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Plan of the talk

» Physical motivation

> Waves in 2D materials guided along 1D interfaces

» Robustness against defects

» Mathematical framework for the bulk-edge correspondence

» Spectral theory for periodic Schrédinger operators

» Bulk index: a Chern number
[Thouless—Kohmoto—Nightingale—den Nijs "82]

» Edge index: a conductivity / trace formula
[Kellendonk—Richter—Schulz-Baldes ’02]

» Bulk-edge correspondence: a microlocal approach
» Edge index invariance
> Semiclassical deformation
» Trace asymptotics

» Future perspectives



Photonic experiments

[Haldane—Raghu '08, Wang—Chong—Joannopoulos—Soljacic '09] Pe-
riodic medium altered by a magnetic field, with a physical boundary. Waves

are emitted from x.
A

. - A a. Source (A) emits a signal.
— It propagates rightward.

b. Source (A) emits a signal.
— It hits a defect (located to

L J‘ the right of A), moves around
it, and keeps propagating
2 rightward.
I H e c. Source (B) emits a signal.
1 l It propagates rightward.

The defect does not affect

propagation.
Ez
Negative 0 Positive



Equatorial waves

Eastward-propagating currents, earth.nullschool.net, Feb. 20th 2019.

Theoretical analysis demonstrate their topological character [Delplace—
Martson—Venaille '17, Tauber—Delplace—Venaille '18, Faure '19].

Also models quantum waves in molecules [Faure—Zhilinskii '00-'02].



Crash course in quantum mechanics

A particle evolving in R? is described by a probability density:

[W(x)[Pdx, e L2(R?), [[¢fle = 1.
Its time-evolution is unitary: there is a selfadjoint operator P with

2u(t)
ot

Y(t) = e~ ™y(0) = Py (t).

Example: average position of the particle at time t:
IEt[x] = <’(/}(t)7 X ’(/}(t)>L2 = <1/}(0)7 eithe—itP ' w(0)>l_2

31%?] = ((¢),i[P,x] - ¥(t)) . = E¢ [i[P.,X]].

This is the Heisenberg picture: the time-evolution of an observable is

OA(t)
ot

=i[P,A].



Perfect materials in condensed matter physics

Perfect materials are described by (Z2-)periodic operators acting on L?(R?).
Example: magnetic Schrodinger operators
P. = (Dy+ A+(x))2 + Vi(x) and
P (D4 A (X)) + V_(x).
In (1), x € R? and:
> Vi, Vo, Ay, A_ € C°(R?) are periodic w.r.t Z2.

> Magnetic field: 91A+ » — G2A4 1, pointing in direction of e3. It has
vanishing flux across a unit cell.
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From now on, we fix P, and P_ in the form (1).

(1)




Periodic operators and Chern numbers
P, is Z2-periodic. It acts on eigenspaces of Z?-translations:
LZ(R?) = {u e L§.(R?), u(x+¢)=eY u(x)}, &€ (T?) ZR?/(2nZ)*
One recovers L2-spectrum from L%—spectra: 012(Py) = Uge(r)- U,_E(PJF).
—_— —h— —_— -
band 0 gap
Assume Mg ¢ 0,2(P1). Then Mg ¢ o,_g(PJr) for all ¢ € (T?)*.

Physical interpretation: there are no solutions to
(P+—Ao)u=0
u(x + €)= €% - u(x) "

No plane-wave like propagation at energy Ag. P, models an insulator at
energy ).



Periodic operators and Chern numbers
P, is Z2-periodic. It acts on eigenspaces of Z?-translations:
LZ(R?) = {u e L§.(R?), u(x+¢)=eY u(x)}, &€ (T?) ZR?/(2nZ)*

One recovers L2-spectrum from L%—spectra: 012(Py) = Uge(r)- ULE(PJF).

