Invariant holonomic systems for symmetric spaces.

J. T. Stafford

(joint with Gwyn Bellamy, Thierry Levasseur and Tom Nevins)

June 2022

G acts on $V = \mathfrak{g}$ via the adjoint action and hence on $\mathbb{C}[V]$ and $\mathsf{Sym}(V)$. It then acts on the ring of differential operators (or Weyl algebra)

$$\mathcal{D}(V) \cong \mathbb{C}[V] \otimes_{\mathbb{C}} \operatorname{\mathsf{Sym}}(V),$$

where we identify Sym(V) with the constant coefficient differential operators.

G acts on $V = \mathfrak{g}$ via the adjoint action and hence on $\mathbb{C}[V]$ and $\mathsf{Sym}(V)$. It then acts on the ring of differential operators (or Weyl algebra)

$$\mathcal{D}(V) \cong \mathbb{C}[V] \otimes_{\mathbb{C}} \operatorname{Sym}(V),$$

where we identify Sym(V) with the constant coefficient differential operators.

The differential of the *G*-action gives a map $\mu : \mathfrak{g} \to \mathrm{Der}(V) \subset \mathfrak{D}(V)$.

G acts on $V = \mathfrak{g}$ via the adjoint action and hence on $\mathbb{C}[V]$ and Sym(V). It then acts on the ring of differential operators (or Weyl algebra)

$$\mathcal{D}(V) \cong \mathbb{C}[V] \otimes_{\mathbb{C}} \operatorname{Sym}(V),$$

where we identify Sym(V) with the constant coefficient differential operators.

The differential of the *G*-action gives a map $\mu : \mathfrak{g} \to \mathrm{Der}(V) \subset \mathfrak{D}(V)$.

Write V' for the regular semisimple elements in V; thus

$$V' = (\delta \neq 0)$$
 for δ the discriminant.

Thus δ is the coordinate function for the product of reflecting hyperplanes in \mathfrak{h} .

We are interested in the Harish-Chandra modules, notably

$$\mathfrak{G}_0 = \mathfrak{D}(V)/\mathit{I}_0 \quad \text{for} \quad \mathit{I}_0 = \mathfrak{D}(V)\mu(\mathfrak{g}) + \mathfrak{D}(V)\operatorname{Sym}(V)_+^G.$$

We are interested in the Harish-Chandra modules, notably

$$\mathfrak{G}_0 = \mathfrak{D}(V)/I_0$$
 for $I_0 = \mathfrak{D}(V)\mu(\mathfrak{g}) + \mathfrak{D}(V)\operatorname{Sym}(V)_+^G$.

and

$$\mathfrak{G}_{\lambda} = \mathfrak{D}(V)/I_{\lambda}$$
 for $I_{\lambda} = \mathfrak{D}(V)\mu(\mathfrak{g}) + \mathfrak{D}(V)\mathfrak{m}_{\lambda}$,

where \mathfrak{m}_{λ} is the maximal ideal of $\operatorname{Sym}(V)^{G} = \operatorname{Sym}(\mathfrak{h})^{W}$ corr. to $\lambda \in \mathfrak{h}^{*}$.

We are interested in the Harish-Chandra modules, notably

$$\mathfrak{G}_0 = \mathfrak{D}(V)/I_0$$
 for $I_0 = \mathfrak{D}(V)\mu(\mathfrak{g}) + \mathfrak{D}(V)\operatorname{Sym}(V)_+^G$.

and

$$\mathfrak{G}_{\lambda} = \mathfrak{D}(V)/I_{\lambda}$$
 for $I_{\lambda} = \mathfrak{D}(V)\mu(\mathfrak{g}) + \mathfrak{D}(V)\mathfrak{m}_{\lambda}$,

where \mathfrak{m}_{λ} is the maximal ideal of $\operatorname{Sym}(V)^{G} = \operatorname{Sym}(\mathfrak{h})^{W}$ corr. to $\lambda \in \mathfrak{h}^{*}$.

