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» Let (M, g) be a smooth compact Riemannian manifold, T*M its
cotangent bundle, S*M its cosphere bundle.

» The Hamiltonian vector field H; of p(x,&) = %\§|2, given by

dp O op 0
H=y = — - ==
! Z’: 85, aX,' 8x,- 85,

is tangent to S*M the cosphere bundle of M. Its integral curves
project to geodesics on M. It is called the generator of the
geodesic flow.
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» To model interaction of photons in Schwarzchild or Minkowski
geometries, Franchi-Le Jan introduced constant-speed diffusion
processes.

» Grothaus—Stilgenbauer, Li, Angst—Bailleul-Tardif extended these to
the Riemannian setting, defining the kinetic Brownian motion on
S*M. It models the motion of a particle with a fixed speed
norm, submitted to collisions.

» The infinitesimal generator L. of the KBM is given as follows:
first fix x € M and see S;M as a Riemannian manifold; let
Ag(x) < 0 be its Laplace—Beltrami operator. Varying x yields an
operator Ag on C°°(S*M) and

L. E Hy —elg: C°(S*M) — C=(S*M), ¢ € (0,00).
» In the proofs we focus on the case M orientable surface; hence

L. = H; — eV/?, V generator of the circle action on the fibers of
S*M.



Recent results on L. in the limits ¢ — 0,



Recent results on L. in the limits ¢ — 0,

Recall L. = H; —eAs, H; generator of the geodesic flow, Ag vertical
spherical Laplacian.



Recent results on L. in the limits ¢ — 0,

Recall L. = H; —eAs, H; generator of the geodesic flow, Ag vertical
spherical Laplacian.

Li '14, Angst—Bailleuil-Tardif '15: L. interpolates between the
geodesic flow and the Brownian motion.



Recent results on L. in the limits ¢ — 0,

Recall L. = H; —eAs, H; generator of the geodesic flow, Ag vertical
spherical Laplacian.

Li '14, Angst—Bailleuil-Tardif '15: L. interpolates between the
geodesic flow and the Brownian motion. Let z(t) : R — S*M be the
solution of the stochastic process with generator L.:



Recent results on L. in the limits ¢ — 0,

Recall L. = H; —eAs, H; generator of the geodesic flow, Ag vertical
spherical Laplacian.

Li '14, Angst—Bailleuil-Tardif '15: L. interpolates between the
geodesic flow and the Brownian motion. Let z(t) : R — S*M be the
solution of the stochastic process with generator L.:

2(t) = Hi(z(t)) + v2eB(t), z(0) independent of ¢,

B(t) spherical vertical Brownian motion.



Recent results on L. in the limits ¢ — 0,

Recall L. = H; —eAs, H; generator of the geodesic flow, Ag vertical
spherical Laplacian.

Li '14, Angst—Bailleuil-Tardif '15: L. interpolates between the
geodesic flow and the Brownian motion. Let z(t) : R — S*M be the
solution of the stochastic process with generator L.:

2(t) = Hi(z(t)) + v2eB(t), z(0) independent of ¢,
B(t) spherical vertical Brownian motion.

» When ¢ — 0, the projection of z(t) to M converges to the
geodesic starting at z(0).



Recent results on L. in the limits ¢ — 0,

Recall L. = H; —eAs, H; generator of the geodesic flow, Ag vertical
spherical Laplacian.

Li '14, Angst—Bailleuil-Tardif '15: L. interpolates between the
geodesic flow and the Brownian motion. Let z(t) : R — S*M be the
solution of the stochastic process with generator L.:

z(t) = Hi(z(t)) + @B(t), z(0) independent of ¢,
B(t) spherical vertical Brownian motion.
» When ¢ — 0, the projection of z(t) to M converges to the
geodesic starting at z(0).

» When £ — oo, the projection of z(¢%t) to M converges in law to a
Brownian motion on M.
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from Angst—Bailleul-Tardif.

