L^2 decay estimates for oscillatory integral operators in several variables with homogeneous polynomial phases

Malabika Pramanik
(UBC Vancouver)

Oscillatory integral operators mapping \(L^2(\mathbb{R}^{n_x}) \) to \(L^2(\mathbb{R}^{n_z}) \) play an important role in many problems in harmonic analysis and partial differential equations. Extending earlier work of Phong and Stein (in the case \(n_x = n_z = 1 \)), we obtain optimal decay rates for the \(L^2 \) operator norm of oscillatory integral operators whose phase functions are generic homogeneous polynomials in \(2 + 2 \) variables. Some other higher dimensional situations are also addressed, specifically when the polynomial is of sufficiently high degree relative to \(n_x + n_z \). This is joint work with Allan Greenleaf and Wan Tang.

For more information about this seminar, visit the DG/PDE Seminar Web page (from the Math Department home page, \texttt{www.math.washington.edu}, follow the link \texttt{Seminars, Colloquia, and Conferences}).