Given real forms $\{G_0, V_0\}$ of $\{G, V\}$, Harish-Chandra was interested in

$$\Omega = \Big\{ \emph{G}_{0} ext{-equivariant eigendistributions on } \emph{V}_{0} \Big\}$$

We are interested in the Harish-Chandra modules, notably

$$\mathfrak{G}_0 = \mathfrak{D}(V)/I_0$$
 for $I_0 = \mathfrak{D}(V)\mu(\mathfrak{g}) + \mathfrak{D}(V)\operatorname{Sym}(V)_+^G$.

and

$$\mathfrak{G}_{\lambda} = \mathfrak{D}(V)/I_{\lambda}$$
 for $I_{\lambda} = \mathfrak{D}(V)\mu(\mathfrak{g}) + \mathfrak{D}(V)\mathfrak{m}_{\lambda}$,

where \mathfrak{m}_{λ} is the maximal ideal of $\operatorname{Sym}(V)^G = \operatorname{Sym}(\mathfrak{h})^W$ corr. to $\lambda \in \mathfrak{h}^*$.

Given real forms $\{G_0, V_0\}$ of $\{G, V\}$, Harish-Chandra was interested in

$$\Omega = \left\{ \mathit{G}_{0} ext{-equivariant eigendistributions on } \mathit{V}_{0}
ight\} := \bigcup_{\lambda} \mathsf{Hom}_{\mathcal{D}(\mathit{V})} \left(\mathcal{G}_{\lambda}, \, \mathsf{Dist}(\mathit{V}_{0}) \right),$$

where $Dist(V_0)$ denotes the distributions on V_0 .

We are interested in the Harish-Chandra modules, notably

$$\mathfrak{G}_0 = \mathfrak{D}(V)/I_0$$
 for $I_0 = \mathfrak{D}(V)\mu(\mathfrak{g}) + \mathfrak{D}(V)\operatorname{Sym}(V)_+^G$.

and

$$\mathfrak{G}_{\lambda} = \mathfrak{D}(V)/I_{\lambda}$$
 for $I_{\lambda} = \mathfrak{D}(V)\mu(\mathfrak{g}) + \mathfrak{D}(V)\mathfrak{m}_{\lambda}$,

where \mathfrak{m}_{λ} is the maximal ideal of $\operatorname{Sym}(V)^G = \operatorname{Sym}(\mathfrak{h})^W$ corr. to $\lambda \in \mathfrak{h}^*$.

Given real forms $\{G_0, V_0\}$ of $\{G, V\}$, Harish-Chandra was interested in

$$\Omega = \left\{ \mathit{G}_{0} ext{-equivariant eigendistributions on } V_{0}
ight\} := igcup_{\lambda} \mathsf{Hom}_{\mathcal{D}(V)} \left(\mathcal{G}_{\lambda}, \, \mathsf{Dist}(V_{0})
ight),$$

where $Dist(V_0)$ denotes the distributions on V_0 .

Theorem 1 (HC 1965): (1) \mathcal{G}_{λ} has no nonzero δ -torsion factor module.

(2) If $T \in \Omega$, then T cannot be supported on $V_0 \setminus V_0'$.

Why is this important?

Why is this important? Because it reduces questions about Ω to Dist(V'_0), where things are better controlled. Notably, Theorem 1 is the main part of the proof of:

Why is this important? Because it reduces questions about Ω to Dist (V'_0) , where things are better controlled. Notably, Theorem 1 is the main part of the proof of:

Theorem 2 (Harish-Chandra's regularity theorem). If $T \in \Omega$ then $T|_{V'_0}$ is an analytic function that determines T.

Moreover T is nice; it is a so-called locally summable function.

Why is this important? Because it reduces questions about Ω to Dist (V'_0) , where things are better controlled. Notably, Theorem 1 is the main part of the proof of:

Theorem 2 (Harish-Chandra's regularity theorem). If $T \in \Omega$ then $T|_{V'_0}$ is an analytic function that determines T.

Moreover T is nice; it is a so-called locally summable function.

This then extends to G_0 -equivariant eigendistributions on G_0 and ultimately implies his main regularity theorem for characters of unitary G_0 -representations.

Why is this important? Because it reduces questions about Ω to Dist (V'_0) , where things are better controlled. Notably, Theorem 1 is the main part of the proof of:

Theorem 2 (Harish-Chandra's regularity theorem). If $T \in \Omega$ then $T|_{V'_0}$ is an analytic function that determines T.

Moreover T is nice; it is a so-called locally summable function.

This then extends to G_0 -equivariant eigendistributions on G_0 and ultimately implies his main regularity theorem for characters of unitary G_0 -representations.

