Simple Riemannian metrics as minimal surfaces in Banach spaces

Sergei Ivanov
(Steklov Institute in Saint Petersburg, Russia)

A Riemannian metric g on $D = D^n$ is said to be simple if every two points of D are connected by a unique minimal geodesic of g and no geodesic has conjugate points. It is conjectured that every simple metric is boundary rigid (i.e., uniquely determined by the boundary distance function) and is a minimal filling (i.e., its volume equals the filling volume of the boundary).

The conjectures are proved in a number of cases including $n = 2$ and the case when g is close to a flat metric. Some proofs are based on the following construction: (D, g) can be mapped isometrically into a Banach space (via a so-called Kuratowski embedding), and it turns out that the conjectures are equivalent to the following: the image of (D^n, g) is an absolutely minimal surface in that space.

I will explain this construction and show that a Kuratowski image of a simple metric is minimal in the variational sense, and minimizes the area locally in a certain topology.

For more information about this seminar, visit the DG/PDE Seminar Web page (from the Math Department home page, www.math.washington.edu, follow the link Seminars, Colloquia, and Conferences).
The University of Washington is committed to providing access, equal opportunity and reasonable accommodation in its services, programs, activities, education and employment for individuals with disabilities. To request disability accommodation contact the Disability Services Office at least ten days in advance at: 206-543-6450/V, 206-543-6452/TTY, 206-685-7264 (FAX), or dso@u.washington.edu.