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Overview

Goal. Study solutions to

(hDt + /D)Ψt = 0, 0 < h� 1, Dt
def
=

1

i
∂t (E)

and /D is a semiclassical Dirac operator on R2: /D = /∂
w

with

/∂(x , ξ) =
3∑

j=1

pj(x , ξ)σj =

[
p3(x , ξ) p1(x , ξ)− ip2(x , ξ)

p1(x , ξ) + ip2(x , ξ) −p3(x , ξ)

]
.

Example. Dirac operator with domain wall κ and magnetic field B = ∇× A:

/D =

[
κ(x)

(
hD1 − A1(x)

)
− i
(
hD2 − A2(x)

)(
hD1 − A1(x)

)
+ i
(
hD2 − A2(x)

)
−κ(x)

]
.

Motivation. Explain transport phenomena central to topological insulators.

Result. Appropriately localized solutions to (E) split in two pieces: one that
propagates in a fixed direction and speed, one that immediately collapses.

Tools. Local symplectic geometry, Fourier integral operators, WKB analysis.
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Motivation

(hDt + /D)Ψt = 0, /D = /∂
w

=

[
p3 p1 − ip2

p1 + ip2 −p3

]w
: (E)

models interface effects between topological insulators.

Brief explanation. Key objects: eigenvalues of /∂(x , ξ):

±
∣∣p(x , ξ)

∣∣ def
= ±

√
p1(x , ξ)2 + p2(x , ξ)2 + p3(x , ξ)2.

Distinct away from Γ
def
= {p1 = p2 = p3 = 0}.

Generically: Γ ⊂ R2
x × R2

ξ and γ = π(Γ) ⊂ R2
x are curves.

For a given x0 /∈ γ, ±
∣∣p(x0, ξ)

∣∣ are distinct for all ξ. Yields eigenbundles
E−(x0)→ R2

ξ. Topology encoded in a number c1(x0) ∈ {±1/2}.
c1 jumps by 1 across γ.

Bulk-edge correspondence. γ supports 1 traveling state: asymmetric, topolog-
ically protected transport.

Questions

Can we identify this state?
What happens if forcing propagation in the opposite direction?
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Motivation

(hDt + /D)Ψt = 0, /D = /∂
w

=

[
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vacuum

Photonic experiment [Wang et al ’09]
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Brief semiclassical analysis

(hDt + /D)Ψt = 0, /D = /∂
w

=

[
p3 p1 − ip2

p1 + ip2 −p3

]w
(E)

Eigenvalues of /∂: ± |p| = ±
√
p21 + p22 + p23 .

If
∣∣p(x , ξ)

∣∣ 6= 0:

/∂(x , ξ) has two distinct eigenvalues.

A semiclassical diagonalization of /∂(x , ξ) decouples (hDt + /D)Ψt = 0 in
two scalar equations with symbols ±|p|.
[Duistermaat – Hörmander ’72]: singularities propagate along

d(xt , ξt)

dt
= H±|p|(xt , ξt) = ±H|p|(xt , ξt),

hence in both directions of time.

No asymmetric transport where the eigenvalues of /∂ are distinct
⇒ We must study (E) at the crossing.
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Technical setup

Goal: Study the propagation of singularities for

(hDt + /D)Ψt = 0, /D = /∂
w

=

[
p3 p1 − ip2

p1 + ip2 −p3

]w
for datas initially localized at the crossing set:

WFh(Ψ0) ⊂ Γ
def
= {p1 = p2 = p3 = 0}.

Physical motivation: Understand the asymmetric transport observed in TIs.

Wavepackets

Ψ : R2 → C2 is a wavepacket concentrated at (x0, ξ0) if

Ψ(x) = e
i
h ξ0(x−x0) · 1√

h
a

(
x − x0√

h

)
(up to a phase)

for some a ∈ S(R2,C2). If a(x) = α(x)u for some u ∈ C2, α ∈ S(R2,C), we
say that Ψ is oriented along Cu.