The next application of \mathcal{G}_{λ} is:

Theorem 3 (Hotta-Kashiwara 1984) \mathcal{G}_{λ} is a semi-simple $\mathcal{D}(V)$ -module with specified irreducible summands.

This has deep consequences for the geometric theory of g-representations.

By Chevalley's Theorem, $\mathbb{C}[V]^G \cong \mathbb{C}[\mathfrak{h}]^W$. So \exists a homomorphism

$$\phi: \mathfrak{D}(V)^{\mathsf{G}} \longrightarrow \mathfrak{D}(V/\!/\mathsf{G}) = \mathfrak{D}(\mathfrak{h}/\!/W) := \mathfrak{D}(\mathbb{C}[\mathfrak{h}]^{\mathsf{W}}).$$

[This just says that invariant differential operators act on invariant functions.]

By Chevalley's Theorem, $\mathbb{C}[V]^G \cong \mathbb{C}[\mathfrak{h}]^W$. So \exists a homomorphism

$$\phi: \mathfrak{D}(V)^{\mathsf{G}} \longrightarrow \mathfrak{D}(V/\!/\mathsf{G}) = \mathfrak{D}(\mathfrak{h}/\!/W) := \mathfrak{D}(\mathbb{C}[\mathfrak{h}]^{W}).$$

[This just says that invariant differential operators act on invariant functions.]

Theorem 4 (Wallach, Levasseur-S 1993-5) $\operatorname{Im}(\phi) \cong \mathcal{D}(\mathfrak{h})^W$.

By Chevalley's Theorem, $\mathbb{C}[V]^G \cong \mathbb{C}[\mathfrak{h}]^W$. So \exists a homomorphism

$$\phi: \mathfrak{D}(V)^{\mathsf{G}} \longrightarrow \mathfrak{D}(V/\!/\mathsf{G}) = \mathfrak{D}(\mathfrak{h}/\!/W) := \mathfrak{D}(\mathbb{C}[\mathfrak{h}]^{W}).$$

[This just says that invariant differential operators act on invariant functions.]

Theorem 4 (Wallach, Levasseur-S 1993-5) $Im(\phi) \cong \mathcal{D}(\mathfrak{h})^W$.

Warning: as Harish-Chandra showed, the image of ϕ does not lie in $\mathfrak{D}(h)^W$.

As Wallach showed, this result is important since it allows one to reduce questions about Ω and \mathcal{G}_{λ} to questions about $\mathcal{D}(\mathfrak{h})^{W}$, which are much easier to handle.

What about more general representations than $V = \mathfrak{g}$?

What about more general representations than $V = \mathfrak{g}$?

A natural class are the symmetric spaces where Harish-Chandra's Thm 1 "sometimes holds" (Sekiguchi, Galina-Laurent), but definitely not always: Torossian has an example of a G_0 -equivariant eigendistribution supported on 0. For Hotta-Kashiwara's Theorem 3 there are no results.

What about more general representations than $V = \mathfrak{g}$?

A natural class are the symmetric spaces where Harish-Chandra's Thm 1 "sometimes holds" (Sekiguchi, Galina-Laurent), but definitely not always: Torossian has an example of a G_0 -equivariant eigendistribution supported on 0. For Hotta-Kashiwara's Theorem 3 there are no results.

Definitions: Let \widetilde{G} be a reductive Lie group with involution θ . Then $\widetilde{g} = Lie(\widetilde{G}) = \mathfrak{g} \oplus V$, where $\mathfrak{g} = \widetilde{g}^{\theta}$ and $V = \mathfrak{p}$ is the (-1)-eigenspace. Set $G = \widetilde{G}^{\theta}$. Here (\widetilde{G}, θ) is called a symmetric pair and V the corr. symmetric space. Symmetric spaces are classified (see the book by Helgason) and include the adjoint action of G on \mathfrak{g} (take $\widetilde{G} = G \oplus G$ with θ swapping terms).

What about more general representations than $V = \mathfrak{g}$?

A natural class are the symmetric spaces where Harish-Chandra's Thm 1 "sometimes holds" (Sekiguchi, Galina-Laurent), but definitely not always: Torossian has an example of a G_0 -equivariant eigendistribution supported on 0. For Hotta-Kashiwara's Theorem 3 there are no results.

