ADDED PROBLEM 4 ON TUESDAY 11/15.

See also: recent quizzes, the actual quiz and the samples, esp. quiz 3 (on parametrizing surfaces); MT 2 review assignment on WebAssign; and two more, if you need more: p. 1107, #5 & 13 (answers in back of book).

I’ll try to post some final answers or solutions for these 4 problems no later than noon on Thursday.

1. Let \(f(x, y, z) = x \cos(\pi y) + ye^z \).

 (a) Compute \(\nabla f \) at \((2, 3, 1)\).

 (b) A curve \(r(t) \) passes through \((2, 3, 1)\) at \(t = 0 \), so \(r(0) = (2, 3, 1) \). The velocity vector \(r'(0) \) points from \((2, 3, 1)\) towards \((5, 3, 5)\), and the speed there is \(|r'(0)| = 2 \). Find \(r'(0) \) and use it to compute \(\frac{d}{dt} f(r(t)) \) at \(t = 0 \). (Hint if you are stuck: use the chain rule.)

2. Let \(C \) be the curve consisting of the line segments from \((0, 0, 0)\) to \((1, 1, 1)\) and from \((1, 1, 1)\) to \((1, 0, 1)\). Compute the mass of a thin wire bent in the shape of the curve \(C \) if the density at any point is equal to \(\rho(x, y, z) = 2 - z \).

3. Let \(\mathbf{F}(x, y) = (x^3 - 2xy^3)i - 3x^2y^2j \).

 (a) Show that \(\mathbf{F} \) is conservative.

 (b) Find a potential function for \(\mathbf{F} \).

 (c) Evaluate the line integral of \(\mathbf{F} \) along the curve, \(x = \cos^3 t, \ y = \sin^3 t, \ 0 \leq t \leq \pi/2 \).

4. Let \(C \) be the curve of intersection of the plane \(y + z = 5 \) and the cylinder \(x^2 + y^2 = 9 \), going counterclockwise as viewed from above.

 (a) Find a parametrization of \(C \). (Note that you are parametrizing a curve, so your answer should be a function on just one parameter. If that parameter is \(t \), your answer would be in the form \(r(t) = (x(t), y(t), z(t)) \), or just the trio of functions \(x(t), y(t), z(t) \).)

 (b) Use your parametrization to compute \(\int_C \mathbf{F} \cdot d\mathbf{r} \), if \(\mathbf{F} = (x, 2y, -4) \).