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Abstract. You’ve heard the buzz: AI and formalization will revolutionize
mathematics. Computers will soon surpass humans in solving olympiad-style
problems. Humans will transition from proving research-level theorems on
their own to guiding computers. And maybe you even believe the hype. Other
than pulling out your hair waiting for the day when computers take your job,
what can you do? If you are like most career mathematicians, you are already
overwhelmed with too many academic responsibilities, reserving any precious
spare work hours for research. Where are you going to find the time to learn
Lean or machine learning techniques?

While I don’t have the answers, I can share how I have embraced the
potential of AI and formalization in mathematics through the eXperimental
Lean Lab (XLL) at the University of Washington. I hope to inspire you to also
get involved and play an active role in guiding the transformation of our field.

1. Introduction

Computers are useless. They can only give you answers.

Pablo Picasso (1968)

I am not an expert in formalized mathematics nor in machine learning. Quite
frankly, I generally dislike computers. I do, however, recognize their potential
to transform mathematics, and over the past several years I have slowly become
proficient in the interactive theorem prover Lean and knowledgeable about the
applications of artificial intelligence to mathematics.

Around four years ago I became intrigued about how the Lean programming
language can formalize mathematics and its potential to assist in theorem prov-
ing. I wanted to get involved, but between my research, a book project, teaching,
advising, and administrative duties, where would I find the time? After playing
around on my own with Lean, I quickly became disheartened. I found the Lean
language extremely finicky, difficult even to install, immensely time-consuming, and
frustrating to debug. But it was also exhilarating on the (rare) occasions a proof
compiled. I realized that I wasn’t going to learn Lean on my own, and tried in-
stead to build a community where we could learn together, commiserate over its
challenges, and at the same time educate the next generation with this technology.
Since the Spring of 2022, I began running undergraduate research projects as part
of the eXperimental Lean Lab (XLL), where students learn Lean and subsequently
formalize basic results in undergraduate mathematics.
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The last several years have witnessed a dramatic rise in applications of artificial
intelligence (AI) and machine learning (ML) techniques.1 Large language models
such as ChatGPT have captured the public’s attention and have become an every-
day tool for hundreds of millions of people. Reinforced learning algorithms such as
AlphaZero, after only being taught the rules, have mastered games like chess and
Go overnight, becoming far superior than any human player [SHS+18]. In math-
ematics, these technologies have been applied to solve olympiad-style problems at
the level of an IMO Silver Medal [DM24] and will no doubt surpass us soon. We
have only scratched the surface in applications of machine learning to research, but
through the generation of massive mathematical data sets, it has already proved
effective at generating counterexamples and discovering new relationships. It is an
exciting (and scary) time!

We begin with a survey of the state of the art of AI and formalization in math-
ematics, a risky endeavor as it will surely be outdated by the time it is published.
After discussing how to learn Lean and the frustrations that come with it, we explain
what we have done in the eXperimental Lean Lab at the University of Washington.
We end with further suggestions with the hope of inspiring you to also get involved.

Whether or not you think it’s in our best interest, changes are coming to our
field. Mathematics is the purest form of logical reasoning, and with the rise of proof
assistants like Lean providing a check against the hallucinations of large language
models, it is perhaps no surprise that mathematics has become a benchmark for
the effectivity of AI and that the mathematics profession may see earlier and more
drastic changes than other academic disciplines and careers. Computer scientists
are already developing these technologies, and it is imperative that mathematicians
get involved now so that we (rather than computer scientists, corporations, deans,
or funding agencies) guide the transformation of our field, design the technologies
for mathematical research, and decide on the role that computers will play in our
profession.

2. What is Math AI?

Investing in applied machine learning without understanding the mathematical
foundations is like investing in health care without understanding biology.

Rebecca Willett [Wil23]

I break down math AI into five interrelated areas:
– the mathematics behind AI,
– mathematical formalization,
– autoformalization: using machine learning to automate formalization,
– machine learning to assist mathematical research, and
– the meaning of mathematics in the age of AI.

This is not an exhaustive list. It doesn’t address for instance “teaching in the
age of AI”, that is, using AI to accelerate student learning and how to adapt the
curriculum to the age of AI. Given that within a year or two, computers will be
able to do the homework and exam problems for every undergraduate (and likely
graduate) mathematics course, it is essential to rethink homework and evaluation

1 Technically, AI is a broader term than ML encompassing other approaches to computer
intelligence such as symbolic AI, but they are now often used synonymously.
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metrics. This is a pressing concern affecting not only mathematics but more broadly
education, I have limited the scope to the aforementioned five topics.

2.1. The mathematics behind AI. The trillion dollar question is: why are neu-
ral networks as effective as they are? While the traditional approach of symbolic
AI—which dominated AI research up until the mid-1990s—relied on explicit rep-
resentations of information using rule-driven logic with explainable results, it is
the use of neural networks, based on implicit representations of information using
statistical techniques on large data sets with black-box results, that has led to the
remarkable applications as of late.

The concept of a neural network is not new and also not complicated. They
originated from Rosenblatt’s work on the perceptron in 1958. Loosely modelled
after the human brain, a neural network is simply the composition

Rd1︸︷︷︸
input

L1−−→ Rd2
A−→ Rd2

L2−−→ Rd3
A−→ · · · → Rdn−1

Ln−1−−−→ Rdn︸ ︷︷ ︸
hidden layers

A−→ Rdn︸︷︷︸
output

of linear functions Li and a non-linear function A defined coordinate-wise
A(x1, . . . , xn) = (a(x1), . . . , a(xn)) by an activation function a : R → R, with the
ReLU function function a(x) = max(0, x) being a popular choice. By training
a neural network, we mean choosing the coefficients of the matrices L1, . . . , Ln−1
to optimize the input/output relationship based on training data consisting of in-
put/output pairs. This is achieved with what is known as back propagation, a
sophisticated version of gradient descent performed one hidden layer at a time. For
further background, see the video series 3Blue1Brown [San17] on neural networks
for as clear an explanation as you will find.

