MATH 112 Exam II Spring 2015

Name		
Student ID #	Section	

HONOR STATEMENT

"I affirm that my work upholds the highest standards of honesty and academic integrity at the University of Washington, and that I have neither given nor received any unauthorized assistance on this exam."

SIGNATURE:		
SIGNALUAD:		

1	12	
2	10	
3	12	
4	16	
Total	50	

- Check that your exam contains 4 problems.
- You are allowed to use a scientific (non-graphing) calculator, a ruler, and one sheet of hand-written notes. All other sources are forbidden.
- Do not use scratch paper. If you need more room, use the back of the page and indicate to the grader you have done so.
- Turn your cell phone OFF and put it away for the duration of the exam.
- You may not listen to headphones or earbuds during the exam.
- You must show your work. Clearly label lines and points that you are using and show all calculations. The correct answer with no supporting work may result in no credit.
- If you use a guess-and-check method when an algebraic method is available, you may not receive full credit.
- When rounding is necessary, you may round your final answer to two digits after the decimal.
- There are multiple versions of the exam, you have signed an honor statement, and cheating is a hassle for everyone involved. DO NOT CHEAT.
- Put your name on your sheet of notes and turn it in with the exam.

- 1. (12 points)
 - (a) Compute $\frac{dy}{dx}$. DO NOT SIMPLIFY.

$$y = \frac{\ln(4x)}{5x^2} + e^{x(3x+1)^4}$$

$$\frac{dy}{dx} =$$

(b) Evaluate the integral.

i.
$$\int \left(\frac{e^{6x}}{6} + \frac{3x^4 + 10}{x^5}\right) dx$$

ii.
$$\int_{1}^{5} \left(\frac{12}{t^2} + 2t\right) dt$$

2. (10 points) Mick sells Items and knows that the total cost (in dollars) for selling q Items is given by

$$TC(q) = 874.8 + 0.3q^2.$$

Recall that **average cost** is given by $AC(q) = \frac{TC(q)}{q}$.

(a) Find the critical value of AC(q).

ANSWER: $q = $	Items
----------------	-------

(b) Use the Second Derivative Test to determine whether the critical value you found in part (a) gives a local maximum or a local minimum of average cost.

ANSWER: (circle one) local maximum local minimum cannot determine

(c) Mick knows that, when q Items are sold, marginal revenue is

$$MR(q) = 8e^{0.04q}$$
 dollars per Item.

Find the total revenue if 30 Items are sold.

3. (12 points) Bianca sells Things and knows that, when q hundred Things are produced and sold, marginal revenue and marginal cost (both in dollars per Thing) are given by:

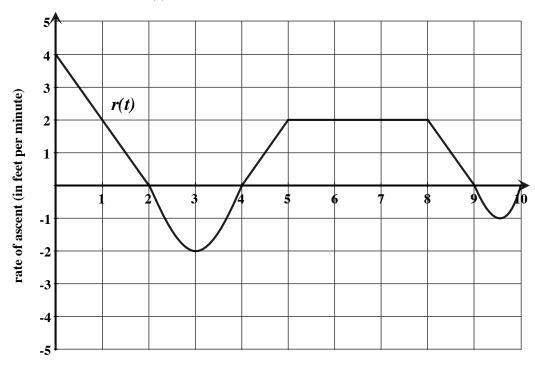
$$MR(q) = 25 - 4q$$
 and $MC(q) = 2 + 6q$.

In addition, when Bianca sells 3 hundred Things, her profit is 18 hundred dollars.

(a) Find the formulas for Bianca's total revenue and variable cost at q hundred Things.

ANSWER: TR(q) =

VC(q) =


(b) Find Bianca's fixed cost.

ANSWER: hundred dollars

(c) Find the maximum possible profit for selling Things.

ANSWER: ____hundred dollars

4. (16 points) The altitude, in feet, of a hot-air balloon at time t minutes is given by a function A(t). The graph below shows the balloon's **rate of ascent** at time t. The rate of ascent is given by the function r(t).

time (in minutes)

FOR THIS PROBLEM, YOU ARE NOT REQUIRED TO SHOW ANY WORK. JUST GIVE ANSWERS.

(a)	Give the times in the first 5 minutes at which the graph of $r(t)$ has horizontal tangents.
	ANSWER: (list all) $t = \underline{\hspace{1cm}}$ minutes
(b)	Give the times in the first 5 minutes at which the graph of $A(t)$ has horizontal tangents.
	ANSWER: (list all) $t = \underline{\hspace{1cm}}$ minutes
(c)	Give the time in the first 5 minutes when the balloon is at its highest altitude .
	ANSWER: $t = \underline{\hspace{1cm}}$ minutes
(d)	Give the time in the first 5 minutes when the balloon is rising the fastest .
	ANSWER: $t = \underline{\hspace{1cm}}$ minutes
(e)	Give two intervals during which the balloon is falling and getting slower.
	ANSWER: from $t = $ to $t = $
	from $t = \underline{\hspace{1cm}}$ to $t = \underline{\hspace{1cm}}$
(f)	Is the graph of $A(t)$ concave up or concave down at $t=2.5$?
	ANSWER: (circle one) concave up concave down cannot determine
(g)	Compute $A(9) - A(4)$.

ANSWER: ____