Wavepackets are normalized in L2 and of order h−1/2 in L∞.
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Technical setup

Transversality assumption

p1, p2, p3 vanish transversely along Γ = {p1 = p2 = p3 = 0}:
p1 = p2 = p3 = 0 ⇒ dp1, dp2, dp3 are linearly independent.

At least one Poisson bracket {pj , pk} is 6= 0. Otherwise the kernels of dpj are
equal to the span of Hp1 ,Hp2 ,Hp3 and dpj are multiple of each other.

Flow on Γ

Given (x0, ξ0) ∈ Γ we define (xt , ξt) by:

d(xt , ξt)

dt
= V/∂(xt , ξt), V/∂

def
= −

∑
εjk`{pj , pk}Hp`

(2
∑
{pj , pk}2)1/2

= −2i
Tr
[
{/∂, /∂}H/∂

]
Tr
[
{/∂, /∂}2

] .
V/∂ is tangent to Γ; invariant under symplectic changes of variables; invariant

under conjugation of /∂ by a SU(2) map.
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Technical setup

Topological assumption

The projection π : Γ ⊂ R4
x,ξ × R2

ξ → γ ⊂ R2
x is a diffeomorphism.

(OK if π|Γ is a local diffeomorphism near (x0, ξ0) under small time assumption)

c1 = −1/2

R2
x

c1 = 1/2

γ

Γ

R4
x,ξ
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Main result

Theorem [D’22]

There exists T > 0 with the following property. Let Ψ0 be a wavepacket
concentrated at (x0, ξ0) ∈ Γ and Ψt the solution to

(hDt + /D)Ψt = 0. (E)

There is a wavepacket Φt concentrated at (xt , ξt) = etV/∂ (x0, ξ0) such that:

Ψt = Φt + OL∞(h−1/4) + OL2(h1/2), t ∈ (0,T ). (R)

In L∞, Ψt ' Φt , generally of order h−1/2;

In L2, Ψt ' Φt + OL∞(h−1/4): partial loss of coherence.

Coherent transport occurs along Γ at speed V/∂ : undirectional and
independent of the initial profile.
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There exists T > 0 with the following property. Let Ψ0 be a wavepacket
concentrated at (x0, ξ0) ∈ Γ and Ψt the solution to

(hDt + /D)Ψt = 0. (E)

There is a wavepacket Φt concentrated at (xt , ξt) = etV/∂ (x0, ξ0) such that:

Ψt = Φt + OL∞(h−1/4) + OL2(h1/2), t ∈ (0,T ). (R)

If Ψ0 is appropriately oriented, then (R) holds for all T <∞ and has no
OL∞(h−1/4) remainder.

If Ψ0 has the orthogonal orientation then Φt = 0.

Under reversibility and spreading assumptions on an emerging flow, (R)
holds for all T <∞. (Happens when a certain quantity λ is constant)
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Few results on this system. Recent work [Bal ’22]: long-time statement for

/∂(x , ξ) =
2∑

k,`=1

ak`(x)ξkσ` + κ(x)σ3, ‖∇κ(x)‖ = 1.

In this case Γ ⊂ R2
x ×{0}2 (eliminates need for microlocal techniques) and λ = 1

(the emerging flow is spreading and reversible).
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Main result

Theorem [D’22]

There exists T > 0 with the following property. Let Ψ0 be a wavepacket
concentrated at (x0, ξ0) ∈ Γ and Ψt the solution to

(hDt + /D)Ψt = 0. (E)

There is a wavepacket Φt concentrated at (xt , ξt) = etV/∂ (x0, ξ0) such that:

Ψt = Φt + OL∞(h−1/4) + OL2(h1/2), t ∈ (0,T ). (R)

Systems with crossings:

Symmetric systems [Braam–Duistermaat ’95, Colin de Verdière ’03,
Nolan–Uhlmann ’06]

Landau–Zener transtion [Haggedorn, Joye ’90s, Colin de Verdière,
Fermanian Kammerer, Gérard ’00s, Lasser, Gamble, Hari, . . . ]
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Connections with Hart’s work

Subelliptic operators. [Smith ’91 / Smith ’20]: parametrices for
sub-Laplacians / hypoelliptic heat-like operators satisfying Hörmander’s
conditions.

