In class and on this review sheet, I will review some key points of the course so far. However, you are expected to know ALL material that we have covered up to this point.

The Quick and Dirty Review

1. **The Prologue**
 - Slopes of lines, solving equations involving lines.
 - Solving quadratic equations and the quadratic formula $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$.

2. **Average (Overall) Rates of Change**
 - ATS (Car), Average (Overall) Output (Reservoir), AR and AC (Shin Polish), CGPA (Grade Point), etc.
 - The slope of the secant line through $x = 0$. If the graph goes through the point $(0, 0)$, then this is the slope of the diagonal line. The functional notation is $f(x) - f(0) \over x - 0$. If $f(0) = 0$, then $f(x) \over x$.
 - Given an average (overall) rate of change, we draw a line through $x = 0$ with the given rate (i.e. slope) and see where it intersects the graph.

3. **Average (Incremental) Rates of Change**
 - As (Car), Average Change each half hour (Reservoir), MR and MC (Shin Polish), QGPA (Grade Point), etc.
 - The slope of the secant line from $x = a$ to $x = b$. The functional notation is $\frac{f(b) - f(a)}{b - a}$.
 - Given an average (incremental) rate of change, we draw a reference through $x = 0$ with the given rate (i.e. slope) and slide our ruler parallel to this slope until we find an appropriate interval.

4. **Change in “Something”**
 - Change in Distance (Car), Change in Output (Reservoir), Change in TR and Change in TC (Shin Polish), Change in Grade Points (Grade Point), etc.
 - The change in height from $x = a$ to $x = b$. The functional notation is $f(b) - f(a)$.
 - Recall, we often fix $\Delta x = \text{the change in } x$, and then we compute values of $\Delta f(x) = \text{change in } f(x)$.

5. **Translation**
 - Be able to translate between the 3 languages: English, Graph, and Functional

6. **Total Revenue (TR) and Total Cost (TC)**
 - Finding the quantity that gives biggest profit by looking at the TR and TC graphs.
 - Finding the break even price (BEP) and shutdown price (SDP) and understanding what these represent.
 - Understand how profit, BEP, and SDP can be explored using MR, AC and AVC.
The More Elaborate Review

1. Prologue

 - Slope = \(\frac{\text{Rise}}{\text{Run}} = \frac{y_2 - y_1}{x_2 - x_1} \) if \((x_1, y_1)\) and \((x_2, y_2)\) are two points on the line. (Problems 1 - 6)
 - Solving when lines intersect. (Problem 7)
 - Quadratic equations, vertex formula, and the intersection of quadratics and lines. (Problems 8 - 11)

2. Worksheet 1 - The Car Story

 - Average Trip Speed = \(\overline{\text{ATS}} = \frac{\text{Total Change in Distance (so far)}}{\text{Total Change in Time (so far)}} \) and Average Speed = \(\overline{\text{AS}} = \frac{\text{Change in Distance}}{\text{Change in Time}} \) (Problems 1 - 8)
 - Note that we fixed \(\Delta t = 5 \) and computed \(\Delta D \). The labeled \(C \) is the distance covered in a five minute interval.
 - \(\overline{\text{ATS}} \) = slope of a secant through the \(t = 0 \), \(\overline{\text{AS}} \) = slope of a secant through \(t = a \) and \(t = b \). Note: We can use this to find the times that give lowest or highest \(\overline{\text{ATS}} \) and \(\overline{\text{AS}} \). (Problems 11-12, 1-I and 1-II)

3. Worksheet 2 - The Reservoir Story

 - \(U(t) \) = usage over the last half hour, we computed \(O(t) \) = total output \(t \) hours after noon, \(I(t) \) = total input \(t \) hours after noon. (Problems 1 - 4)
 - Whenever input below output on the graph, there is a shortage. If we want to find the least amount of water that has to be in the reservoir at noon we find the greatest distance that output is above input. (Problems 5 - 8)

4. Worksheet 3 - The Print Shop Story

 - \(TR \) = total revenue, \(TC \) = total cost, \(MR \) = marginal revenue = change in \(TR \) when quantity \(q \) is increased by 1, \(MC \) = marginal cost. (Problems 1 - 7)
 - \(P \) = profit = \(TR - TC \), the quantity when \(TR \) has the greatest vertical distance above \(TC \) is where profit is maximized. (Problems 8 - 11)
 - Marginal Analysis: If \(MR > MC \), then profit increases when we sell one more unit. If \(MR < MC \), then profit decreases when we sell one more unit. Profit is maximized at the first quantity at which \(MR \) falls below \(MC \). (Problems 12 - 14)

5. Worksheet 4 - Increments

 - We discussed the similarities between the three stories and how there are total amounts \((D, O, \text{ and } TR) \) and incremental amounts \((C, U, \text{ and } MR) \). (Problems 1 - 8, 4-I - 4-III)

6. Worksheet 5 - Increments and Speeds

 - We noted how \(\overline{\text{ATS}} \) in the car story corresponds to \(AR = \text{average revenue} = \text{price} \) in the print shop story. We also noted how \(\overline{\text{AS}} \) corresponds to \(MR \). (Problems 1 - 7)
 - The grade point story was introduced a another example. (Problems 8 - 15, 5-I)
7. Worksheet 6 - The Lagging Car

- Functional notation was introduced in this worksheet. We began the basic of translating into functional notation. (Problems 1-13, 6-I)

8. Worksheet 7 - A Reservoir in Three Languages

- Translating between English, Graph, and Functional languages. (Problems 1 - 7, 7-I)

9. Worksheet 8 - Increments and Reference Lines

- This is an important section! We can answer 3 major questions by translating to graphical language. (Problems 1, 2, 8-I - 8-III)

 (a) Average (Overall) Rate of Change - Draw a line with the given slope through $x = 0$ and see where it intersects the graph. (Problem 3)

 (b) Average Rate of Change over an Interval - Draw a reference line with the given slope through $x = 0$ and slide the ruler parallel to the line until you find an interval of the appropriate length. (Problems 4, 5, 7)

 (c) Change in “Something” - Divide both sides by the length the the interval to get a slope and proceed as in (b). (Problem 6)

10. Worksheet 9 - Analysis of Cost I

- $FC = $ fixed cost (rent, etc.), $VC = $ variable cost, $TC = FC + VC$.

- Given a market price p, we can draw a straight line graph for TR. The breakeven price (BEP) is the slope of the lowest line through $(0, 0)$ that crosses the TC graph. The shutdown price (SDP) is the slope of the lowest line through $(0, 0)$ that crosses the VC graph. (Problems 1 - 14, 9-I)
 - If $p > BEP$, then some quantities make a profit.
 - If $p < BEP$, then no quantities make a profit
 - If $p > SDP$, then some quantities will make more money than FC. (DON’T SHUT DOWN)
 - If $p < SDP$, then no quantities will make more money than FC. (SHUT DOWN)

11. Worksheet 10 - Analysis of Cost II

- $AVC(q) = \frac{VC(q)}{q}$ is the slope of the diagonal line through the graph of VC. (Problems 1 - 12, 10-I and 10-II)

- $BEP =$ the intersection of MC and AC.

- $SDP =$ the intersection of MC and AVC.