Depending on the specific purpose, there are various modifications to the basic
model of a neural network—convolution, recurrent, adversarial, .... For generating
text and images, transformers have been widely successful and underlie the success
of large language models like ChatGPT. Despite their apparent simplicity, for ef-
fective outcomes, their design is more of an art than a science, requiring deliberate
decisions about the overall architecture, the number of hidden layers and their di-
mensions, an effective representation of the data, and the curation of high quality
data sets. It is only after decades of trial and error together with the massive scal-
ing of data and computing power that ML researchers have obtained the impressive
results we see today.

What are the key principles that make neural networks so effective? For what
class of functions are neural networks particularly well suited? What is the tradeoff
between the size of the network and the amount of training data needed? How
do we avoid the curse of dimensionality, the phenomenon when models overfit the
data by memorizing the input/output data rather than learning the underlying
relationship? How do humans process knowledge, and how can we exploit our
advancing understanding of the biology of the brain in the design of models? These
questions are attracting more attention. See [PF24] for an overview based on a
class of compositionally sparse functions, with precise theorems on how effectively
they can be learned. See [Mum20], [Kut23], and [BM24] for other surveys.

2.2. Mathematical formalization. Mathematical formalization is the process of
translating mathematical proofs into a formal language that can be checked by a
computer. This is accomplished using a proof assistant, an interactive program that
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facilitates the translation of a proof into a sequence of logical deductions from the
axioms. There are many proof assistants—Lean, Agda, Coq, Mizar, HOL Light,
Metamath, and Isabelle—each with their own advantages. Given their interactive
nature, it’s much easier to explain how these assistants work with video demon-
strations rather than words, e.g., see [Buz20] and [Mor20] (for popular demos using
Lean3).

Early successes include the formalization of the real numbers as a complete
ordered field in Automath [Jut77], the prime number theorem in Isabelle [ADGR08],
the four color theorem in Coq [Gon08], and the Jordan Curve theorem in Isabelle
[Hal07].

Lean has become the dominant proof assistant in the mathematical community.
Just like the inevitable rise of one social network over others, this is not because
it is fundamentally better, but because for some reason it attracted more users at
first. In the case of Lean, its adoption by influential figures such as Kevin Buzzard
have contributed to its widespread use today by research mathematicians. The
Lean community has built a large database of mathematical definitions and the-
orems called Mathlib covering almost all of undergraduate mathematics [LC24a].
It is rapidly developing, and it already contains some sophisticated objects such as
manifolds, schemes, and triangulated categories. Even the definition of a perfectoid
space has also been formalized (but it is not yet in Mathlib).

In December of 2020, Peter Scholze challenged the formalization community with
the Liquid Tensor Experiment with the goal of formalizing a difficult foundational
theorem in analytic geometry [Sch22]. A team led by Johan Commelin and Adam
Topaz completed the challenge within six months. Terrence Tao led a team to
formalize one of his recent theorems establishing a variant of the Maclaurin in-
equality [Tao23]. Out of a (rather arbitrary) list of 100 theorems in mathematics,
79 have been formalized in Lean [LC24b] including the Brouwer fixed point theo-
rem, the Law of Large Numbers, Minkowski’s Fundamental Theorem, and Gödel’s
Incompleteness Theorem (interestingly, 90 out of the 100 have been formalized in
Isabelle [Wie24]). There are now large formalization projects with ambitious goals
of classifying semisimple Lie algebras, proving Fermat’s Last Theorem, building
the foundations of ∞-categories, and proving Carleson’s theorem using a recently
established generalization [BDJ+24]. For deeper surveys, see [Buz24b] and [CT24].

Proof assistants such as Lean have many built-in tactics, i.e., high-level com-
mands that work out many of the proof details for you. Tactics such as exact?,
apply?, and simp in Lean use pattern matching algorithms to prove or refine a
theorem. There are also more sophisticated tactics such as llmstep [WS23] and
Lean Copilot’s suggest_tactics and search_proof [SYA24] that use large lan-
guage models to guess the next step of a proof. Proprietary programming tools such
as Github copilot (powered by OpenAI) and Cursor (powered by Anthropic) offer
suggestions for code completion and have chat bots within a VS Code environment
that can answer coding questions and assist in error debugging. Many of these tools
are not yet quite as effective as one would hope, for instance still confusing Lean4
code with the prior version of Lean3. But there is growing interest in such tools
and many bright minds developing them, and it is only a matter of time before
they become more helpful.

2.3. Autoformalization. Autoformalization refers generally to automating the
translation of informal mathematics to formal mathematics. Large language models
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and reinforced learning have the potential to vastly accelerate formalization, and
there is a wide spectrum of possibilities for the division of labor between the human
and computer.