Definitions: Let \widetilde{G} be a reductive Lie group with involution θ . Then $\widetilde{g} = Lie(\widetilde{G}) = \mathfrak{g} \oplus V$, where $\mathfrak{g} = \widetilde{g}^{\theta}$ and $V = \mathfrak{p}$ is the (-1)-eigenspace. Set $G = \widetilde{G}^{\theta}$. Here (\widetilde{G}, θ) is called a symmetric pair and V the corr. symmetric space. Symmetric spaces are classified (see the book by Helgason) and include the adjoint action of G on \mathfrak{g} (take $\widetilde{G} = G \oplus G$ with θ swapping terms).

As before G acts on V and $\mathcal{D}(V)$ and there is $\mu : \mathfrak{g} \to \mathsf{Der}(V) \subset \mathcal{D}(V)$. Also:

Chevalley Theorem: $\mathbb{C}[V]^G \cong \mathbb{C}[\mathfrak{h}]^W$, and $\operatorname{Sym}(V)^G \cong \operatorname{Sym}(\mathfrak{h})^W$ where $\mathfrak{h} \subseteq V$ is an abelian subalgebra with associated complex reflection group W.

$$\mathfrak{G}_{\lambda}=\mathfrak{D}(V)/I_{\lambda} \quad ext{for} \quad I_{\lambda}=\mathfrak{D}(V)\mu(\mathfrak{g})+\mathfrak{D}(V)\mathfrak{m}_{\lambda}.$$

$$\mathfrak{G}_{\lambda} = \mathfrak{D}(V)/I_{\lambda}$$
 for $I_{\lambda} = \mathfrak{D}(V)\mu(\mathfrak{g}) + \mathfrak{D}(V)\mathfrak{m}_{\lambda}$.

Running Example: Take $G = SL_2$ and θ conjugation by $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. Then $G = \mathbb{C}^*$, with V the off-diagonal matrices. Set $\mathbb{C}[V] = \mathbb{C}[x_1, x_2]$; thus G acts with weight 1 on X_1 and X_2 . Write

$$\mathcal{D} = \mathcal{D}(V) = \mathbb{C}\langle x_1, x_2, \partial_1, \partial_2 \rangle \quad \text{for } \partial_i = \frac{\partial}{\partial x_i}.$$

$$\mathfrak{G}_{\lambda}=\mathfrak{D}(V)/I_{\lambda} \quad ext{for} \quad I_{\lambda}=\mathfrak{D}(V)\mu(\mathfrak{g})+\mathfrak{D}(V)\mathfrak{m}_{\lambda}.$$

Running Example: Take $G = SL_2$ and θ conjugation by $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. Then $G = \mathbb{C}^*$, with V the off-diagonal matrices. Set $\mathbb{C}[V] = \mathbb{C}[x_1, x_2]$; thus G acts with weight 1 on X_1 and X_2 . Write

$$\mathcal{D} = \mathcal{D}(V) = \mathbb{C}\langle x_1, x_2, \partial_1, \partial_2 \rangle \quad \text{ for } \partial_i = \frac{\partial}{\partial x_i}.$$

Here $z=x_1x_2$ is the discriminant and $\mu(\mathfrak{g})=\mathbb{C}\nabla$ for $\nabla=x_1\partial_1-x_2\partial_2$. Moreover

$$\mathbb{C}[V]^G = \mathbb{C}[z] \cong \mathbb{C}[\mathfrak{h}]^W, \quad \text{and} \quad \operatorname{Sym}(V)^G = \mathbb{C}[\partial_1 \partial_2].$$

$$\mathfrak{G}_{\lambda} = \mathfrak{D}(V)/I_{\lambda}$$
 for $I_{\lambda} = \mathfrak{D}(V)\mu(\mathfrak{g}) + \mathfrak{D}(V)\mathfrak{m}_{\lambda}$.