Yo
=— ——

hand 0 gap
Assume Mg ¢ 0,2(P1). Then Mg ¢ or,_%(PJr) for all ¢ € (T?)*.

o 1 _
Set: I_I+,E g ﬂ (Z*P+) 1|L§ dz

Yo

Eigenprojector of constant rank: it varies smoothly with & € (T?)*. It
induces a bundle &, — (T?)*, with fibers Range(I ¢).

def |

Chern number: ¢ (&) = 27T/(T2) Tr,_é (I'I+)5 [6€1ﬂ+)5,852ﬂ57+]) dg.

[Thouless—Kohmoto—Nightingale—den Nijs '82]



Periodic operators and Chern numbers
P, is Z2-periodic. It acts on eigenspaces of Z?-translations:
LZ(R?) = {u e L§.(R?), u(x+¢)=eY u(x)}, &€ (T?) ZR?/(2nZ)*

One recovers L2-spectrum from L%—spectra: 012(Py) = Uge(r)- JLE(PJF).

Yo
=

band 0 gap

If c1(€4+) # 0, P4 models a topological insulator at energy ).

For the rest of the talk we fix Ao ¢ op2(Py) U o2(P-).

(TLZ(P )
=000 —fe— 0000000000 —))\
Ao

Physically, P, and P_ model (potentially topological) insulators with
Chern numbers ¢;(€1) and c1(E-).



Interface operator
Setting: Py = (Dx+AL+(x))?>+ Vi(x) (potentially topological) insulators.
Goal: study interface effects between P, and P_.

Let A,V € C°(R?) and introduce

Py for xx>1

2
P = (D«+A(x))"+ V(x) suchthat P = {P_ for xa< 1°

....0..‘ ..
bulk

.
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The bulk, |x2] > 1, insulates at energy A\g. The interface may still
support currents.



Conduction at the interface: the edge index
{fla) =0} Al =1}

A
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Fix f(x1) € C*(R), g(A\) € C>(R) with:

_J1 for xy >1 _J1 for X< Ag—eo
fla) = {O for x < 17 gV = {0 for A> Ao+ e

o2(P-) — o12(Py)
Ao A



Conduction at the interface: the edge index
{f(a) =0} {fa) =1}
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Fix f(x1) € C*(R), g(A\) € C>(R) with:

_J1 for xy >1 _J1 for X< Ag—eo
fla) = {O for x < 17 (\) = {0 for A> Ao+ e
[Kellendonk—Richter-Schulz-Baldes '02] : Z(P) = Trp. (i[P, f(xﬂ]g’(P))

Physically: At the quantum level:
> ([P, f(x1)] ~ 0:e™f(x1)e " is the particle number moving left to
right, per unit time: the current.



Conduction at the interface: the edge index
{f(x) =0} . . {f(xlzzl}

Fix f(x1) € C*(R), g(A\) € C>(R) with:

_J1 for xy >1 _J1 for X< Ag—eo
fla) = {O for x < 17 (\) = {0 for A> Ao+ e

[Kellendonk—Richter-Schulz-Baldes '02] : Z(P) = Trp. (i[P, f(xl)]g’(P))

Physically: At the quantum level:
» g’(P) is the density of states within the bulk spectral gap.



Conduction at the interface: the edge index
{f(x) =0} . . {fn) =1}
.O.......“QO..“Q..O..OO.
.0”0 . Q

--8’83"!%" %’”&3’%8%3”8%

"3'3% el 033'3"
NIl i I

Fix f(x1) € C*(R), g(A\) € C>(R) with:

_J1 for xy >1 _J1 for X< Ag—eo
fla) = {O for x < 17 (\) = {O for A> Ao+ e

[Kellendonk—Richter-Schulz-Baldes '02] : Z(P) = Trp. (i[P, f(xﬂ]g’(P))

At the quantum level:
Z(P) is the density of current, per unit energy (near \g), moving left to
right: the quantum conductivity of the interface (Ohm's law).