Figure: Projection of the kinetic Brownian motion on a 2-torus with ¢ = 1/10.
The trajectories are locally close to geodesics — but not globally. Simulation
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Numerical simulation

Figure: Projection of the kinetic Brownian motion on a 2-torus with e = 1. The

trajectories become random. Simulation from Angst—Bailleul-Tardif.
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Numerical simulation

Figure: Projection of the kinetic Brownian motion on a 2-torus with ¢ = 10.
The trajectories look completely random. Simulation from
Angst—Bailleul-Tardif.
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The case of M with negative curvature

If M has negative curvature, geodesics on M tend to repel each other,
and the geodesic flow is chaotic. This is expressed through the
exponential decay of correlations: formally,

f,g € C®(S™) = (f,(e")*g) ~/ fg+Ze ‘ar(f, g).

*

The ay are bilinear forms of f, g and the )\, called Pollicott—Ruelle
resonances, have positive real parts. They depend only on M.

On certain anisotropic Sobolev spaces H,

H; : H — H is Fredholm of index 0,

with discrete spectrum given by {\.}. Equivalently, the \'s are the
poles of the meromorphic continuation of (H; — )7L, It relies on
work of Baladi, Liverani, Gouézel-Liverani, Baladi—Tsujii,
Faure-Sjostrand, Dyatlov—Zworski.
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Main result

Recall that L. = H; — e/As generates the kinetic Brownian motion. It
is hypoelliptic operator with discrete spectrum.

Theorem
If Ml is negatively curved and ¢ — 0% the L°-eigenvalues of L.
converge to the Pollicott—Ruelle resonances of H; on compact sets.

Remarks:

» The [2-spectrum of H; is iR but the accumulation points of the
spectrum of H; — e/As form a discrete set!

» Dyatlov—Zworski proved the theorem when Ag is replaced by an
elliptic operator. Here H; — €/Ag is only hypoelliptic.

» The convergence is in fact stronger: spectral projections are
smooth; eigenvalues of L. admit complete expansions in powers
of ¢; convergence to complex conjugates as ¢ — 0.

» The Po—Ru resonances were intially defined as dynamical objects:
they quantify the decay of correlations. We interpret them here as
spectral and probabilistic objects.
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» Easy by resolvent identity if we know L. + @ — X invertible on .

Goal: show that the perturbation term —c/Ag > 0 is small enough
compared to H; — /s so that the method of Dyatlov—Zworski for
invertibility of H; + Q — X appliesto L, — Q — .
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Starting now M is an orientable surface. Hence A5 = /2, V
generator of the circle action on the fibers of S*M and L, = H; —eV/?.

Computations in normal coordinates show
V, Hi, Hy & [V, Hi] linearly independent at every point: L. is hypoelliptic.
L. satisfies the optimal subelliptic inequality (Rothschild—Stein)

|ulpers + e V2ulz + [Hiule < C|Leuliz + O(|uly-n).

To compare £V/?u with L.u for small £ we need to study the behavior of
C. ase — 0.
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Theorem

There exists C such that for € small enough,

52/3|p1(52A)u|Hg/3 < Clpa(e®A)eleul 2 + O(%)|ul 2.

Remark: this applies to more general hypoelliptic operators, as long
as only one commutator is needed to span the tangent space.

Corollary
There exists C such that for € small enough, A in compact sets,

P(E2A)eV2uliz < Clpa(2B)(Le — Aulie + O(e™)]ul o

Conclusion: the term £\/? cannot be too big compared to L..
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The operator P = ¢l = —(=V/)? + ¢H, is a semiclassical operator in
W2, We partition |p;(c?A)ul 2/ in finitely many microlocalized

pieces of the form |Aul;2, A € W22 with WEF_(A) close to (xp,&) €

T"S*M, and we show estimates for each parts:
23| Aul2 < C|Pulp2 + ...
The hardest part occurs when (x, &) ¢ Ell.(¢V) U Ell.(¢H; ). Hence:
(x0,&0) € Ell.(eHy) = Ell.( 7 [z V, e Hi)).

A toy model for P = cH; — (£V)? near (xo,&) is P = 2y, — (£x10,,)?
near (0, e;). The semiclassical Fourier transform of P in x; is
P E ey + (k)

Below we show estimates for 7.
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We have the estimate £%/3||0,,|?/3u|;2 < C|Pulp for P. The
semiclassical version of the arguments presented above show a
similar estimate for P:

P =20, — (ex10,,)" near (0,&). | P=cH; — (cV)” near Ell.(cH,).