Running Example: Take $\widetilde{G}=SL_2$ and θ conjugation by $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. Then $G=\mathbb{C}^*$, with V the off-diagonal matrices. Set $\mathbb{C}[V]=\mathbb{C}[x_1,x_2]$; thus G acts with weight 1 on x_1 and -1 on x_2 . Write

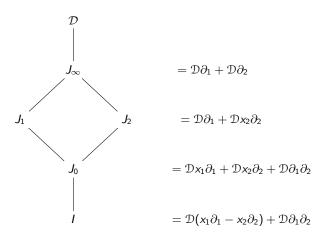
$$\mathcal{D} = \mathcal{D}(V) = \mathbb{C}\langle x_1, x_2, \partial_1, \partial_2 \rangle \quad \text{ for } \partial_i = \frac{\partial}{\partial x_i}.$$

Here $z=x_1x_2$ is the discriminant and $\mu(\mathfrak{g})=\mathbb{C}\nabla$ for $\nabla=x_1\partial_1-x_2\partial_2$. Moreover

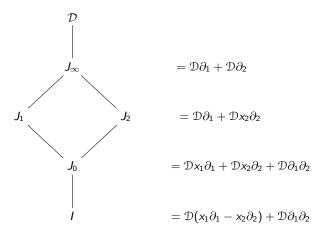
$$\mathbb{C}[V]^G = \mathbb{C}[z] \cong \mathbb{C}[\mathfrak{h}]^W, \quad \text{and} \quad \operatorname{Sym}(V)^G = \mathbb{C}[\partial_1 \partial_2].$$

So $\mathcal{G}_0 = \mathcal{D}/\mathcal{D}I$ where $I = \mathcal{D}\nabla + \mathcal{D}\partial_1\partial_2$. Then \mathcal{G}_0 has the following lattice of submodules:

Running Example (cont):



Running Example (cont):



Conclusion: \mathcal{G}_0 has simple top $\mathcal{D}/J_\infty\cong\mathbb{C}[V]$ and simple socle $J_0/I\cong\mathbb{C}[V]$ but the "middle" terms are all δ -torsion. For example, $J_2/J_0\cong\mathcal{D}(V)/(x_1,\partial_2)$.

4 D > 4 P > 4 E > 4 E > E = 990

Fix a symmetric space V with G,\mathfrak{g} as before and $\mathbb{C}[V]^G\cong\mathbb{C}[\mathfrak{h}]^W$, etc. You again have a quantum Hamiltonian reduction

$$\phi: \mathcal{D}(V)^G \longrightarrow \mathcal{D}(\mathfrak{h}/\!/W) := \mathcal{D}(\mathbb{C}[\mathfrak{h}]^W).$$

Fix a symmetric space V with G, \mathfrak{g} as before and $\mathbb{C}[V]^G \cong \mathbb{C}[\mathfrak{h}]^W$, etc. You again have a quantum Hamiltonian reduction

$$\phi: \mathcal{D}(V)^{\mathcal{G}} \longrightarrow \mathcal{D}(\mathfrak{h}/\!/W) := \mathcal{D}(\mathbb{C}[\mathfrak{h}]^{W}).$$

However, now in general $\operatorname{Im}(\phi) \not\cong \mathfrak{D}(\mathfrak{h})^W$. Instead we use:

Defn/Theorem (Etingof-Ginzburg): Associated to (\mathfrak{h}, W) one has a spherical algebra (or spherical subalgebra of a Cherednik algebra) A_{κ} . This is a deformation of $\mathfrak{D}(\mathfrak{h})^W$ for some parameter κ and it contains copies of $\mathbb{C}[\mathfrak{h}]^W$ and $\mathsf{Sym}(\mathfrak{h})^W$.

Note: All infinite dimensional primitive factors of $U(\mathfrak{sl}_2)$ appear among the A_{κ} .

Fix a symmetric space V with G, \mathfrak{g} as before and $\mathbb{C}[V]^G \cong \mathbb{C}[\mathfrak{h}]^W$, etc. You again have a quantum Hamiltonian reduction

$$\phi: \mathcal{D}(V)^{\mathcal{G}} \longrightarrow \mathcal{D}(\mathfrak{h}/\!/W) := \mathcal{D}(\mathbb{C}[\mathfrak{h}]^{W}).$$

However, now in general $\operatorname{Im}(\phi) \not\cong \mathfrak{D}(\mathfrak{h})^W$. Instead we use:

Defn/Theorem (Etingof-Ginzburg): Associated to (\mathfrak{h},W) one has a spherical algebra (or spherical subalgebra of a Cherednik algebra) A_{κ} . This is a deformation of $\mathfrak{D}(\mathfrak{h})^W$ for some parameter κ and it contains copies of $\mathbb{C}[\mathfrak{h}]^W$ and $\mathsf{Sym}(\mathfrak{h})^W$.