Dynamical interpretation under Ze;-invariance

If P is Zej-invariant, then Z(P) is a spectral flow: signed number of
Eg—eigenvalues of P crossing gap at Ag, where

£f~ = {u €L, u(x+e)=eCu(x), /

lul? < oo}.
[0,]]xR

[Avila—Schulz-Baldes—Villegas-Blas '13]
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Dynamical interpretation under Ze;-invariance

If P is Zej-invariant, then Z(P) is a spectral flow: signed number of
Sg—eigenvalues of P crossing gap at A\, where

2= e iR ulxta) = ul). uf? < oo},

[0,1]xR

[Avila—Schulz-Baldes—Villegas-Blas '13]
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Dynamical interpretation under Ze;-invariance

If P is Zej-invariant, then Z(P) is a spectral flow: signed number of
Sg—eigenvalues of P crossing gap at A\, where

2= e iR ulxta) = ul). uf? < oo},

[0,1]xR

[Avila—Schulz-Baldes—Villegas-Blas '13]
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Dynamical interpretation under Ze;-invariance

If P is Zej-invariant, then Z(P) is a spectral flow: signed number of
Eg—eigenvalues of P crossing gap at Ag, where

22 = {u €L, u(x+e)=eCu(x), /

lul? < oo}.
[0,]]xR

[Avila—Schulz-Baldes—Villegas-Blas '13]

Let ¢ — A({) be an eigenvalue curve. The eigenstate 1. decays in x> but
not in x;. Take y supported in (—6,8) with X’ = O(6~1). Form

w(x) = /X(Q — (o) - uc(x)d¢ : wavepacket in L*(R?).
R
Schrédinger evolution of wuy:
u(t.x) £ e P ug(x) :/X(C—Co)e_itpuc(x)dC:
R

= )?()\/(Co)t _ Xl) . efitA(Co)uCo(X) + O(5+52t)
Wavepackets propagate balistically along Re;, at speed \((p).



Bulk-edge correspondence
Recall:
» ) is insulating energy for Py: Ao ¢ 0,2(P1) Uo2(P-);
» £ are eigenbundles of Py below Ag with Chern numbers ¢;(€1);
» Z(P) is the conductivity of an interface between P, and P_:

Z(P) = Tri2(i[P, f(x1)] - &'(P)).

Theorem: [D. '19] With the above assumptions,

21 I(P) = ai(&y) — a(EL). (2)

Interpretation: If ¢;(€;) # c1(€-) then g'(P) # 0, hence Ay € o,2(P).
Interfaces between topologically distinct insulators are conductors.
Applications to engineering of very robust waveguides.



Bulk-edge correspondence

Recall:
» ) is insulating energy for Py: Ao ¢ 0,2(P1) Uo2(P-);
» £ are eigenbundles of Py below Ag with Chern numbers ¢;(€1);
» Z(P) is the conductivity of an interface between P, and P_:

Z(P) = Tri2(i[P, f(x1)] - &'(P)).

Theorem: [D. '19] With the above assumptions,

21 I(P) = ai(&y) — a(EL). (2)

Comment: (2) accounts for:
> quantization of Z(P): 2w - Z(P) € Z.
» Robustness of Z(P): it depends only on P, and P_.

These are standard facts that can be shown a priori [Kellendonk—Schulz-
Baldes '05, Combes—Germinet 05, Avila—Schulz-Baldes—Villegas—
Blas '13, Bal '18]



Bulk-edge correspondence

Recall:
» ) is insulating energy for Py: Ao ¢ 0,2(P1) Uo2(P-);
» £ are eigenbundles of Py below Ag with Chern numbers ¢;(€1);
» Z(P) is the conductivity of an interface between P, and P_:

Z(P) = Tri2(i[P, f(x1)] - &'(P)).

Theorem: [D. '19] With the above assumptions,

21 I(P) = ai(&y) — a(EL). (2)

History of (2): Functional Analysis:

» [Hatsugai '93, Elbau—Graf 02, Graf-Porta '13]: discrete
Landau-type Hamiltonians.

» [Elgart—Graf—Schenker '05, Taarabt '14]: addition of disorder.



Bulk-edge correspondence

Recall:
» ) is insulating energy for Py: Ao ¢ 0,2(P1) Uo2(P-);
» £ are eigenbundles of Py below Ag with Chern numbers ¢;(€1);
» Z(P) is the conductivity of an interface between P, and P_:

Z(P) = Tri2(i[P, f(x1)] - &'(P)).

