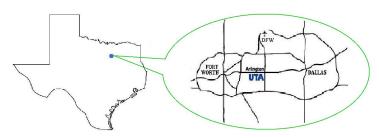
Defining a Notion of Non-commutative Complete Intersection via Base-Point Modules

Michaela Vancliff

University of Texas at Arlington, USA

 $http://www.uta.edu/math/vancliff/R/ci.pdf \\ vancliff@uta.edu$



Main Goal

... generalize the following well-known commutative result to certain non-commutative algebras satisfying good homological properties:

Theorem ([standard])

Let R denote the (commutative) polynomial ring on n variables over an algebraically closed field k. Homogeneous elements $f_1, \ldots, f_m \in R_{>0}$ define/yield a complete intersection if one of the following equivalent conditions holds:

- (a) $\{f_1, \ldots, f_m\}$ is a regular sequence in R (i.e., for all i, f_i is not a zero divisor in $R/\langle f_1, \ldots, f_{i-1} \rangle$);
- (b) for all k = 1, ..., m, $GKdim(R/\langle f_1, ..., f_k \rangle) = n k$.

Moreover, if m = n, then there exist another 2 equiv conditions equiv to (a) and (b):

- (c) $\dim_{\mathbb{K}} (R/\langle f_1, \ldots, f_n \rangle) < \infty$;
- (d) $V(f_1,\ldots,f_n)\subset \mathbb{P}^{n-1}$ is empty.

Assumptions & Notation

- \bullet k = algebraically closed field.
- $A=\bigoplus_{i=0}^\infty A_i=$ an \mathbb{N} -graded, connected $(A_0=\Bbbk)$, finitely generated \Bbbk -algebra, generated by A_1 .
- $\mathsf{GKdim}(A) = n \in \mathbb{N}$.
- A has a normalizing sequence $F = \{f_1, \dots, f_m\} \subset A \setminus \mathbb{k}^{\times}$ consisting of homogeneous elements (i.e., for all i, f_i is normal in $A/\langle f_1, \dots, f_{i-1} \rangle$).
- $I = \langle F \rangle$.

The Desired Equivalent Conditions

In order to address the notion of complete intersection in the context of A and F, we will be interested in 4 (possibly equivalent) conditions on A and F as follows:

- I. F is a regular sequence in A;
- II. for each $k=1,\ldots,m$, $\operatorname{GKdim}(A/\langle f_1,\ldots,f_k\rangle)=n-k$; (last slide: $\operatorname{GKdim}(A)=n$)
- III. $\dim_{\mathbb{k}}(A/\langle F \rangle) < \infty$;
- IV. $\widehat{\mathcal{V}(F)}$ is empty (to be defined below).

Base-Point Modules

In past work with T. Cassidy on skew poly rings S, he & I initially thought $\widehat{\mathcal{V}(F)}$ should be the scheme of point modules over $S/\langle F \rangle$. However, J. T. Stafford led us to realise that, even for skew poly rings, one needs to consider **both** point modules & fat point modules. The same is true for the algebra A in this talk....

Definition ([CV2])

A right **base-point module** over A is any 1-critical (wrt GK-dimension) graded right A-module that is generated by its homogeneous degree-zero elements & which has Hilbert series H(t)=c/(1-t) for some $c\in\mathbb{N}$.

So, $c = 1 \Leftrightarrow \text{point module}$,

and

 $c \geq 2 \Leftrightarrow \mathsf{fat} \mathsf{\ point\ module}.$

Notation: $\widehat{\mathcal{V}(F)}$ is the collection of (right) base-point modules over $A/\langle F \rangle$.

Example (See [ATV1], [CV2])

If $A = \text{poly ring \& deg}(f_i) = 2$ for all i, then F is a quadric system and there is a one-to-one corresp between $\widehat{\mathcal{V}(F)}$ and the base points of the quadric system.

Proposed Definition

Definition

Let A be as above and suppose conditions I-IV are equivalent for all normalizing sequences F in A of the above form that have length n. For such an F, if the equivalent conditions I-IV hold, call $A/\langle F \rangle$ a **complete intersection**.

Are there many algebras A to which this definition applies?

Examples

- Regular skew poly rings, i.e., $S = \mathbb{k}$ -algebra on generators z_1, \ldots, z_n where $z_j z_i = \mu_{ij} z_i z_j$ for all $i \neq j$ such that $\mu_{ij} \in \mathbb{k}^{\times}$ & $\mu_{ij} \mu_{ji} = 1$.
- Regular graded Clifford algebras (with char(k) \neq 2).
- ullet Regular graded skew Clifford algebras (with char(\Bbbk) \neq 2).
- Coordinate ring of quantum $m \times \ell$ matrices, where $n = m\ell$.
- ullet Homogenization of the universal enveloping algebra of any Lie algebra of dimension $n-1<\infty$.