Here /∂ is semiclassically subelliptic:

/∂
2

= p21 + p22 + p23 , {pj , pk} not all zero.

We construct a parametrix for Dirac waves near the characteristic set.

Wavepackets. [Smith ’98, Smith–Tataru ’05, Smith ’06, Smith–Sogge ’07,
dots]: systematic use of wavepacket superpositions to produce parametrices
and prove Lp bounds.
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Example

Magnetic Dirac operator:

/D =

[
κ(x) ∇∗

A

∇A −κ(x)

]
, ∇A = ∂1 − A1(x) + i(∂2 − A2(x)),

Γ = {(x , ξ) : κ(x) = 0, ξ = A(x)}, γ = {x : κ(x) = 0}

Magnetic field: B = ∂2A1−∂1A2. Transversality and (local) topological assump-
tions: ∇κ(x) 6= 0 when κ(x) = 0.

Γ

κ < 0

κ > 0
h = 0.1, B = 0

↑
t = 0

spreading

propagation
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Example

Magnetic Dirac operator:

/D =

[
κ(x) ∇∗

A

∇A −κ(x)

]
, ∇A = ∂1 − A1(x) + i(∂2 − A2(x)),

Γ = {(x , ξ) : κ(x) = 0, ξ = A(x)}, γ = {x : κ(x) = 0}

Magnetic field: B = ∂2A1−∂1A2. Transversality and (local) topological assump-
tions: ∇κ(x) 6= 0 when κ(x) = 0.

B = 0

B = 1

B = −1
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Example

Magnetic Dirac operator:

/D =

[
κ(x) ∇∗

A

∇A −κ(x)

]
, ∇A = ∂1 − A1(x) + i(∂2 − A2(x)),

Γ = {(x , ξ) : κ(x) = 0, ξ = A(x)}, γ = {x : κ(x) = 0}

Magnetic field: B = ∂2A1−∂1A2. Transversality and (local) topological assump-
tions: ∇κ(x) 6= 0 when κ(x) = 0.

Wavepackets travel along γ = κ−1(0) at speed:

‖∇κ(x)‖√
‖∇κ(x)‖2 + B(x)2

. (V)

[Bal–Becker–D ’22]: by-hand construction;
[D’ 22]: semiclassical framework discussed here.

(V) remains true on curved backgrounds (replace ‖ · ‖ by the Riemannian norm)
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Ideas of proof

We can present a complete proof under the assumption:

Linear assumption

The symbols p1, p2, p3 (hence /∂) are linear in (x , ξ). (LA)

Three steps:

1. Reduce (via SU(2)-conjugation and symplectomorphism) the symbol /∂ to

/∂0 =

[
ξ1 ξ2 − ix2

ξ2 + ix2 −ξ1

]
, up to multiplicative constant.

2. Produce explicit solutions to (hDt + /D0)Ψt = 0 and prove quantitative
estimates.

3. Deduce quantitative estimates for (hDt + /D)Ψt = 0.
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Symplectic reduction of /∂ =
∑

pjσj

Key object: M/∂
def
=

1

2i
{/∂, /∂} =

[
{p1, p2} {p2, p3} − i{p3, p1}

{p2, p3}+ i{p3, p1} −{p1, p2}

]
.

M/∂ is a Hermitian traceless matrix, independent of (x , ξ). (pj are linear in (x , ξ))
Diagonalize it:

U ·M/∂ · U∗ = λ2σ3 for some U ∈ SU(2), λ > 0.

Set now: /̃∂
def
=

U · /∂ · U∗

λ

def
=

[
p̃3 p̃1 − i p̃2

p̃1 + i p̃2 −p̃3

]
.

U and λ are independent of (x , ξ) thanks to (LA), hence:

M
/̃∂

=
1

2i
{ /̃∂, /̃∂} =

UM/∂U
∗

λ2
= σ3, i.e. {p̃1, p̃2} = 1, {p̃2, p̃3} = {p̃3, p̃1} = 0.