Theorem: [D. '19] With the above assumptions,

21 I(P) = ai(&y) — a(EL). (2)

History of (2): K-theory:
» [Kellendonk—Richter-Schulz-Baldes 02, Kellendonk—
Schulz-Baldes '04]: disordered Landau-type Hamiltonians.

» [Kubota ’17, Bourne—Kellendonk—Rennie '17, Bourne—Rennie
’18, Braverman '19]: general K- and KK-theoretic approaches.



Bulk-edge correspondence

Recall:
» ) is insulating energy for Py: Ao ¢ 0,2(P1) Uo2(P-);
» £ are eigenbundles of Py below Ag with Chern numbers ¢;(€1);
» Z(P) is the conductivity of an interface between P, and P_:

Z(P) = Tri2(i[P, f(x1)] - &'(P)).

Theorem: [D. '19] With the above assumptions,

21 I(P) = ai(&y) — a(EL). (2)

History of (2): PDE side:
> [Bal '18, '19, Faure '19]: Quantitative forms of (2) for Dirac
operators (non asymptotically periodic).

> [D. '18, D.-Weinstein "19]: Quantitative forms of (2) for weakly
deformed graphene: indexes are +2.



Sketch of proof

21 - I(P) = a(&4) — a(EL).

1. Deform P to a semiclassical operator Py, with Z(P) = Z(Ps).
2. Expand the semiclassical trace in powers of h:
I(By) = Tr(ilPh fa)] - &'(B)) ~ D a W72
j>0
3. Use that Z(IP4) is independent of h to justify a, = Z(P).
4. Use symbolic calculus to prove a; = ¢1(€4) — c1(E-).

Inspiration for 1 comes from [Fedosov '70]: “semiclassical” proof of the
index theorem. Technical aspects use [Gérard—Martinez—Sjostrand '91].

Techniques of 2 adapt arguments of [Dimassi "93]: spectral asymptotics
for two-scale operators.

Use of a calculation of [Elbau—Graf '02] to prove that a, depends only
on principal symbols in 4.



Sketch of proof: A. Index invariance

Prove a priori that Z(P) depends only on P, and P_:
Z(P) =Z(P4, P_).
Standard fact; [D.’19] gives a pseudodifferential proof.

Then draw inspiration from [Fedosov '70]. Deform P to an operator Py
that transitions slowly from P, to P_: if

1 for xx>1
X+(X2): 0 for xp<—1° X-=1—xy,

f

and P, = x(hx)Py + x_(hx)P_,

then | Z(Py) = Z(P., P_) = Z(P).

Py, decouples a slow scale from a periodic scale. We write

Ph:ZCa(thX)'D)?7 CQ(X,}/)G COO(R2 XT2)'



B. Semiclassical deformation
Justify that P, = > ca(hx,x) - D¢ is a semiclassical operator:
U(x,y) € C(R? x T?), un(x) = U(hx, x)
= (Dyup)(x) = ((hDx + Dy)U)(hx, x),

= (Paun)(x) = (PaU)(hx,x), | Pa = calx,y) - (hDx+ D))"

Semiclassical operator in x with symbol acting on functions of y € T2:

P(x,€) = Y calx,y) - (€+ D)™ : LA(T?) = L*(T?),

P, on L2(R?) and P, on L%(R? x T?) do not have the same spectra.

[Gérard—Martinez—Sjéstrand '91]: construction of H C S'(R? x T?)
such that P, on L2(R?) and P;, on H are unitarily equivalent.

Elements in H are (up to normalization) L?(R2) multiples of the Dirac
mass on {(x,y) = (h%,X) € R? x T?} i.e.

{(y) ERZ X T? : x=h(y+m), meZ?}.



B. Semiclassical deformation
Justify that P, = > ca(hx,x) - D¢ is a semiclassical operator:
U(x,y) € C(R? x T?), un(x) = U(hx, x)
= (Dyup)(x) = ((hDx + Dy)U)(hx, x),

= (Paun)(x) = (PaU)(hx,x), | Pa = calx,y) - (hDx+ D))"

Semiclassical operator in x with symbol acting on functions of y € T2:

P(x,€) = Y calx,y) - (€+ D)™ : LA(T?) = L*(T?),

P, on L2(R?) and P, on L%(R? x T?) do not have the same spectra.