Main Theorem

Initial generalization to non-commutative setting was to the case of skew poly rings with T. Cassidy in [CV1] & [CV2].

Later, I generalized it further as follows:

Theorem

Let $A=\bigoplus_{i=0}^{\infty}A_i$ denote a connected, \mathbb{N} -graded \mathbb{k} -algebra that is generated by A_1 . Suppose that A is (noetherian) Auslander-Gorenstein of finite injective dimension & satisfies the Cohen-Macaulay property, & that there exists a normalizing sequence $\{y_1,\ldots,y_{\nu}\}\subset A\setminus \mathbb{k}^{\times}$ ($\nu<\infty$) consisting of homog elements such that $GKdim(A/\langle y_1,\ldots,y_{\nu}\rangle)=1$. If $GKdim(A)=n\in\mathbb{N}$, then conditions I-IV are equivalent for any normalizing sequence $F\subset A\setminus \mathbb{k}^{\times}$ that consists of n homogeneous elements.

Remarks

- Auslander-Gorenstein includes assumption A is noetherian.
- Auslander-Gorenstein & Cohen-Macaulay property allow application of results of T. Levasseur ([L]).
- Most of the result is straightforward to prove & follows from work in [CV1]; the part that needs work is III ⇔ IV.

Next several slides = outline of proof of III \Leftrightarrow IV.

Recall III.
$$\dim_{\mathbb{k}}(A/\langle F \rangle) < \infty$$
;

IV.
$$\widehat{\mathcal{V}(F)}$$
 is empty.

Outline of Proof of III ⇔ IV

III.
$$\dim_{\mathbb{k}}(A/\langle F \rangle) < \infty$$
; IV. $\widehat{\mathcal{V}(F)} = \emptyset$

 $IV' \Rightarrow III'$

Suppose $M=\bigoplus_{i=0}^{\infty}M_i\in\widehat{\mathcal{V}(F)}$. In particular, $M=M_0(A/\langle F\rangle)$ and $\dim_{\mathbb{K}}(M_0)<\infty$, while $\dim_{\mathbb{K}}(M)=\infty$; thus, $\dim_{\mathbb{K}}(A/\langle F\rangle)=\infty$.

 $III' \Rightarrow IV'$

Let $I = \langle F \rangle$ & suppose $\dim_{\mathbb{K}}(A/I) = \infty$. Setting $y_0 = 0 \in A$, $\exists \theta \in \{0, \dots, \nu\}$ such that $\operatorname{GKdim}(A/(I + \sum_{i=0}^{\theta} y_i A)) = 1$.

Let k denote the smallest such θ , and let $\mathcal{A}=A/(I+\sum_{i=0}^k y_iA)$, which is a k-algebra since $\{y_1,\ldots,y_\nu\}$ is a normalizing sequence in A. By construction, $\mathsf{GKdim}(\mathcal{A})=1$.

We may now apply Example 5.5 of [AZ] to ${\mathcal A}$ as follows.

III.
$$\dim_{\Bbbk}(A/\langle F \rangle) < \infty;$$
 IV. $\widehat{\mathcal{V}(F)} = \emptyset$

$III' \Rightarrow IV' \text{ (cont'd)}$

By [SSW], $\mathcal A$ is P.I. and finitely generated over its center & contains a regular homogeneous central element z of positive degree $d \in \mathbb N$.

Let $B=\mathcal{A}[z^{-1}]$ and $R=B_0$. The algebras \mathcal{A} and B are locally finite, so $\dim_{\mathbb{K}}(R)<\infty$ & so R has a finite-dimensional simple module N.

Goal: build a BPM over \mathcal{A} from N.

Corollary I.3.26 in [NV] $\Rightarrow B \cong R[x, x^{-1}; \sigma]$ for some $x \in B_1$, $\sigma \in Aut(R)$.

$$\mathsf{III'}\Rightarrow \mathsf{IV'} \ (\mathsf{cont'd}) \ \ \ \ \ \ (\ B=\mathcal{A}[z^{-1}],\ R=B_0,\ B\cong R[x,x^{-1};\sigma]\)$$

Still following Example 5.5 of [AZ], we can now apply Example 5.4 of [AZ], to obtain that $\operatorname{spec}(R) \cong \operatorname{proj}(\mathcal{A})$, where $\operatorname{proj}(\mathcal{A})$ is the category of fin gen graded \mathcal{A} -modules mod the subcat of fin gen graded torsion \mathcal{A} -modules.