Linear Darboux theorem: there exists S symplectic with p̃1◦S = ξ2, p̃2◦S = x2,

p̃3 ◦ S = ξ1: /̃∂ ◦ S = /∂0. Hence:

U · /∂ ◦ S · U∗ = λ · /̃∂ ◦ S = λ ·
[

ξ1 ξ2 − ix2
ξ2 + ix2 −ξ1

]
= λ · /∂0.

Alexis Drouot, University of Washington Semiclassical Dirac operators for topological insulators



Symplectic reduction of /∂ =
∑

pjσj

Key object: M/∂
def
=

1

2i
{/∂, /∂} =

[
{p1, p2} {p2, p3} − i{p3, p1}

{p2, p3}+ i{p3, p1} −{p1, p2}

]
.

M/∂ is a Hermitian traceless matrix, independent of (x , ξ). (pj are linear in (x , ξ))

Diagonalize it:

U ·M/∂ · U∗ = λ2σ3 for some U ∈ SU(2), λ > 0.

Set now: /̃∂
def
=

U · /∂ · U∗

λ

def
=

[
p̃3 p̃1 − i p̃2

p̃1 + i p̃2 −p̃3

]
.

U and λ are independent of (x , ξ) thanks to (LA), hence:

M
/̃∂

=
1

2i
{ /̃∂, /̃∂} =

UM/∂U
∗

λ2
= σ3, i.e. {p̃1, p̃2} = 1, {p̃2, p̃3} = {p̃3, p̃1} = 0.

Linear Darboux theorem: there exists S symplectic with p̃1◦S = ξ2, p̃2◦S = x2,

p̃3 ◦ S = ξ1: /̃∂ ◦ S = /∂0. Hence:

U · /∂ ◦ S · U∗ = λ · /̃∂ ◦ S = λ ·
[

ξ1 ξ2 − ix2
ξ2 + ix2 −ξ1

]
= λ · /∂0.

Alexis Drouot, University of Washington Semiclassical Dirac operators for topological insulators



Symplectic reduction of /∂ =
∑

pjσj

Key object: M/∂
def
=

1

2i
{/∂, /∂} =

[
{p1, p2} {p2, p3} − i{p3, p1}

{p2, p3}+ i{p3, p1} −{p1, p2}

]
.

M/∂ is a Hermitian traceless matrix, independent of (x , ξ). (pj are linear in (x , ξ))
Diagonalize it:

U ·M/∂ · U∗ = λ2σ3 for some U ∈ SU(2), λ > 0.

Set now: /̃∂
def
=

U · /∂ · U∗

λ

def
=

[
p̃3 p̃1 − i p̃2

p̃1 + i p̃2 −p̃3

]
.

U and λ are independent of (x , ξ) thanks to (LA), hence:

M
/̃∂

=
1

2i
{ /̃∂, /̃∂} =

UM/∂U
∗

λ2
= σ3, i.e. {p̃1, p̃2} = 1, {p̃2, p̃3} = {p̃3, p̃1} = 0.

Linear Darboux theorem: there exists S symplectic with p̃1◦S = ξ2, p̃2◦S = x2,

p̃3 ◦ S = ξ1: /̃∂ ◦ S = /∂0. Hence:

U · /∂ ◦ S · U∗ = λ · /̃∂ ◦ S = λ ·
[

ξ1 ξ2 − ix2
ξ2 + ix2 −ξ1

]
= λ · /∂0.

Alexis Drouot, University of Washington Semiclassical Dirac operators for topological insulators



Symplectic reduction of /∂ =
∑

pjσj

Key object: M/∂
def
=

1

2i
{/∂, /∂} =

[
{p1, p2} {p2, p3} − i{p3, p1}

{p2, p3}+ i{p3, p1} −{p1, p2}

]
.

M/∂ is a Hermitian traceless matrix, independent of (x , ξ). (pj are linear in (x , ξ))
Diagonalize it:

U ·M/∂ · U∗ = λ2σ3 for some U ∈ SU(2), λ > 0.

Set now: /̃∂
def
=

U · /∂ · U∗

λ

def
=

[
p̃3 p̃1 − i p̃2

p̃1 + i p̃2 −p̃3

]
.