[Gérard—Martinez—Sjéstrand '91]: construction of H C S'(R? x T?)
such that P, on L2(R?) and P;, on H are unitarily equivalent.

I(P) = I(Ph) = I(Ph) = Tr;.[(i[IP’m f(Xl)] -g/(]P)h)).




C. Trace expansion

Recall Z(P) = Z(IP4): a semiclassical trace. Expect:

I(Ph) = Trag (i[Ph, F(x1)] - &' (Ph)) ~ Y 2 W72, (3)

j=0

But Z(P) is h-independent: for all j # 2, a; = 0; and a, = Z(P).

Using symbolic calculus and ideas from [Dimassi '93, Elgart—Graf—
Schenker '05], one can compute ay:

See the appendix for the details...



Future perspectives

Reminder: Spectrum of P,:

Yo
=

band 0 gap

The eigenspace 1(_oox)(P+) C L*(R?) identifies with a bundle £, —
(T?)*: the fibers are

Ei(§) ~ Range(l’l+(§)),

1 _
ﬂj{ (Z*]P’(X,f)) Ydz  with x> 1.
Yo

-
+
o

2

P(x,&) = Y calx,y)(Dy +€)* : L3(T?) = L3(T?).

«

Assume now that rk(&;) = rk(E_) = n.



Future perspectives
Write {\;(x,€)} = o2y (B(x,€)). If
V(x,€),  An(x,€) < Ansa(x,€) (4)
then the projector

N(x, &) = — (Z—P(X7f))_1dz

interpolates smoothly from M_(¢) to M4(€) as x2 runs from —oo to +o0.

This provides a continuous deformation from £_(&) to £,(§). Hence if
(4) holds, c1(E-) = c1(&4).-

In other words:

I(P)#0 < all)#alf) = 3xE, Alx,€) =Annl(x ).

Non-zero conductivity = semiclassical eigenvalue crossing.



Future perspectives

Define a subset of singularities in the Bloch variety:

Zd:ef{(xag) . /\H(X7§):/\n+1(xag)}'

If Z(P) # 0 then Z # (). Microlocally, everything should happen near Z.

Fix €9 > 0 small enough and define:

1 if A<u(x,&)—eo d:ef)\n(xag)"_)‘nJrl(ng).

G(X,&)\) = {0 if A > /J,(X7§) +eo’ /L(X,f) 2



Future perspectives

A
)‘77+1(17af)




Future perspectives

Aq




Future perspectives

Aq




Future perspectives

Aq




Future perspectives

Aq




Future perspectives

Aq

supp (S)

W(Xa g) d:ef 6>\G(X,£7]P)(X7£))'



Future perspectives

Z = {(Xaf) : /\n(ng) = )‘n+1(Xv€)}'

1 if A< u(x,8) —eo (X,§)+)\n+1(X7f).

gt An

W(x, &) = 6>\G(X, &, P(x, {)) Operator valued-symbol.
Quantize: W, = W(x, hD,). It acts on H and microlocalizes near Z.

Conjecture:

I(P) = Try (i[IP’h, f(xl)]Wh) + O(h™).

Comments:
> W(x,&) =0if Z =0 (and ¢q is small enough).
Thus conjecture is true if Z = (:
Z=0 = C1(5+) = Cl(((;,) = I(P) =0; (1)
and W, = 0.



Future perspectives

Z = {(Xaf) : )\n(ng) = )‘n+1(Xv§)}'

B 1 if )\<,U/(X,£)_EO def )\n(Xag)'i_)\nJrl(X?f)
G(X,€7>\)— {0 If >\>/J/(X,£)+507 M(ng)* 2 :
W(x, &) = 6>\G(X, &, P(x, {)) Operator valued-symbol.

Quantize: W, = W(x, hD,). It acts on H and microlocalizes near Z.