The potential of autoformalization has already been evidenced by Numina’s win-
ning performance [Num24] in the AIMO progress prize [AIMO24] and Deepmind’s
performance on the 2024 IMO deserving of a Silver Medal. Deepmind earned a
score of 28/42 by solving four out of six problems correctly and missing only the
combinatorial problems and a Gold Medal by a single point [DM24]. On the most
challenging problem, which was solved by only five high school students, they took
three days and nights of computation (something not allowed, or even possible, for
human participants!) and, in the end, came up with a clever proof along with its
formalization. For the 2025 IMO, the question is no longer if an AI will win a Gold
Medal, but by how many teams and by what rules, i.e., limitations on compute,
input/output formats, and whether the model is open source.

In the winning solution to the AIMO prize, the Numina team in a collabora-
tion with the company HuggingFace used a sophisticated mix of techniques. For
questions ranging from high school to competition-level mathematics, they cre-
ated a data set of problem/solution pairs, with the solutions written in a Chain
of Thought format [WWS+22] with tool-integrated reasoning abilities [GSG+23].
Chain of Thought refers to breaking the solution into several logical steps written
in a combination of natural language and pseudocode, while tool-integrated reason-
ing refers to integrating natural language with computer code, in this case in the
language Python. In fact, OpenAI’s latest large language models o1 [OAI24] and
soon-to-be-released o3 use similar techniques. The Numina team then used this
data set to fine-tune the large language model DeepSeekMath to act as a reasoning
agent so that the computer not only learns the solution, but also on the reasoning
process and the code needed to determine the answer. Finally, they created several
validation data sets to guide the model selection and to avoid overfitting.

On the other hand, Deepmind’s Silver Medal performance uses a specialized
algorithm AlphaGeometry2 to solve geometry problems, and for other problems,
they appear2 to use a combination of the above strategies together with a reinforced
learning algorithm styled after AlphaZero [SHS+18]. AlphaZero is a remarkable
algorithm that mastered games such as chess, Go, and shogi through self play with
only the knowledge of the rules. Classic algorithms for games used domain-specific
strategies (i.e., opening and closing strategies) and a tree search with alpha-beta
pruning to eliminate branches unlikely to contribute to a best (or worst) value of a
board position and with an evaluation function at the leaves of the tree based on
human conceptions of good board positions. Given the large state of possible moves
(especially in Go), these tree searches had limited depth. AlphaZero, building on
the success of a prior model AlphaGo Zero [SHM+16], uses a probabilistic method
to traverse the tree called Monte Carlo Tree Search (MCTS) and a deep neural
network trained on self play. Rather than simply training the network to assign a
value to each board state, a number between −1 and 1 where 1 should correspond
to a definite win, AlphaZero cleverly assigns a value and a policy, a probability
distribution for the next move. Through repeated self play using the policy to
guide the MCTS search, the computer learns to assign higher probabilities to more
effective moves and in the process improves its value assignment. By replacing

2Deepmind has not yet released the specific details of their model.
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moves with logical steps and board states with proof states, these same techniques
apply to proof generation.

These ideas will undoubtedly be applied soon to formalize theorems at the fron-
tier of mathematical research. In some mathematical fields, however, it will take
time to build up the foundations first and develop high quality data sets of advanced
mathematics to train the AI models.

Unfortunately, at the moment, most of ML research in autoformalization seems
narrowly focused on achieving the best results on artificial benchmarks such as
miniF2F or working on proof-of-concept results. Their papers may get published in
prestigious journals like Nature, but rarely have their algorithms and tools become
available to the working mathematician.

Just as the general community should be concerned with the large scale deploy-
ment of AI by corporations, the mathematical community should be wary about
the long-term intentions of corporations like Google and OpenAI 3 in developing
mathematical reasoning tools. Many of the breakthroughs in autoformalization
have come recently from industry, and if we do not act prudently, we could be
witnessing the capitalization and corporatization of mathematics, something that
our discipline, unlike many others, has so far avoided.

2.4. Machine learning to assist mathematical research. When applied to
mathematics, modern machine learning algorithms have already proved effective
at:
– using large data sets to discover new relationships: computers have predicted the

rank of an elliptic curve leading to the discovery of a new relationship with the
average value of Frobenius traces over primes, now called elliptic curve murmura-
tions [HLOP24] (see [Chi24] for a popular account), predicted Hodge numbers of
Calabi–Yau threefolds [He21], discovered relationships between knot invariants
[DVB+21], and unravelled relationships between the Kazhdan–Lusztig polyno-
mial and Bruhat graphs leading to a generalization of Lusztig and Dyer’s com-
binatorial invariance conjecture [BBD+22],

– generating counterexamples: conjectures in graph theory have been disproved
[Wag21], and

– producing efficient formulas: efficient tensor decompositions have been discovered
leading to improvements in matrix multiplication [FBH+22].
In many ways, this is no different than how the computations of Felkel and

Vega in 1770s of factorization tables up to 408,000 inspired Legendre and Gauss to
conjecture what is now known as the prime number theorem. Or how Birch and
Swinnerton-Dyer’s use of a primitive computer in the 1960s to count the number of
solutions to elliptic curves over finite fields led to their famous conjecture. The ma-
chine learning of today offers a supercharged version of this. See [Hal14], [Buz24b],
[Dav24], and [Wil24] for surveys.

2.5. The meaning of mathematics in the age of AI. What do we do when
computers outperform even the brightest high school students in the Olympiad?
What about when they become better at proving theorems? What if they discover
a five page elementary proof of Fermat’s Last Theorem? What if they become better
at generating conjectures and synthesizing mathematics across very different fields?