Note: All infinite dimensional primitive factors of $U(\mathfrak{sl}_2)$ appear among the A_{κ} .

Theorem 5 (BLNS): (i) $Im(\phi) \cong A_{\kappa}$ for some such spherical algebra A_{κ} .

(ii) If A_{κ} is a simple algebra then $Ker(\phi) = [\mathcal{D}(V)\mu(\mathfrak{g})]^{\mathsf{G}}$.

Fix a symmetric space V with G,\mathfrak{g} as before and $\mathbb{C}[V]^G\cong\mathbb{C}[\mathfrak{h}]^W$, etc. You again have a quantum Hamiltonian reduction

$$\phi: \mathcal{D}(V)^{\mathcal{G}} \longrightarrow \mathcal{D}(\mathfrak{h}/\!/W) := \mathcal{D}(\mathbb{C}[\mathfrak{h}]^{W}).$$

However, now in general $\operatorname{Im}(\phi) \not\cong \mathfrak{D}(\mathfrak{h})^W$. Instead we use:

Defn/Theorem (Etingof-Ginzburg): Associated to (\mathfrak{h},W) one has a spherical algebra (or spherical subalgebra of a Cherednik algebra) A_{κ} . This is a deformation of $\mathfrak{D}(\mathfrak{h})^W$ for some parameter κ and it contains copies of $\mathbb{C}[\mathfrak{h}]^W$ and $\mathsf{Sym}(\mathfrak{h})^W$.

Note: All infinite dimensional primitive factors of $U(\mathfrak{sl}_2)$ appear among the A_{κ} .

Theorem 5 (BLNS): (i) $Im(\phi) \cong A_{\kappa}$ for some such spherical algebra A_{κ} .

(ii) If A_{κ} is a simple algebra then $Ker(\phi) = [\mathfrak{D}(V)\mu(\mathfrak{g})]^{\mathsf{G}}$.

For the Running Example, A_{κ} is a simple factor ring of $U(\mathfrak{sl}_2)$.

The Main Results for a Symmetric Space V (cont.):

The symmetric spaces for which $A_{\kappa} = \text{Im}(\phi)$ is a simple algebra have been classified **(BLNS)**. They include 9 of the 17 infinite families of symmetric spaces.

The Main Results for a Symmetric Space V (cont.):

The symmetric spaces for which $A_{\kappa} = \text{Im}(\phi)$ is a simple algebra have been classified **(BLNS)**. They include 9 of the 17 infinite families of symmetric spaces.

Remark: To be more precise A_{κ} is simple provided *either* κ is an integer *or* V is a "nice symmetric space" in the sense of Sekiguchi. The cases when κ is an integer are precisely the examples that appear in work of Berest-Etingof-Ginzburg on rings of quasi-invariants. The nice symmetric spaces are defined as follows:

The Main Results for a Symmetric Space V (cont.):

The symmetric spaces for which $A_{\kappa} = \text{Im}(\phi)$ is a simple algebra have been classified **(BLNS)**. They include 9 of the 17 infinite families of symmetric spaces.

Remark: To be more precise A_{κ} is simple provided *either* κ is an integer *or* V is a "nice symmetric space" in the sense of Sekiguchi. The cases when κ is an integer are precisely the examples that appear in work of Berest-Etingof-Ginzburg on rings of quasi-invariants. The nice symmetric spaces are defined as follows:

Analogous to the situation for Lie algebras, given a symmetric pair $(\widetilde{\mathfrak{g}}, heta)$ one has

- \bullet a restricted root system Σ associated to $(\mathfrak{g},\mathfrak{h})$ and a
- weight space decomposition of \mathfrak{g} into weight spaces $\{g_{\alpha}: \alpha \in \Sigma\}$.

Then $(\widetilde{\mathfrak{g}}, \theta)$ or the corresponding symmetric space V is nice if

$$\dim_{\mathbb{C}} \mathfrak{g}_{\alpha} + \dim_{\mathbb{C}} \mathfrak{g}_{2\alpha} \leq 2$$
 for all $\alpha \in \Sigma$.

A standard fact for semisimple Lie algebras shows that the adjoint symmetric spaces (where $\tilde{g} = \mathfrak{g} \times \mathfrak{g}$) are indeed nice.