U and λ are independent of (x , ξ) thanks to (LA), hence:

M
/̃∂

=
1

2i
{ /̃∂, /̃∂} =

UM/∂U
∗

λ2
= σ3, i.e. {p̃1, p̃2} = 1, {p̃2, p̃3} = {p̃3, p̃1} = 0.

Linear Darboux theorem: there exists S symplectic with p̃1◦S = ξ2, p̃2◦S = x2,

p̃3 ◦ S = ξ1: /̃∂ ◦ S = /∂0. Hence:

U · /∂ ◦ S · U∗ = λ · /̃∂ ◦ S = λ ·
[

ξ1 ξ2 − ix2
ξ2 + ix2 −ξ1

]
= λ · /∂0.

Alexis Drouot, University of Washington Semiclassical Dirac operators for topological insulators



Symplectic reduction of /∂ =
∑

pjσj

Key object: M/∂
def
=

1

2i
{/∂, /∂} =

[
{p1, p2} {p2, p3} − i{p3, p1}

{p2, p3}+ i{p3, p1} −{p1, p2}

]
.

M/∂ is a Hermitian traceless matrix, independent of (x , ξ). (pj are linear in (x , ξ))
Diagonalize it:

U ·M/∂ · U∗ = λ2σ3 for some U ∈ SU(2), λ > 0.

Set now: /̃∂
def
=

U · /∂ · U∗

λ

def
=

[
p̃3 p̃1 − i p̃2

p̃1 + i p̃2 −p̃3

]
.

U and λ are independent of (x , ξ) thanks to (LA), hence:

M
/̃∂

=
1

2i
{ /̃∂, /̃∂} =

UM/∂U
∗

λ2
= σ3, i.e. {p̃1, p̃2} = 1, {p̃2, p̃3} = {p̃3, p̃1} = 0.

Linear Darboux theorem: there exists S symplectic with p̃1◦S = ξ2, p̃2◦S = x2,

p̃3 ◦ S = ξ1: /̃∂ ◦ S = /∂0. Hence:

U · /∂ ◦ S · U∗ = λ · /̃∂ ◦ S = λ ·
[

ξ1 ξ2 − ix2
ξ2 + ix2 −ξ1

]
= λ · /∂0.

Alexis Drouot, University of Washington Semiclassical Dirac operators for topological insulators



Symplectic reduction of /∂ =
∑

pjσj

Key object: M/∂
def
=

1

2i
{/∂, /∂} =

[
{p1, p2} {p2, p3} − i{p3, p1}

{p2, p3}+ i{p3, p1} −{p1, p2}

]
.

M/∂ is a Hermitian traceless matrix, independent of (x , ξ). (pj are linear in (x , ξ))
Diagonalize it:

U ·M/∂ · U∗ = λ2σ3 for some U ∈ SU(2), λ > 0.

Set now: /̃∂
def
=

U · /∂ · U∗

λ

def
=

[
p̃3 p̃1 − i p̃2

p̃1 + i p̃2 −p̃3

]
.

U and λ are independent of (x , ξ) thanks to (LA), hence:

M
/̃∂

=
1

2i
{ /̃∂, /̃∂} =

UM/∂U
∗

λ2
= σ3, i.e. {p̃1, p̃2} = 1, {p̃2, p̃3} = {p̃3, p̃1} = 0.

Linear Darboux theorem: there exists S symplectic with p̃1◦S = ξ2, p̃2◦S = x2,

p̃3 ◦ S = ξ1: /̃∂ ◦ S = /∂0.

Hence:

U · /∂ ◦ S · U∗ = λ · /̃∂ ◦ S = λ ·
[

ξ1 ξ2 − ix2
ξ2 + ix2 −ξ1

]
= λ · /∂0.

Alexis Drouot, University of Washington Semiclassical Dirac operators for topological insulators



Symplectic reduction of /∂ =
∑

pjσj

Key object: M/∂
def
=

1

2i
{/∂, /∂} =

[
{p1, p2} {p2, p3} − i{p3, p1}

{p2, p3}+ i{p3, p1} −{p1, p2}

]
.