3Shouldn’t they change their name to ClosedAI already?
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We can draw some lessons from the chess community, which faced a similar
reckoning with machines after IBM Deep Blue’s defeat of Garry Kasparov in 1997.
Chess is now more popular than ever. Players have benefited from studying the
strategies of AIs, and the community has emphasized the human element of chess.
But mathematics is also very different from chess. It’s not a game; it’s our pro-
fession. Perhaps competition math may not change much and, who knows, may
even get more popular (but I doubt millions will be regularly streaming videos of
students taking math exams), but research mathematics will fundamentally change.

My view is that mathematics too is a human endeavor. AI will change the way
we do research, the way we write, and even the way we think, but it will be up to
us to determine what mathematical statements we value and to develop a human
understanding. It is imperative that the mathematical community think about
these questions now and that we deliberately adapt our profession to the emerging
technology. See [Ven24] and [Och24] for a broader discussion.

There are many ethical issues and risks that arise with the use of AI in mathe-
matics. First, there is the enormous cost—both monetary and environmentally—in
the deployment of large-scale models. Second, there are risks that we are already
confronting: infringement of intellectual property rights and the potential for bias.
Looking forward, we should be very concerned of the dangers of AI in surveillance
and control by the government, military, or corporations (or even powerful individ-
uals). Lastly, there is existential risk: mathematics is one of the most complex and
intellectually challenging human endeavors, and if we are actually able to succeed
at the challenge of training computers, are we not fairly close to superhuman intel-
ligence? Toby Orb, in his book The Precipice [Ord20], calculates that humanity’s
overall existential risk over the next hundred years—meaning either extinction or
an unrecoverable collapse—is 17% (one out of six) and that the existential risk of
unaligned AI is 10%. You can be be skeptical of the numbers, but it would be
foolish to ignore the risk.

3. Evolution of mathematics

Rigor has ceased to be thought of as a cumbersome style of formal dress that one has
to wear on state occasions and discards with a sigh of relief as soon as one comes
home. We do not ask any more whether a theorem has been rigorously proved but
whether it has been proved.

André Weil [Wei56, p. 550]

From Euclid’s postulates of geometry in 300 BC to Hilbert’s axiomization of
geometry in 1899 to the introduction of Zermelo–Fraenkel set theory in the early
1900s, the mathematical process has evolved through time. In the 20th century, the
abstraction of mathematical concepts and the introduction of new notation changed
the way people wrote and thought about mathematics.

The Bourbaki School, a collection of mathematicians initiated in 1930s by Claude
Chevalley and André Weil, produced volumes of mathematics that were at the time
the highest standards of rigor. A formalized proof in Lean (or another proof assis-
tant) is the gold standard of today but we would be naive to think that it will not
evolve further. For interesting surveys on the evolution of proof, see [Gra24],[DT24],
and [McL24].



8 J. ALPER

To see this progression in an example, let us consider Hilbert’s Basis Theorem,
one of my favorite theorems in mathematics and, in fact, the first result our eXper-
imental Lean Lab tried to formalize.

David Hilbert (1890): Ist irgend eine nicht abbrechende Reihe von
Formen der n Veränderlichen x1, x2, . . . , xn gegeben, etwa F1, F2,
F3, . . ., so giebt es stets eine Zahl m von der Art, dass eine jede
Form jener Reihe in die Gestalt

F = A1F1 +A2F2 + · · ·+AmFm

bringen lässt, wo A1, A2, . . . , Am geeignete Formen der nämlichen
n Veränderlichen sind [Hil90, Thm. I, p. 174].
Translation: If any non-terminating sequence of forms of the n
variables x1, x2, . . . , xn is given, for instance F1, F2, F3, . . ., then
there always exists a number m of such a kind that every form of
that sequence can be written as

F = A1F1 +A2F2 + · · ·+AmFm,

where A1, A2, . . . , Am are suitable forms of the same n variables.
A form in n variables is what we would call today a homogeneous polynomial in

n variables with complex coefficients. Hilbert established his basis theorem in order
to prove that the ring of algebraic functions defined on the space of homogeneous
polynomials in n variables of degree d that are invariant under coordinate change—
which we might write today as

(
Sym∗(Symd Cn)∨

)SLn—is finitely generated for all
d and n. Determining these rings was of upmost importance in the 19th century, and
Hilbert’s proof was not constructive, shocking the mathematical community. The
self-proclaimed ‘King of Invariant Theory’ Paul Gordan declared: “Das ist nicht
Mathematik, das ist Theologie.” It was only after Hilbert offered a constructive
proof three years later—and in the process established the Syzygy Theorem, the
Nullstellensatz, a version of Noether normalization, and a version of the Hilbert–
Mumford criterion—that Gordan retorted: “Ich habe mich überzeugt, dass auch die
Theologie ihre Vorzüge hat.” (Translation: I’ve been convinced that even theology
has its merits.)

Inspired by ideas of David Hilbert and Évariste Galois, Emmy Noether led the
abstraction of algebra in the early 19th century with the development of the theory
of rings and fields. Noether studied a class of rings—now called noetherian rings—
with the property that every ideal is finitely generated. This led to a formulation
of Hilbert’s Basis Theorem as presented today in an undergraduate course.

Pour tout anneau commutatif nœthérien C, l’anneau de polynômes
C[x] is nœthérien [Bou61, III §2.10 Cor. 1].
Translation: For every commutative noetherian ring C, the ring of
polynomials C[x] is noetherian.

I have enjoyed dabbling in the classical invariant theory literature of the 19th
century, but it has been difficult at times to follow their conventions. However, I
do believe that if I were better versed in the notations and standards of the time, I
would find it preferable to the writing in the decades following the Bourbaki School.
We all know of some textbooks, that despite their success in synthesizing a large
body of knowledge, are an absolute pain to read. It sometimes seems that those
books were not written with a human reader in mind, but rather to train computers:
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while reading a proof on page 423, who else is going to remember that symbol that
was introduced once on page 58 and never recalled.