Fourier transform to work at | Further microlocalization on
fixed &. dyadic frequency intervals.

Garding inequality to [¢V/,cH;]
Use [0,,, ¢%] > 0 where x;& < &. | where £V is “strongly character-
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Use x3 = x1£/& where x1&, is not | Spectral theorem where ¢V is
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The subelliptic estimate =%/3|u|, »/s < C|Pu|;2 + ... and standard
manipulations yields the hypoelliptic estimate

p1(28)eV2ul 2 < Clpa(?A)(Le — N)uli2 + O(e)|u] 2,
0 ¢ supp(p1), p2 =1 on supp(p1), p1 = p2 = 1 near oo.

(1)

Remark: (1) could possibly be proved by different approaches:

» Reducing P = cH; + (£V)? to €0y, - Ao(X, Ox) + (ex10,,)?, Ag € WO
by means of a semiclassical FIO, as in Lebeau.

» Comparing P to eX + (¢Y)?, X, Y,[X, Y] generators of the
Heisenberg group, and apply the Rothschild—Stein theory. In a
work in progress Smith uses this approach to construct a
semiclassical parametrix for L..

It remains to show that (L. — \)~! continues meromorphically on the

same spaces as (H; — \)7L.
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Reminders about Anosov flows

If M has negative curvature then ¢.(x, &) = et (x, ) is an Anosov

flow on S*M: for every z € S*M there exists a splitting of T,5*M in
unstable, invariant and stable directions:

T.SM=E_(z)®R- Hi(z) ® EL(2),
dpe(Ex) C Ex, veEs=|dpev| < Ce ltl|v], £t>0.

(2)
Based on the splitting (2), Faure-Sjostrand and Dyatlov—Zworski
constructed semiclassical weighted Sobolev spaces # such that if

0 < Q is a suitable absorbing potential near the zero section, |A| < R,

uEH = |uly < Cl(Hi+Q—Nuly, 0<Qec W) 0cElQ).
This and an adjoint inequality implies that (H; — A)~! : H — H,

holomorphic and well defined for Re A < 0, extends
meromorphically to {|\| < R}.
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Goal: Fredhom estimate: if 0 < Q is a suitable absorbing potential
near the zero section, |A| < R then

ur < Cl(Le + Q — Aulp. (3)

For frequencies up to ¢! the term 0 < —eV/? in L. can be treated as
an additional absorbing potential. The Dyatlov—Zworski technology
shows ) 5

lulu < [(Hi+ Q = xa(e"A)e V= — Auln

< Cl(Le + Q@ = Auls + [pr(€28)e VP ulyy.

For frequencies > ¢! the term |p;(e2A)eV/?ul in the RHS of (4) is
controlled by the anisotropic version of our subelliptic estimate:

(4)

|p1(e2B)e V2 uly < CI(Le + Q = Nuls + O(%) |l

This shows (3). The adjoint estimate shows that L. + @ — X is invertible,
hence (L. — \)~! : H — H continues meromorphically.
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(Lc —A)~Yand (H; — \)~! exist on the same spaces. We can consider
(Le =N = (Hi =N "t=e-(Hi = A\)PWV2(L- )"

It converges to 0 away from poles in a strong sense. Fredholm
determinant theory implies

Theorem
If M is a negatively curved surface then the L°-eigenvalues of L.
converge to the Pollicott—Ruelle resonances of H; ase — 0.

Remaining questions:
» H; admits a spectral gap: it has no resonances in {Re A < ¢}, for
some 0 > 0. What about L.?
» If M = T? (0 curvature) then the accumulation set of the (discrete)
spectrum of L. does not seem to be discrete! What can be the
meaning of this continuum?
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Z

Limit set in {Re A\ > 0} of the spectrum of H; — A on S*T2.



Spectrum of a slightly different L. for M = T?
(Dyatlov—Zworski)

Limit set in {Re A\ > 0} of the spectrum of H; — A on S*T2.

Thanks for your attention!



