12.1 and 12.2 Overview

- **Distance**: \(\text{DISTANCE} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2} \).

- **Sphere Equation**: \((x - h)^2 + (y - k)^2 + (z - l)^2 = r^2 \).

- **Horizontal and Vertical Planes**:
 \(x = a \Leftrightarrow \) vertical plane parallel to the \(yz \)-plane at \(x = a \).
 \(y = b \Leftrightarrow \) vertical plane parallel to the \(xz \)-plane at \(y = b \).
 \(z = c \Leftrightarrow \) horizontal plane parallel to the \(xy \)-plane at \(z = c \).

- The magnitude of \(\mathbf{v} = \langle v_1, v_2 \rangle \) is \(|\mathbf{v}| = \sqrt{v_1^2 + v_2^2} \).

- **Scalar multiplication**: If \(c \) is a scalar and \(\mathbf{v} \) is a vector, then \(c\mathbf{v} \) means multiply each component of \(\mathbf{v} \) by \(c \). This scales the magnitude of \(\mathbf{v} \) by a factor \(c \).

- **Equality**: Two vectors are **equal** if they have exactly the same components.

- A **unit vector** is a vector with magnitude one. To get a unit vector in the same direction as \(\mathbf{v} \), you must divide by the length. That is,
 \[
 \frac{1}{|\mathbf{v}|} \mathbf{v} = \text{a unit vector in the same direction as } \mathbf{v}.
 \]
• Vector Addition: If \mathbf{u} and \mathbf{v} are two vectors, then $\mathbf{u} + \mathbf{v}$ is the vector obtained by adding the corresponding components of each vector. Graphically, the sum $\mathbf{u} + \mathbf{v}$ is the diagonal of the parallelogram with sides \mathbf{u} and \mathbf{v}. Physically, it can be thought of as the resultant force of the two forces \mathbf{u} and \mathbf{v}.

• Representations:
 Bracket notation: $\langle 2, 3, -5 \rangle$
 Standard basis notation: $2\mathbf{i} + 3\mathbf{j} + 5\mathbf{k}$
 They both are essentially the same and it is a matter of taste. For example, $\langle 2, 3, -5 \rangle = 2\mathbf{i} + 3\mathbf{j} + 5\mathbf{k}$.
 The standard basis vectors are simply $\mathbf{i} = \langle 1, 0, 0 \rangle$, $\mathbf{j} = \langle 0, 1, 0 \rangle$, and $\mathbf{k} = \langle 0, 0, 1 \rangle$.

• The angle that $\mathbf{v} = \langle v_1, v_2 \rangle$ makes with the positive x-axis can be determined by drawing the vector, making a triangle, labeling the angle and using $\tan(\theta) = \frac{\text{opp}}{\text{adj}}$ or some other appropriate trig function.