This is how Hilbert’s Basis Theorem is currently stated in Lean’s Mathlib:
protected theorem Polynomial.isNoetherianRing4 [inst :
IsNoetherianRing R] : IsNoetherianRing R[X] [Lau19].

Given that Hilbert’s original formulation is arguably the clearest in conveying the
mathematical meaning, are we even progressing?

4. Why formalize?

A word of warning — and apology. There are several thousand formulas in this paper
which allow one or more ‘sign-like ambiguities’: i.e., alternate and symmetric but
non-equivalent reformulations. These occur in definitions and theorems. I have made a
superhuman effort to achieve consistency and even to make correct statements: but I
still cannot guarantee the result.

David Mumford [Mum66, p. 288]

The most obvious reason to formalize a proof is to provide a verifiable check on its
correctness. We no longer need to endlessly question whether we verified every last
detail, giving us the confidence that twenty years from now a mathematician will
not point out a crucial error.5 We can also avoid mathematical disputes that arise
when human egos come into play. In some areas of mathematics such as homotopy
type theory involving sophisticated objects and subtle reasoning, formalization has
already served as an effective guide making sure errors aren’t introduced along the
way [Shu24].

I work in a technical subfield of algebraic geometry—algebraic stacks and moduli
spaces—where most papers (including my own) inevitably have errors, most being
rather minor and patchable with slight tweaks. There are sometimes serious errors,
but ultimately humans are wise and they are eventually located and corrected.
Other than peace of mind and not having to worry about the all-too-common
pesky sign error, the biggest advantages I see in formalizing mathematics are in
improving our understanding, training computers, and in mathematical exposition.

4.1. Improving understanding. In my experience with students, I have observed
that formalizing a statement often exposes a gap in their understanding. This gap is
necessarily filled during the process, preventing the gap from widening into a chasm.
From a pedagogical perspective, proof assistants let you visually walk through the
steps of an argument, explaining exactly where hypotheses are used.

At the research level, formalization has also led to a better understanding. In
the formalization of the Kepler conjecture, in addition to many small errors being
addressed, a serious error was located [HHM+10]. In correcting it, Hales realized
he could prove other conjectures such as the strong dodecahedral theorem [Hal12].

4 Did you notice the difference between isNoetherianRing and IsNoetherianRing? The
former is the name of the theorem, while the latter is the property of a ring being noether-
ian. A better name would of course be hilberts_basis_theorem but Mathlib has a con-
vention to avoid proper names and thereby conflicts with how mathematicians universally re-
fer to them. Other conventions lead to the five lemma in homological algebra being named
is_iso_of_is_iso_of_is_iso_of_is_iso_of_is_iso rather than five_lemma.

5There is a limit of course to this degree of confidence: why should you trust the Lean kernel?
And how can you be certain that the statement of the theorem in Lean is equivalent to the
statement in a paper or book? See [Pol98] for an interesting perspective on these questions.
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Similarly, in the Liquid Tensor Experiment, Commelin and Scholze realized that the
proof could be substantially simplified by using MacLane’s Q′-construction (which
they rediscovered in the process). Scholze wrote that “during the formalization,
a significant amount of complex geometry had to be formalized... and this made
me realize that actually the key thing happening is a reduction from a non-convex
problem over the reals to a convex problem over the integers” [Sch21].

4.2. Training computers. Large language models have had remarkable success at
generating human-like arguments, but as we all know now, they can fabricate details
in sometimes very convincing ways. They may become more reliable over time, but
given the statistical nature of these algorithms, will we ever be able to trust them?
Formalization provides a check: by requiring the computers to give a formalized
proof, we can be certain of its correctness. Moreover, this gauge for correctness can
be leveraged in reinforcement learning algorithms to train computers at generating
proofs in a similar style to AlphaZero. For partly this reason, mathematical problem
solving is now one of the hottest topics in the artificial intelligence community.
Where there used to be only a handful of researchers in the special sessions in the
autoformalization session of the ML conferences NeurIPS and ICLR, there are now
hundreds, with thousands of others (including more and more mathematicians)
paying attention.

4.3. Mathematical exposition. Let’s be honest: most writing in mathematics
is terrible. Part of the problem is that there is no (or at least very little) training
for our PhD students in writing. A larger issue is that there is little incentive for
good exposition of research articles. Writing well takes time, and there is far more
reward—in terms of how committees evaluate grants, job applicants, and tenure
cases—in writing more papers. Bad writing also leads to a form of gatekeeping,
where if a paper is technically correct but the key ideas are completely inaccessible,
it is only the authors that can continue that line of investigation.

Formalization offers a potentially better paradigm. After a theorem is formalized,
the authors can write a lengthy introduction with a high-level exposition of the proof
emphasizing the key new insights. The formalized code can be submitted with the
paper, and after the referees make sure that the code proves what the paper claims
it does (something more subtle than it may seem), they can focus their attention
instead on improving the exposition rather than checking countless details.

Another possibility is automated informalization: the process of generating human-
readable expositions, possibly at various levels of detail, from formal proofs. See
[MM24] for a project in this direction.