M/∂ is a Hermitian traceless matrix, independent of (x , ξ). (pj are linear in (x , ξ))
Diagonalize it:

U ·M/∂ · U∗ = λ2σ3 for some U ∈ SU(2), λ > 0.

Set now: /̃∂
def
=

U · /∂ · U∗

λ

def
=

[
p̃3 p̃1 − i p̃2

p̃1 + i p̃2 −p̃3

]
.

U and λ are independent of (x , ξ) thanks to (LA), hence:

M
/̃∂

=
1

2i
{ /̃∂, /̃∂} =

UM/∂U
∗

λ2
= σ3, i.e. {p̃1, p̃2} = 1, {p̃2, p̃3} = {p̃3, p̃1} = 0.

Linear Darboux theorem: there exists S symplectic with p̃1◦S = ξ2, p̃2◦S = x2,

p̃3 ◦ S = ξ1: /̃∂ ◦ S = /∂0. Hence:

U · /∂ ◦ S · U∗ = λ · /̃∂ ◦ S = λ ·
[

ξ1 ξ2 − ix2
ξ2 + ix2 −ξ1

]
= λ · /∂0.

Alexis Drouot, University of Washington Semiclassical Dirac operators for topological insulators



Symplectic reduction of /∂ =
∑

pjσj

Linear reduction theorem

Under (LA), there exists U ∈ SU(2), λ > 0 and S symplectic 4× 4 such that

U∗ · /∂ ◦ S · U = λ ·
[

ξ1 ξ2 − ix2
ξ2 + ix2 −ξ1

]
, λ

def
=

(
1

8
Tr
[
{/∂, /∂}2

])1/2

.

Linear reduction theorem (quantized)

Under (LA), there exists a Fourier integral F operator such that:

F−1 · /D · F = λ ·
[

ξ1 ξ2 − ix2
ξ2 + ix2 −ξ1

]
= λ · /D0.

Related results [Braam–Duistermaat ’95, Colin de Verdiére ’03-’04] with quite
different proofs.
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Hermite reduction

/D0-equation:

(
hDt + λ

[
hD1 hD2 − ix2

hD2 + ix2 −hD1

])
Ψt = 0 (M)

⇔
(
h∂t + λ

[
h∂1 a
a∗ h∂1

])
Ψt = 0,

{
a∗ = x2 − h∂2
a = x2 + h∂2

.

Hermite functions: {gn, n ≥ 0} with g0 = 0, g1(x2) = h−1/2e−x
2
2/2h and{

agn+1 =
√

2nhgn
a∗gn =

√
2nhgn+1

⇒
[

0 a
a∗ 0

]
Gn =

[
0

√
2nh√

2nh 0

]
Gn, Gn

def
=

[
gn
gn+1

]
.

Decompose Ψt(x) =
∑

n ψ
(n)
t (x1)⊗ Gn(x2) then (M) decouples as:(

h∂t + λ

[
h∂1

√
2nh√

2nh −h∂1

])
ψ
(n)
t = 0, n = 0, 1, . . .

Emerging new semiclassical parameter:
√
h. Study separately n = 0, n > 0.
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[
h∂1 a
a∗ h∂1

])
Ψt = 0,

{
a∗ = x2 − h∂2
a = x2 + h∂2

.

Hermite functions: {gn, n ≥ 0} with g0 = 0, g1(x2) = h−1/2e−x
2
2/2h and{

agn+1 =
√

2nhgn
a∗gn =

√
2nhgn+1

⇒
[

0 a
a∗ 0

]
Gn =

[
0

√
2nh√

2nh 0

]
Gn, Gn

def
=

[
gn
gn+1

]
.

Decompose Ψt(x) =
∑

n ψ
(n)
t (x1)⊗ Gn(x2) then (M) decouples as:(

h∂t + λ

[
h∂1

√
2nh√

2nh −h∂1

])
ψ
(n)
t = 0, n = 0, 1, . . .

Emerging new semiclassical parameter:
√
h. Study separately n = 0, n > 0.
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Propagating mode

n = 0 :

(√
h∂t + λ

[√
h∂1 0

0 −
√
h∂1

])
ψ
(0)
t = 0.