In particular, by $\S 7$ of [ATV2], we set

 $\hat{N} = \bigoplus_{i=0}^{\infty} (N \otimes_R B)_i = \bigoplus_{i=0}^{\infty} (N \otimes_R B_i)$, which is a fin gen graded A-module, generated by $\hat{N}_0 = N \otimes \mathbb{k}$. As vector spaces, $\hat{N}_i = N \otimes \mathbb{k} x^i \quad \forall i$.

Goal: prove \hat{N} is a BPM over A.

It suffices to prove \hat{N} is 1-critical. ($\Rightarrow \hat{N} \in \widehat{\mathcal{V}(F)}$ & so IV' holds.)

$$\mathsf{III'}\Rightarrow \mathsf{IV'} \ (\mathsf{cont'd}) \ \ \ \ \ \ (\ B=\mathcal{A}[z^{-1}],\ R=B_0,\ B\cong R[x,x^{-1};\sigma]\)$$

By definition, $\hat{N}_i = N \otimes_R B_i$, so is an *R*-module.

Let $e \in \hat{N}_i^{\times}$. $e = v \otimes x^i$ for some $v \in N^{\times}$.

x is normal & regular in B, so $eR = (v \otimes x^i)R = v \otimes Rx^i = vR \otimes kx^i$

 $N= {\sf simple} \ R{\sf -module} \Rightarrow vR=N, \ {\sf so} \qquad eR=N\otimes \Bbbk x^i=N\otimes_R B_i=\hat{N}_i.$

Hence, \hat{N}_i is a simple R-module for all i.

Let $0 \neq M = \bigoplus_{i=r}^{\infty} M_i$ be a graded \mathcal{A} -submodule of \hat{N} , where $M_r \neq 0$.

We must prove $M_i = \hat{N}_i$ for all $j \gg 0$.

$$\mathsf{III'} \Rightarrow \mathsf{IV'} \ (\mathsf{cont'd})$$
 ($B = \mathcal{A}[z^{-1}], \ R = B_0, \ B \cong R[x, x^{-1}; \sigma]$)

By definition of \hat{N} , the central regular homog element z acts faithfully on \hat{N} ; so z acts faithfully on M. Hence, $M_i \neq 0$ for all $i \geq r$ (as Agenerated by A_1) &, for each $i \in \{r, \ldots, r+d-1\}$, $\{\dim_{\mathbb{R}}(M_{i+td})\}_{t>0}$ is a nondecreasing sequence. However, $\dim_{\mathbb{k}}(\hat{N}_i) = \dim_{\mathbb{k}}(N)$ for all i, so $\dim_{\mathbb{K}}(M_i) = \dim_{\mathbb{K}}(M_{i+d})$, for all $j \gg 0$. Thus, using the faithful action of z, M_i is an R-module for all $j \gg 0$; i.e., M_i is a nonzero R-submodule of the simple R-module \hat{N}_i for all $j \gg 0$; whence, $M_i = \hat{N}_i$ for all $j \gg 0$.

Examples

Examples (revisited)

- Regular skew poly rings, i.e., $S = \mathbb{k}$ -algebra on generators z_1, \ldots, z_n where $z_i z_i = \mu_{ii} z_i z_i$ for all $i \neq j$ such that $\mu_{ii} \in \mathbb{k}^{\times}$ & $\mu_{ii} \mu_{ii} = 1$. In this case, $z_i = y_i$ from the theorem.
- Regular graded Clifford algebras (with char(\mathbb{k}) \neq 2): generators $x_1, \ldots, x_n, Y_1, \ldots, Y_n$ where $\deg(x_i) = 1 \& \deg(Y_i) = 2$ for all i, with defining relations given by

$$x_i Y_j = Y_j x_i$$
 & $Y_i Y_j = Y_j Y_i$ for all i, j , & $\forall i, j : x_i x_j + x_j x_i = \sum_{k=1}^n \alpha_{ijk} Y_k$, $\alpha_{ijk} \in \mathbb{k}$ for all i, j, k where each scalar matrix $M_k = (\alpha_{ijk})$ is symmetric. When the quadric system determined by the M_k is base-point free, the algebra is quadratic & regular, & $\{Y_1, \ldots, Y_n\}$ is a regular sequence, so the result applies to the algebra with $Y_i = y_i$ from the theorem.

• Regular graded skew Clifford algebras (with char(\mathbb{k}) \neq 2). Generalization of previous example.

Examples

• Coordinate ring of quantum $m \times \ell$ matrices, where $n = m\ell$. Results of [GL], [LS] & [L] show that such an algebra satisfies the hypotheses of the theorem.