4.4. Software verification. One of the original motivations for Lean was to ver-
ify the correctness of software, an imperative need in applications handling critical
infrastructure such as financial transactions or military hardware. Software verifi-
cation is a degree more complicated than theorem proving as a necessary first step
is to provide a specification, i.e., a translation of the program into a mathematical
framework, which may or may not perfectly reflect real world uses. Proof assistants
can then be applied to formalize the theorem. There is now a formally verified OS
kernel called seL4 [KEH+09] and C compiler CompCert [BDL06], the latter in use
by Airbus France. There are a growing number of applications in industry: the veri-
fied cryptographic routines of EverCrypt are now used in Mozilla Firefox, the Linux
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kernel, and the verified electronic voting software of ElectionGuard [PPF+20]. The-
orems in Lean’s Mathlib have been used by Amazon Web Services to verify code
[Mou24]. The verification of software has led to the discovery of errors just as in
mathematics, and has had the added benefit of allowing programmers to tinker
with their code to drastically improve performance, with the confidence they aren’t
introducing bugs in the process.

4.5. Further reasons. Formalization also offers the potential for mass collabora-
tion on mathematical projects, where individuals with various levels of expertise
can participate in a project. As long as the computer accepts the code, there is
no need for every author to check everyone else’s contributions (although arguably
it is still important to have well-written and documented code). Patrick Massot’s
Lean BluePrint [Mas24] offers a tool to facilitate this type of collaboration. As
a trial run for this new form of collaboration, Terence Tao recently initiated the
Equational Theories Project [Tao24]. See [Mas21], [Avi24], and [Drö24] for further
motiviation.

5. Learning how to use Lean

We often hear that mathematics consists mainly of proving theorems. Is a writer’s job
mainly that of writing sentences?

Gian-Carlo Rota [DH80, Foreward]

The degree of success of the Lean community in formalizing theorems is some-
what surprising given how difficult Lean is to learn and use. At this point, in
addition to solid mathematical foundations, there are two other necessary charac-
teristics to become an expert in Lean: (1) a programming mindset of the sort where
you get deep joy from resolving an incomprehensible error message and (2) end-
less amounts of time. On the other hand, there are several excellent introductory
sources [LC24c] making it possible, even with limited patience and time, to become
proficient in Lean.

5.1. Learning Lean. If you want a taste of Lean, I recommend starting with the
Natural Number Game [BP24]: no setup is required and you are guided through
formalizing the basic properties of the natural numbers, but I wouldn’t feel pres-
sured to finish the game. In our eXperimental Lean Lab, our primary source has
been Jeremy Avigad and Patrick Massot’s Mathematics in Lean [AM22] with Kevin
Buzzard’s Formalization Mathematics [Buz24a] as a secondary source.

It is possible to start playing around with Lean online using the Lean Playground
[LC24d], Gitpod, or Github Codespaces. This may save you some time and frus-
tration at first, but if you want to get serious, I strongly recommend installing a VS
Code environment on your computer with the Lean extension. Lean4 has become
easier to install and if you follow the instructions carefully from [Lea24], it will
probably work for you.

Unfortunately, it is still necessary to understand a bit about dependent type
theory, which is the underlying mathematical foundations on which Lean is built,
along with what is happening underneath the hood of Lean engine. Personally, I’ve
always been more interested in getting on the Lean highway and driving as fast as
I can rather than understanding the engine, which probably explains why I crash
so often. The book [AMK17] is a good source. However you approach it, learning
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Lean takes time; just like any advanced mathematical topic, you should expect to
gradually learn it over months and years, not overnight.

5.2. Beyond tutorials. One challenge I’ve found, both for myself and for our
students, is the gap between completing exercises in a tutorial, where things are
setup to work with the few skills you’ve learned, and doing a project on your own,
especially if it involves even slightly sophisticated concepts like rings and ideals. In
some ways, this is like the leap in graduate school from course-oriented mathematics
to research.

Unfortunately, there are not many intermediate references to help bridge this
gap, such as specialized courses on algebra, topology, or analysis in Lean. The
code in Mathlib is generally inaccessible, extremely sparsely documented, and code
golfed6 to obscurity. However, there is a very welcoming and helpful community on
the Lean Zulip Chat [LC24g], where you will get answers to most questions—from
the most elementary to advanced—within a few hours, if not minutes. With over
over 10,000 users, posting a question on the Zulip server may feel as intimidating
as posting on MathOverflow, but it is a great way to quickly debug an error rather
than wasting hours struggling on your own.

6. Mathematicians deserve a more user-friendly Lean

For Bourbaki, Poincaré was the devil incarnate. For students of chaos and fractals,
Poincaré is of course God on Earth.

attributed to Marshall Stone

We need to lower the barrier for students and working mathematicians to learn
and use Lean. AI-assisted tools will surely help in the near future, but for AI
models to be more effective, they need (at least in my view) more high quality
human-generated training data. Making Lean more user-friendly would accelerate
this cyclical process.

6.1. Why is software for mathematicians so bad? There is growing aware-
ness that software and programming languages should be designed to scaffold a user
into the complexity. Users should be shielded at first from more complicated tools
and provided understandable error messages. From this perspective, our current
software options ranging from LaTeX to the graphical tools of Tikz, Gimp, and
Inkscape to the version control software git all fail miserably. There are some ex-
ceptions of course—I’ve found computational software such asMathematica, SAGE,
and Macaulay2 easy to learn and use.

