AN INTRODUCTION TO GRAPHICAL DESIGNS

CATHERINE BABECKI

A graphical design is a generalization of a quadrature rule to the domain of
graphs. Informally, a quadrature rule is a set of points that represent a continuous
domain well in the context of numerical integration. That is, if we would like
to average a suitably chosen function over the entire domain, it should suffice to
know what values the function takes on the quadrature points. An example of
a quadrature rule on a sphere is a spherical t-design, which is a subset of points
{@1,...,on} C St ={z € R?: ||z|y = 1} and weights a; € R chosen so that

1 N
m i f(z) do = Zaif(xi)
i=1

whenever f is a polynomial of degree < t. For instance, the vertices of an icosa-
hedron when embedded into a sphere form a spherical 5-design (Figure 1). The
average of any function which is well approximated by a polynomial of degree < 5
will be well approximated by these quadrature points.

LN
=

FIGURE 1. A spherical 5-design.

For a graph G = (V, E), a graphical design, first defined in [Ste20], is a subset
W C V which approximates G in a similar sense; to know the average of a suitable
function over the whole graph, we need only look at the function values on the
graphical design. We take the class of suitable functions on a graph to be the
low frequency eigenvectors of the graph Laplacian L = AD~! — I, where A is the
adjacency matrix, D is the diagonal degree matrix, and I is the identity. This
mimics the construction of spherical t-designs, since low degree polynomials are the
low frequency eigenfunctions of the Laplace-Beltrami operator A on the sphere. In
many senses, L is for graphs what A is for smooth manifolds (see [Sin06; BIK13;
HALOQ7] for some references).

There are many matrices which are called graph Laplacians (see [Chu97]). In the
smooth case, a Taylor expansion shows that for a function f : S*~! — R, Af(x)
is essentially the average of f in a neighborhood of z. We take L = AD™! — I
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since it analogously captures averaging over the neighborhood of a vertex; given

f V= ]Ra
B f(u) f(w)
(Lf)(v) = u:%;E <deg(u) B deg(v)) .

We say that an eigenvector ¢; of L and its eigenvalue )\; have low frequency if
j is early in the ordering

That is, A1 has the lowest frequency and \,, has the highest frequency. The eigenval-
ues of L are contained in [—2,0] — see Figure 2 for an illustration of how frequency
is arranged in this interval. Low frequency eigenfunctions of A are smooth objects.
With this ordering of L, low frequency eigenvectors respect graph structure, which
is not always smooth. Let’s see how this works with an example, the cycle on 50
vertices, which we denote Cg.

low frequency high frequency low frequency
-2 -1 0

FIGURE 2. Ordering the eigenvalues of L by frequency

A graph is regular if and only if L1 = 0, where 1 denotes the all-ones vector.
The constant vector is the smoothest possible function. In Figure 3A, we see that
w3, a low frequency eigenvector, creates a smooth gradient around the cycle. An
eigenvector ¢ with eigenvalue near 0 is smooth in the sense of continuous functions
— the average of ¢ in a neighborhood of v is close to p(v). The eigenvector g
(Figure 3B) is also low frequency. While it is highly non-smooth in the traditional
sense, it does respect the structure of Csy by exactly separating the two halves of its
bipartition. An eigenvector with eigenvalue near —2 is ‘anti-smooth’ — the average
of ¢ in a neighborhood of v is close to —p(v). These functions are highly oscillating,
but in a structured way. Thus low frequency eigenvectors like 1 = 1, s, and @3
relate to the structure of Chg.

(A) ©3. A3 ~ —0.0079 (B) ©Y2. Ao = —2 (C) ©50- As0 ~ —1.063
FI1GURE 3. Three eigenvectors of Cxg

High frequency eigenvectors are not useful in this sense. In classical smooth
domains, functions which decay under A are less significant objects, as their con-
tributions die out over time. An eigenvector with eigenvalue near —1 is such that
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[(Le)(v)|] < |e()|; that is, these are decaying functions under L. Indeed, by
inspection the high frequency eigenvector ¢s¢ (Figure 3C) does not contain any
clear information about Cyg. In this sense, the frequency ordering of L prioritizes
eigenvectors which best respect the structure of the graph, leaving the ‘noisiest’
eigenvectors in the higher frequencies.

We can see another illustration of this principle in the graph of the contiguous
United States (Fig. 4). Vertices represent states, and edges connect states which
share a border. The first two eigenvectors by frequency are smooth with respect to
the graph geometry, but the eleventh eigenvector is not so smooth. The eigenvectors
of L form a basis for for the set of all functions f : V' — R. If we expand a function
which relates to a graph’s structure, the coefficients ¢; of the expansion

f=api+...+ovioy

should decay as i increases. This notion was made more precise in [LS20]. For
the contiguous United States graph, the graph structure is the geography of the
country. We expect that a function which is largely determined by geography, such
as average annual precipitation by state, will be approximated well by a truncated
expansion in terms of the low frequency eigenvectors.
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(C) p11 (D) Average Annual Precipitation
in the Contiguous US, 1981-2010"

FIGURE 4. The contiguous United States graph.

Thus we make the following definitions. Definition 1.1 first appeared in [Ste20],
Definitions 1.2 and 2 first appeared in [Bab21], and are variations of the problem
that was initially posed.