E.g., case $m=2=\ell$: generators a,b,c,d of degree one, with defining relations

$$ab = qba$$
, $bd = qdb$, $ac = qca$, $cd = qdc$, $bc = cb$, $ad - da = (q - q^{-1})bc$,

where $q \in \mathbb{k}^{\times}$ and $q^2 \neq 1$ [FRT]. Here, $\{b, c, d\}$ is normalizing, & factoring out $\langle b, c, d \rangle$ yields $\mathbb{k}[a]$.

• Homogenization of the universal enveloping algebra of any Lie algebra of dimension $n-1<\infty$.

[LV] \Rightarrow the homogenizing element z is central & regular of degree one; factoring out $\langle z \rangle$ yields the poly ring. Hence, the theorem applies.

Conclusion

Definition (revisited)

Let A be as in the main theorem. If F is a normalizing sequence in A that consists of n homogeneous elements of positive degree, call $A/\langle F \rangle$ a **complete intersection** if the equivalent conditions I-IV hold.

Remarks

- All the above examples are Auslander-regular and Artin-Schelter regular. So, for those of us who view a regular algebra as being a non-commutative analogue of the poly ring, this is perhaps further support of that viewpoint.
- Since, in general, not all algebras have normalizing elements (or enough of them), other notions of complete intersection for non-commutative algebras are being investigated by researchers, such as the recent work in [KKZ] that uses a more homological approach than that used here.

Question

Can the result (or a modified version thereof) be extended to AS-regular algebras without the assumption of Auslander-Gorenstein?

Question

Let $I_k = \langle f_1, \dots, f_k \rangle$ for all $k \leq m \leq n$. If A is commutative, then, for each k, $\widehat{\mathcal{V}(I_k)}$ is a (projective) scheme, and so has a dimension. In particular, if A is the polynomial ring, then F is regular if and only if $\dim(\widehat{\mathcal{V}(I_k)}) = n - k - 1$, for all $k \leq m$. However, if A is not commutative, is there an analogous statement and under what hypotheses on A could it hold?

References

- [ATV1] M. ARTIN, J. TATE & M. VAN DEN BERGH, Some Algebras Associated to Automorphisms of Elliptic Curves, The Grothendieck Festschrift 1, 33-85, Eds. P. Cartier et al., Birkhäuser (Boston, 1990).
- [ATV2] M. ARTIN, J. TATE AND M. VAN DEN BERGH, Modules over Regular Algebras of Dimension 3, Invent. Math. 106 (1991), 335-388.
 - [AZ] M. ARTIN AND J. J. ZHANG, Noncommutative Projective Schemes, Adv. Math. 109 No. 2 (1994), 228-287.
- [CV1] T. CASSIDY & M. VANCLIFF, Generalizations of Graded Clifford Algebras and of Complete Intersections, J. Lond. Math. Soc. 81 (2010), 91-112.
- [CV2] T. CASSIDY & M. VANCLIFF, Corrigendum to "Generalizations of Graded Clifford Algebras and of Complete Intersections" J. London Math. Soc., to appear; www.uta.edu/math/vancliff/R/scliff-cor.pdf
- [FRT] L. D. FADDEEV, N. YU. RESHETIKHIN AND L. A. TAKHTADZHYAN, Quantization of Lie Groups and Lie Algebras, Leningrad Math. J. 1 No. 1 (1990), 193-225.
 - [GL] K. R. GOODEARL AND E. S. LETZTER, Prime Factor Algebras of the Coordinate Ring of Quantum Matrices, Proc. Amer. Math. Soc. 121 No. 4 (1994), 1017-1025.
- [KKZ] E. KIRKMAN, J. KUZMANOVICH AND J. J. ZHANG, Noncommutative Complete Intersections, preprint (2013).
 - [LV] L. LE BRUYN AND M. VAN DEN BERGH, On Quantum Spaces of Lie Algebras, Proc. Amer. Math. Soc. 119 No. 2 (1993), 407-414.
 - [L] T. LEVASSEUR, Some Properties of Non-commutative Regular Graded Rings, Glasgow Math. J. 34 (1992), 277-300.
 - [LS] T. LEVASSEUR AND J. T. STAFFORD, The Quantum Coordinate Ring of the Special Linear Group, J. Pure & Appl. Algebra 86 (1993), 181-186.
 - [NV] C. NÄSTÄCESCU AND F. VAN OYSTAEYEN, Graded Ring Theory, North-Holland, Amsterdam, 1982.
- [SSW] L. W. SMALL, J. T. STAFFORD AND R. B. WARFIELD, Affine Algebras of Gelfand-Kirillov Dimension One are PI, Math. Proc. Cambridge Philos. Soc. 97 (1985), 407-414.