It boggles my mind that there is still not a better option than LaTeX, a clunky
piece of software that was first released in 1984 and never improved. Recently, as I
have been trying to finish a book, I spend a good amount of my time writing, and
I estimate that I waste on average 30 minutes per week on stupid LaTeX issues. I
know, I know: LaTeX usually tells you where the error is, but all too often there is a
unicode, whitespace, or bibtex error, or a package inconsistency that confounds me,
and the time does add up. Mathematicians are resourceful and we have managed
ways to cope with it, but we do deserve better. We also don’t train our graduate
students well leaving each individual to learn (or not learn) these skills on their
own. We had a graduating PhD student in our department, where it was only after

6Code golfing refers to writing code in the most concise way possible.
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he complained to fellow students about how time consuming it was to manually
update the numbering in his thesis after each minor change that he was informed
about labels.

And don’t get me started on git, the version control software that was named
(and seemingly designed) after a British slang meaning an ‘unpleasant person’. As
a non-power user, I only ever want to do one of two things: download the most
recent version or upload my revisions. The graphical interfaces of Github Desktop
or Sourcetree, however, present me with a myriad of options with the mystifying
terminology of pull, push, head, origin, master, staging, hunks, .... But my biggest
frustration is that it was recently made so secure that I couldn’t authenticate for
years. Every few months I would try again with renewed courage thinking ‘this
can’t be that difficult’, but I would only further mess up my ssh keys, which also
prevented others from easily helping. Giving up, I would ask my collaborators to
place a copy of the files in dropbox (which just works, by the way). That’s enough
of the rant, sorry.

6.2. A user-friendly Lean. In a dream world, installing Lean should take one
click and starting a new Lean project should be as simple as creating a folder
with a .lean file (rather than typing six commands into the terminal). There
should be much, much better error debugging and a syntax linter to prevent er-
rors. You should never get a message that ‘Imports are out of date and must
be rebuilt’ and then have to wait overnight for Mathlib to rebuild.7 Lean and
Mathlib need to become more stable; I have heard of some cases where simply
restarting the computer resulted in Lean accepting the proof. Lean’s Infoview,
the window displaying the current state of the proof with all of the variables, hy-
potheses, and the goal, could be better organized highlighting the most relevant
information. (Paperproof appears to be a promising step in this direction.)

Some statements that are completely trivial for mathematicians require a sur-
prising amount of effort to formalize. Mathematical objects generally have many
realizations, and the type system of Lean allows objects to extend others. The type
of a commutative ring CommRing extends Ring, which extends Semiring, which
extends NonUnitalSemiRing, which extends NonUnitalNonAssocSemiring, which
extends AddCommMonoid, which extends AddMonoid, which extends AddSemigroup,
which extends the type Add, a homogeneous version of HAdd. Since some state-
ments for commutative rings hold for these more general types and since Mathlib
attempts to be as general as possible, it is often difficult to locate where a particular
lemma is stated.

Switching between types—a process known as casting or coercion—and resolv-
ing ‘type mismatch’ errors are some of the biggest challenges in using Lean. For
instance, suppose we have a group G3 and subgroups G2 ⊆ G3 and G1 ⊆ G2, and
you want to view G1 ⊆ G3 as a subgroup. A mathematician wouldn’t think twice
of this, but this requires a non-trivial amount of work in Lean, such as defining
the canonical inclusions i1 : G1 → G2 and i2 : G2 → G3, defining the composition
i2 ◦ i1, and taking the image of i2 ◦ i1, with similar chicanery needed to move ele-
ments around. In some sense, this is not a surprise: after all, we are building a proof
from axioms and can’t skip any detail. It is helpful to learn the Mathlib naming
conventions [LC24f], and the natural language searching tools Moogle, LeanSearch,

7Yes, I ran lake exe cache get, lake build in the terminal, but should we really have to?
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and Loogle for Mathlib are also great resources for looking up results, but it can
still be a challenge. But as developers build more tools and tactics, I am hopeful
many of these issues will go away.

Lean is a new and complex programming environment that is constantly evolving.
Developing useful tools is challenging and labor intensive, and making them easy to
install and user-friendly is another level of complexity. Just like other mathematical
software, there is unfortunately little incentive in academia to develop these tools.
I am amazed by what the Lean community has already accomplished, and while
there has been a lot of focus on building tools for power-users, they also recognize
the need to make Lean more accessible to beginners. The organization Lean FRO
is taking admirable steps in these directions, but they could be more effective with
more funding and more developers.

7. The eXperimental Lean Lab

Science is what we understand well enough to explain to a computer, Art is all the rest.

Donald E. Knuth [PWZ96, Foreward]

Over the last three years at the University of Washington, we have run over
twenty formalization projects through the eXperimental Lean Lab (XLL). I have
been the faculty leader but have received terrific assistance and expertise from the
graduate student mentors Herman Chau, Vasily Ilin, and Leopold Mayer. After
trial-and-error, we have gradually learned how to design more effective projects.

7.1. Program structure. The organization of our lab benefited from the existing
structure of the Washington eXperimental Mathematics Lab (WXML) at the Uni-
versity of Washington, a program initiated by Jayadev Athreya allowing faculty to
run research projects with undergraduates. We have several projects each quarter,
but we always meet as a larger group. This allows everyone to learn Lean together
in the beginning and also help troubleshoot errors later on. Students earn some
course credit, and there are often students participating for multiple quarters, al-
lowing them to take on more advanced projects as well as mentor other students.
The program does not require much funding (especially in view of its merits): small
stipends for graduate student mentors and some money for food and refreshments
at the opening meeting and final presentation.

7.2. Group projects. Individual projects can succeed for a motivated student,
but we found that generally groups of 2-4 students work best. It’s more enjoyable
for the students, and they can learn and troubleshoot together. It can lead to the
situation where one student does most of the coding, but as long as the others are
learning in the process, that’s fine with me.

