total	50	

- Check that your exam contains 4 problems.
- You are allowed to use a scientific (non-graphing) calculator, a ruler, and one sheet of hand-written notes. All other sources are forbidden.
- Do not use scratch paper. If you need more room, use the back of the page and indicate to the grader you have done so.
- Turn your cell phone OFF and put it away for the duration of the exam.
- You may not listen to headphones or earbuds during the exam.
- You must show your work. Clearly label lines and points that you are using and show all calculations. The correct answer with no supporting work may result in no credit.
- If you use a guess-and-check method when an algebraic method is available, you may not receive full credit.
- When rounding is necessary, you may round your final answer to two digits after the decimal.
- There are multiple versions of the exam, you have signed an honor statement, and cheating is a hassle for everyone involved. DO NOT CHEAT.
- Put your name on your sheet of notes and turn it in with the exam.


1. (12 points) Compute the derivative. DO NOT SIMPLIFY.

(a)
$$s = \sqrt{t^5} \left(4t^7 - \frac{1}{t^4} \right)^3$$

(b)
$$y = \frac{7}{3(2x^3 + x)^5} + \frac{8(2x^3 + x)^5}{11}$$

(c)
$$z = \left(\frac{w^3 + 3w + 10}{w}\right)^{15}$$

2. (12 points) The graph below shows the function y = f(x).

(a) Approximate $\frac{f(7+h)-f(7)}{h}$ if h=0.001.

ANSWER:
$$\frac{f(7+h) - f(7)}{h} \approx \underline{\hspace{1cm}}$$

(b) Find a value of a (other than 15) at which f'(a) = f'(15).

ANSWER: $a = \underline{\hspace{1cm}}$

(c) Give an interval of length 5 on which f'(x) is negative. If there is no such interval, circle NONE.

ANSWER: from $x = \underline{\hspace{1cm}}$ to $x = \underline{\hspace{1cm}}$ or NONE

(d) Give an interval on which the graph of f'(x) looks like this:

If there is no such interval, circle NONE.

3. (14 points) Two moving Objects, a Red Object and a Blue Object, begin from the same location at t = 0. After t minutes, the Red Object is R(t) feet from its starting location and the Blue Object is B(t) feet from its starting location, and these are given by the formulas:

$$R(t) = 2t^2 + 6t$$
 and $B(t) = -4t^2 + 159t$.

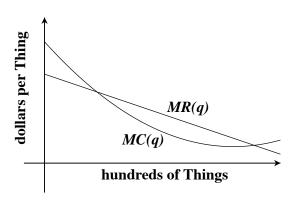
(a) Find a formula for the average speed of the Red Object from t = a to t = a + h. Simplify your formula as much as possible. Place a box around your final answer.

(b) Find a time at which the Red Object's **instantaneous speed** is the same as the **average speed** of the Blue Object from t = 3 to t = 7.

- ANSWER: $t = \underline{\hspace{1cm}}$ minutes
- (c) During what interval of time is the Blue Object traveling faster than the Red Object?

- ANSWER: from $t = \underline{\hspace{1cm}}$ to $t = \underline{\hspace{1cm}}$ minutes
- (d) How far apart are the Objects and how fast are they traveling when they have the same instantaneous speed?

ANSWER: They are _____ ft apart, traveling at a rate of ____ ft per min.


4. (12 points)

You sell Things. The formulas for marginal revenue and marginal cost at q hundred Things are given by:

$$MR(q) = -0.85q + 10.5$$
 and

$$MC(q) = 0.25q^2 - 3.6q + 15.$$

Their graphs are given at right.

(a) Give the longest interval on which profit is increasing.

ANSWER: from $q = \underline{\hspace{1cm}}$ to $q = \underline{\hspace{1cm}}$ hundred Things

(b) Find the quantity at which total revenue is largest.

ANSWER: q =_____ hundred Things

(c) Approximate the change in total cost if production increases from 900 to 901 Things. Include units.

ANSWER: _____UNITS: ____

(d) Find the quantity at which TC''(q) = 0.

ANSWER: q =_____ hundred Things