Rightwards (top) and leftwards (bottom) modes. But

g0 = 0 ⇒ G0 =

[
0
g1

]
.

So these induce only leftwards modes:

Ψt(x) =
∑
n

ψ
(n)
t (x1)⊗ Gn(x2)

= ψ
(0)
0 (λt + x1)g1(x2) +

∑
n>0

ψ
(n)
t (x1)⊗ Gn(x2).
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Dispersive modes

n > 0 :

(√
h∂t + λ

[√
h∂1

√
2n√

2n
√
h∂1

])
ψt = 0 (dropped n)

Explicit solution:

ψt(x1) =

∫
R

exp

(
i√
h

(
ξ1x1 − iλt

[
ξ1

√
2n√

2n −ξ1

]))
ψ̂0(ξ1)dξ1 (I)

(I) is an oscillatory integral:

Large parameter h−1/2,

Amplitude independent of h when Ψ0 is a wavepacket:

ψ̂0(ξ1) =

∫
R
e
−i ξ1√

h
x1ψ0(x1)

dx1

2π
√
h

=

∫
R
e−iξ1x1a0(x1)

dx1
2π

Matrix phase with eigenvalues

φt,x1(ξ1) = ξ1x1 ± λt
√
ξ21 + 2n.

Note φ′′t,x1(ξ1) > 0. Van der Corput: expect dispersion: (I) = OL∞(h1/4).
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Dispersive modes

n > 0 :

(√
h∂t + λ

[√
h∂1

√
2n√

2n
√
h∂1

])
ψt = 0 (dropped n)

Explicit solution:

ψt(x1) =

∫
R

exp

(
i√
h

(
ξ1x1 − iλt

[
ξ1

√
2n√

2n −ξ1

]))
ψ̂0(ξ1)dξ1 (I)

= OL∞(h1/4).

Since Gn = OL∞(h−1/2), end up with:

Ψt(x) = ψ
(0)
0 (λt + x1)g1(x2) +

∑
n>0

ψ
(n)
t (x1)⊗ Gn(x2)

= ψ
(0)
0 (λt + x1)g1(x2)︸ ︷︷ ︸

propagating

+ OL∞(h−1/4)︸ ︷︷ ︸
dispersive

Apply back the Fourier integral operator for estimates on the initial operator (uses
the topological assumption).This proves the theorem for linear symbols.
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General dependence of p1, p2, p3 in (x , ξ)

Reduction theorem: /∂ ∼
(
λ(x1)+µ(x1)ξ1

)
·
[

ξ1 ξ2 − ix2
ξ2 + ix2 −ξ1

]
.

The term µ(x1)ξ1 is a necessary refinement, forget about it below.

Same Hermite modes decomposition in x2:

n = 0 :

(
∂t + λ(x1)

[
∂1 0
0 −∂1

])
ψ
(0)
t = 0.

n > 0 :

(√
h∂t + λ(x1)

[√
h∂1

√
2n√

2n −
√
h∂1

])
ψ
(n)
t = 0.

For n = 0: wavepackets propagating along ẋ1 = −λ(x1).

For n > 0: WKB superposition at scale
√
h. Eikonal equation:

∂tφ± λ(x1)
√

(∂1φ)2 + 2n = 0

⇒ φ(t, x1, ξ1) ' x1ξ1 ± λ(x1)t
√
ξ21 + 2n, 0 < t � 1

Hence ∂2ξ1φ(t, x1, ξ1) > 0 for small times: still dispersion. Longer times: we
do not know, it depends on spreading / reversibility of the eikonal flow.
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Conclusion and ongoing work

We studied Dirac waves for

/D = /∂
W
, /∂ =

[
p3 p1 − ip2

p1 + ip2 −p3

]
.

Dynamics: unidirectional propagation + dispersion. Consistent with observa-
tions in topological insulators.

Extension: add a scalar term (potential) to the equation:

/∂ =

[
p0 + p3 p1 − ip2
p1 + ip2 p0 − p3

]
.

Generic Hermitian 2×2 symbol. Rather different dynamics: expect Landau–Zener
transitions [Quan – ongoing].

Happy birthday, Hart!
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