Conjecture:

I(P) = Try (i[IP’h, f(xl)]Wh) + O(h™).

Comments:
> [D. '18, D.-Weinstein'19] supports the conjecture in the context
of Dirac points (simplest eigenvalue crossings).



Future perspectives

Z = {(Xaf) : )\n(ng) = )‘n+1(Xv§)}'

B 1 if )\<,U/(X,£)_EO def )\n(Xag)'i_)\nJrl(X?f)
G(X,€7>\)— {O If >\>/J/(X,§)+507 M(ng)* 2 :
W(x, &) = 6>\G(X, &, P(x, §)) Operator valued-symbol.

Quantize: W, = W(x, hD,). It acts on H and microlocalizes near Z.

Conjecture:

I(P) = Try (i[IP’h, f(xl)]Wh) + O(h™).

Comments:
» Dynamical analog: a normal form for P, should govern the
transport along the edge.
» Dynamical work without crossings (no topology!): [Buslaev '87,
Dimassi—Guillot—Ralston '02, Panati-Spohn—Teufel '02, ...]



Future perspectives

» Conjecture!

» Semiclassical propagation of edge states for Dirac point crossings in
the presence of gaps of width 1?7 See
[Fefferman—Lee-Thorp—Weinstein '16, D.’18, D.—Weinstein
’19] for small gaps (homogenization scaling).

» Semiclassical propagation along bended edges?

> Lieb lattice-type crossings: explain nonlinear phenomena
[Marzuola—Rechtsman—Osting—Brandes '19]?

Thank you for your attention!



Appendix... C. Trace expansion

Recall Z(P) = Z(IP4): a semiclassical trace. Expect:

Z(Ph) = Trag (i [Ph, F(x1)] - &' (B)) ~ Y aj W72 (3)

j=0

But Z(P) is h-independent: for all j # 2, a; = 0; and a, = Z(P).

Theorem [Dimassi '93]. Let Q(x, &) : L3(T?) — L?(T?), | C Rs.t.:
IM >0 such that V|x| > M, U,_z(ql-z)((@(x,f)) Nnil=0.
Then for all (X)) € C§°(1),
i ger 1
Tra (¥(Qn)) ~ Z b W2, by = @ /]R?x('ﬂ‘z)* Trizr) (¥ (Q(x,€))) dxdg.

j=0

Need to go beyond [Dimassi '93]: we want az in (3).

Quite different mechanism between [Dimassi '93] and [D. '19]:

» [D.’ 19] shows that a, depends only on eigenprojectors. And
a = O(1). For the spectral flow: lots of cancellations.



D. Localization

Calculation:
I(Ph) = Try (i[Ph, f(x1)] - &'(Ph))

= Try (i[g(Pn), f(>1)]) = 0.
Wrong! The trace-class property fails.

Need: (frequency and) spatial localization.
If |x2| > 2 then P(x,&) =P4(§) and

g (P(x,€)) = g'(P+(§)) =0 (because Py are insulators).

For [x1| > 2, f/(x1) = 0. Thus if ¢(x) =1 on [-2,2]?,

T(Ph) = Trw (i[Bh, F0)] - &/ (B) - 6(06)) + O(h).



E. Double commutator
Goal: adapt an idea of [Elgart—Graf—Schenker '05] to write
Z(B4) = Trr (i[Ba: F(a)] - &/ (B1) - 6()) + O(h)
as a double commutator. Modulo O(h*):

’8(2,2 m(z

_ / 85’(52;’?) T (7 [(Ph — 2) 7 (x), Fx0)] ) dn;(Z)

=0

0g(z,z . - - dm(z
+ Try / %TI’H</[PM Fxa)] (Ph—2)7" - [(Ph—2)", 4(x)] )y

Rest of the proof: leading-order symbolic calculus — in a Grushin
framework [Gérard—Martinez—Sj6strand '91, Dimassi '93]. Eventually:

I(P) = dpy = zi: ii /(Tz)* TI’Lz(T2) (ni,g [8§1I'Ii,5,852ﬂi,5})d§

= a(&y) —alé-).