7.3. Formalization projects. There are really countless options when it comes to
projects. We have had students formalize everything from Hilbert’s Basis Theorem
to Fibonacci identities to the continued fraction expansion of e to characterizations
of ring properties in terms of their prime ideals [SP, Tag 05K7]. The first lesson

http://stacks.math.columbia.edu/tag/05K7
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we learned is that students should already have very good command of the mathe-
matics. Learning new mathematics and formalizing are each both difficult on their
own, and combining them can be too daunting.8

In the beginning, we tried to give students the choice to design their own project,
but this generally did not work as well as we hoped. Without experience in formal-
ization and less background in mathematics, it is really difficult to know what is
feasible. With ten week quarters, there was also not enough time to discuss and or-
ganize projects, especially considering how time intensive it is to learn Lean. In my
view, the more successful projects arose when mentors had specific goals in mind
and a broad outline of their formalization, while leaving room for the creativity of
the students.

The topic should be tailored to the students’ background and interest. For be-
ginning undergraduates or even high school students, formalizing olympiad-style
problems is a good option, with the potential added benefit of contributing to an
online database. Another good option is to formalize examples and counterexam-
ples in a subject, starting with simple examples and then allowing the students to
have ownership of the project by choosing further examples themselves. (If we are
training computer to think like us, surely the AI models would also benefit from
examples.) One approach we thought would work well, but didn’t, was formalizing
exercises in a favorite undergraduate textbook: it turns out that most exercises do
not lend themselves well to formalization.

7.4. Future plans. At the University of Washington, we are broadening the eX-
perimental Lean Lab into a Math AI Lab, with projects in each of the five areas of
Math AI discussed in Section 2.

8. How to get involved

The product of mathematics is clarity and understanding. Not theorems, by
themselves. ... In short, mathematics only exists in a living community of
mathematicians that spreads understanding and breathes life into ideas both old and
new.

Bill Thurston [Thu10]

There are many ways to get involved with these emerging technologies. Even if
you have an aversion to computers, programming, and more screen time, there is a
still a role for you in terms of mathematical guidance as well as project design and
management.

8.1. Pay attention. Begin by reading up on the latest developments. Computer-
assisted mathematics was the general theme in each of the articles in the April
and July issues of 2024 Bulletin of the AMS, many of which were referenced above.
If you want a front seat, you can join the Lean Zulip server [LC24g], where most
developments are announced first. On the Zulip server, you can also follow along on
the status of community-driven formalization projects, see their Lean blueprints,
and, if inspired, claim projects of your own.

8 This viewpoint is only in the context of a 10-week project. In my view, we should grad-
ually integrate Lean in the undergraduate curriculum such as in Heather Macbeth’s course The
Mechanics of Proof [Mac24], which is an introduction to proof through the lens of Lean.
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8.2. Discuss with colleagues. Discuss these topics with colleagues in your math
department or at conferences. I have been surprised recently how often discussions
turn to Math AI (and I am not always the only one bringing it up) and how
beneficial it can be to hear other perspectives.

8.3. Build a local community. Math AI is a truly interdisciplinary topic merging
topics in pure mathematics, applied mathematics, statistics, computer science, and
philosophy. Universities always preach about interdepartmental collaboration, but
it’s easier said than done, and there’s often little infrastructure to facilitate such
collaboration. It is important to be very intentional about fostering an environment
where you can actually meet and engage with your colleagues in other departments.

You can create a Math AI seminar, advertised in each of these departments, with
speakers—both local and external—covering a broad range of topics. Speakers can
be encouraged to not just present their latest research, but offer expository and
accessible talks covering a latest development, e.g., an introduction to AlphaZero’s
reinforcement learning algorithm. When paired with a social event like a tea or
happy hour, these seminars can spark discussions and potential collaboration.

8.4. Attend conferences and workshops. There is a growing number of work-
shops and conferences addressing AI and formalization. Conferences such as Lean
for the Working Mathematician, Lean Together, or more specialized events (e.g.,
the 2023 Banff workshop Formalization of Cohomology Theories or the 2024 AIM
workshop Formalising Algebraic Geometry) can offer exposure to the Lean com-
munity. See [LC24h] for a list of upcoming conferences. Some workshops create
working groups dedicated to the formalization of a specific topic, and joining one
of these groups can provide a great way to bridge the tutorial-to-project gap in
learning Lean.

8.5. Teach a class. The best way to learn a subject is to teach it. For formaliza-
tion, there are some good teaching materials [LC24c]. For general machine learning,
there are many resources, e.g., [Tra19], [Pri23], and your computer science depart-
ment likely has course offerings, but I am not aware of any specialized resources
geared toward applications in mathematics. I am also unaware of teaching resources
for the mathematics of AI, but [LSM+24] provides a detailed survey of the existing
mathematical literature. See also the working document [NAC24] produced after
the 2023 National Academies workshop on AI to Assist Mathematical Reasoning.

8.6. Run an undergraduate research project. You can try to do something
similar to our eXperimental Lean Lab, advise a senior thesis, or run an REU pro-
gram.

8.7. Brainstorm. Brainstorm mathematical questions that you might think are
amenable to machine learning techniques, discuss them with your colleagues, and
possibly solicit assistant from the ML community.

9. Conclusion

The adoption of AI and formalization in research mathematics will not be a
passing fad. In the coming years and decades, we will witness a growing use of
computers to assist in theorem proving and likewise a growing use of mathematics
to understand AI. The time to get involved is now.
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