1. Consider two vector fields: \(\mathbf{F} = (x + z, 1, x) \) and \(\mathbf{G} = (y, -x, e^z) \).

a) For each of the two fields, determine whether it is conservative. Show your reasoning! Give a potential function for each conservative field.

b) Let \(C \) be the curve from \((0,0,0)\) to \((4,20)\) along the intersection of the surfaces defined by \(x^2 + y^2 = z \) and \(x = 2y \). Evaluate \(\int_C \mathbf{F} \cdot d\mathbf{r} \) and \(\int_C \mathbf{G} \cdot d\mathbf{r} \).

2. The function \(g \) of three variables is given by \(g(x,y,z) = xz^2 + y - e^{6} \).

 a) Suppose \(\mathbf{r}(t) \) is a parametrized curve; we do not know the formulas for \(\mathbf{r}(t) \), but we know that \(\mathbf{r}(5) = (2,-7,3) \) and \(\mathbf{r}'(5) = (-1,\pi,2) \). Define a new function \(h(t) = g(\mathbf{r}(t)) \); find \(h'(5) \).

 b) Find the equation of the tangent plane to the level set for \(g \) through the point \((2,-7,3)\).

 c) Suppose you are at the point \((2,-7,3)\), and you want to start moving in a direction so that \(g \) stays constant. Give one possible direction for which this is true.

3. Let \(S \) be the part of the surface \(y = z^2 \) inside the cylinder \(x^2 + z^2 = 4 \), oriented by the normal with positive \(j \) component.

 a) Give a parametrization \(\mathbf{r}(u,v) \) of \(S \), including specifying the domain (that is, the bounds on \(u,v \)). Does \(\mathbf{r}_u \times \mathbf{r}_v \) give the orientation specified, or the opposite orientation?

 b) Give a parametrization of the boundary curve \(C \) of \(S \) as a function of \(t \), including specifying the interval for \(t \). Does your parametrization give the orientation of \(C \) consistent with the given orientation of \(S \), or the opposite orientation?

 c) Compute \(\iint_S \nabla \times \mathbf{F} \cdot d\mathbf{S} \), where \(\mathbf{F} = zi + (4 - x^2 - z^2)j - xk \). (You may compute it directly, or use one of the theorems of chapter 16.)

4. Let \(S \) be part of the cylinder \(x^2 + y^2 = 9 \) where \(0 \leq z \leq 5 \). Let \(f(x,y,z) = 2z \), and let \(\mathbf{F} = \mathbf{i} + \mathbf{k} \).

Determine whether each of the following expressions makes sense. If it doesn’t make sense, say briefly why. If it does make sense, compute it. (Hint: you may be able to reason directly from the meaning of the surface integrals and compute them without setting up a parametrization.)

 a) \(\iint_S f dS \)

 b) \(\iint_S f \cdot dS \)

 c) \(\iint_S \mathbf{F} \cdot d\mathbf{S} \)

5. Reasoning from pictures of vector fields: p. 1044-1045, #17, 18, 47; p. 1054, #23-24; p. 1068, #9-11 (can use ideas from later sections, pp. 1096 and 1103); p. 1104, #19-20.