Definition 1. Consider a graph G = (V, E).
(1) A subset W C V integrates an eigenvector ¢ of L if

1 1
W X;V@(w) = m Z e(v).
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1(@20157 PRISM Climate Group, Oregon State University. http://prism.oregonstate.edu/
normals/
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(2) A subset W C V integrates an eigenspace A of L if W integrates every
vector in A, or equivalently, if W integrates any basis of A.

We have restricted our attention to equal weights. It is a more general problem to
say that for a graph G = (V, E) and weights a, € R, W C V integrates ¢ if

> auelw) = 7 3 olo)

weW veV
To mimic the qualities of a spherical ¢-design on a graph, we seek subsets which
exactly integrate the first eigenspaces by frequency. Throughout this paper, let
G = (V, E) be a graph whose Laplacian has m distinct eigenspaces ordered from
low to high frequency as A; < ... < Ay,

Definition 2. A k-graphical design is W C V such that W integrates Aq,..., Ag.
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FIGURE 5. A 13-graphical design on the J7 Flower Snark

There is not yet any consensus on what makes a k-graphical design ‘good’. So, we
define the following three variations on the graphical design problem. An optimal
design seeks to optimize the trade-off between number of vertices and number of
eigenspaces integrated. A maximal design integrates as many eigenspaces as is
possible for a given graph, using as few vertices as possible. An extremal design
integrates all but the last eigenspace by frequency. In precise terms, these are
defined as follows. Definition 3 was first introduced in [Bab21].

Definition 3 (Optimal Designs and Efficacy). Let W C V be a k-graphical design
but not a (k + 1)-graphical design. We define the efficacy of W as
Wi
Sy dim(Ay)
An optimal design is a subset W* C V such that
efficacy(W™) = min {efficacy(W) : W C V'}.

Definition 4 (Maximal Designs). Let K € [m — 1] be maximal such that G has a
K-design. A mazimal design is a minimum cardinality K-design.

efficacy (W) =

The 13-graphical design in Figure 5 is both optimal and maximal. We will see
an example shortly where the optimal and maximal designs are distinct; it can be
that the optimal design W* integrates few eigenspaces, but |WW*| is very small.

Definition 5 (Extremal Designs). An extremal design is an (m — 1)-design.
4



This is a variation of the definition of extremal from [Gol20], which did not
consider the frequency order and only asked for a subset which integrated all but
one eigenspace. Using our language, a minimum cardinality extremal design must
be a maximal design. Not every graph has extremal designs, however.

Example 6. Consider the Szekeres Snark (Figure 6), a 3-regular graph on 50
vertices with 11 eigenspaces. An optimal design W* consists of 5 vertices and is a
3-graphical design, with efficacy(W*) = 5/9. A maximal design Wi,ax consists of
25 vertices and is an 8-graphical design, with efficacy(Wiax) = 25/33. There are
no extremal designs on this graph.
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(A) An optimal design

(B) A maximal design

FIGURE 6. The Szekeres Snark.

The graphical design problem is closely tied to signal processing on graphs and
the graph sampling problem. Signal processing aims to optimize, modify, or analyze
data that represent some physical events or measurements. Some common goals of
signal processing are to speed up data transmission, to store data more efficiently, to
improve the subjective quality of the data (say, a grainy image), and to emphasize
or detect notable components of the data. Traditional signal processing techniques
consider data from the time, space, or frequency domains with either continuous
or discrete measurements. There are many challenges when trying to translate the
techniques of continuous and discrete signal processing to the domain of graphs, see
[Shu+13] for an overview of this field. In particular, there is no natural notion of
downsampling. To downsample a discrete signal, one takes every j-th data point.
For a graph signal f : V — R on G = (V| E), there is no way to define ‘every j-th
vertex,” since any labeling of the vertices is arbitrary. Graphical designs provide
a meaningful way to downsample a graph, as a design is constructed to respect
functions which respect the structure of G.

We summarize some of the literature adjacent to graphical designs. As previously
noted, graphical designs were first introduced in [Ste20]. This paper also shows,
loosely speaking, that if W is a good graphical design, then either |W| is large,
or the j-neighborhoods of W grow exponentially. [LS20] finds an upper bound on
the integration error for any quadrature rule on a graph, which multiplicatively
separates the function f and a quantity which can be interpreted as the quality of
the quadrature scheme. [Gol20] introduces (unordered) extremal designs, which are
then connected to the Hoffman and Cheeger bounds. [Bab21] connects graphical
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designs on graphs of the cube to linear error correcting codes and distinguishes
graphical designs from several related concepts: the extremal designs of [Gol20],
maximum stable sets in distance graphs, and t-designs in association schemes. See
[Vall9] for an overview of the regime which connects maximum stable sets in dis-
tance graphs to coding theory, and Chapter 21 of [MS77] for an introduction to
association schemes. [MST77] is also the standard text for the theory of error cor-
recting codes. For more on spectral graph theory, [Chu97] is the classical reference;
we also refer to [Spil9]. For a short introduction to spherical harmonics, see [Moh].
Spherical t-designs were introduced in [DGS77], see also [BRV13; BRV15]. For
quadrature rules on general smooth manifolds, see, for instance, [GG18; Stel9).
The graph sampling problem has been investigated primarily from an engineer-
ing perspective, such as [AGA16; TBL16; Tan+20]. We also refer to the work of
Pesenson (e.g. [Pes00; Pes08; Pes19)]).
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