Theorem 6 (BNS): (1) If
$$A_{\kappa} = \operatorname{Im}(\phi)$$
 is a simple algebra then
$$\mathfrak{G}_{\lambda} = \mathfrak{D}(V)/\mathfrak{D}(V)\mu(\mathfrak{g}) + \mathfrak{D}(V)\mathfrak{m}_{\lambda}$$

has no nonzero δ -torsion factor module nor δ -torsion submodule (where δ is the discriminant).

Theorem 6 (BNS): (1) If
$$A_{\kappa} = \operatorname{Im}(\phi)$$
 is a simple algebra then
$$\mathfrak{G}_{\lambda} = \mathfrak{D}(V)/\mathfrak{D}(V)\mu(\mathfrak{g}) + \mathfrak{D}(V)\mathfrak{m}_{\lambda}$$

has no nonzero δ -torsion factor module nor δ -torsion submodule (where δ is the discriminant).

(2) If A_{κ} is not simple, then \mathcal{G}_0 has a nonzero δ -torsion factor module.

Theorem 6 (BNS): (1) If
$$A_{\kappa} = \operatorname{Im}(\phi)$$
 is a simple algebra then
$$\mathfrak{G}_{\lambda} = \mathfrak{D}(V)/\mathfrak{D}(V)\mu(\mathfrak{g}) + \mathfrak{D}(V)\mathfrak{m}_{\lambda}$$

has no nonzero δ -torsion factor module nor δ -torsion submodule (where δ is the discriminant).

(2) If A_{κ} is not simple, then \mathfrak{G}_0 has a nonzero δ -torsion factor module.

Corollary: Assume that A_{κ} is simple. Then:

(1) \mathcal{G}_{λ} is the minimal extension of its restriction $\mathcal{L} = \mathcal{G}_{\lambda}|_{V'}$ to the regular locus $V' = (\delta \neq 0)$.

Theorem 6 (BNS): (1) If $A_{\kappa} = \operatorname{Im}(\phi)$ is a simple algebra then $\mathfrak{G}_{\lambda} = \mathfrak{D}(V)/\mathfrak{D}(V)\mu(\mathfrak{g}) + \mathfrak{D}(V)\mathfrak{m}_{\lambda}$

has no nonzero δ -torsion factor module nor δ -torsion submodule (where δ is the discriminant).

(2) If A_{κ} is not simple, then \mathfrak{G}_0 has a nonzero δ -torsion factor module.

Corollary: Assume that A_{κ} is simple. Then:

- (1) \mathcal{G}_{λ} is the minimal extension of its restriction $\mathcal{L} = \mathcal{G}_{\lambda}|_{V'}$ to the regular locus $V' = (\delta \neq 0)$.
- (2) If T is an equiv. eigendist. supported on a real form of $V \setminus V'$, then T = 0.

Theorem 6 (BNS): (1) If $A_{\kappa} = \operatorname{Im}(\phi)$ is a simple algebra then $\mathfrak{G}_{\lambda} = \mathfrak{D}(V)/\mathfrak{D}(V)\mu(\mathfrak{g}) + \mathfrak{D}(V)\mathfrak{m}_{\lambda}$

has no nonzero δ -torsion factor module nor δ -torsion submodule (where δ is the discriminant).

(2) If A_{κ} is not simple, then \mathcal{G}_0 has a nonzero δ -torsion factor module.

Corollary: Assume that A_{κ} is simple. Then:

- (1) \mathcal{G}_{λ} is the minimal extension of its restriction $\mathcal{L} = \mathcal{G}_{\lambda}|_{V'}$ to the regular locus $V' = (\delta \neq 0)$.
- (2) If T is an equiv. eigendist. supported on a real form of $V \setminus V'$, then T = 0.

So Harish-Chandra's Theorem 1 generalises quite nicely.

Theorem 6 (BNS): (1) If $A_{\kappa} = \operatorname{Im}(\phi)$ is a simple algebra then $\mathfrak{G}_{\lambda} = \mathfrak{D}(V)/\mathfrak{D}(V)\mu(\mathfrak{g}) + \mathfrak{D}(V)\mathfrak{m}_{\lambda}$

has no nonzero δ -torsion factor module nor δ -torsion submodule (where δ is the discriminant).

(2) If A_{κ} is not simple, then \mathcal{G}_0 has a nonzero δ -torsion factor module.

Corollary: Assume that A_{κ} is simple. Then:

- (1) \mathcal{G}_{λ} is the minimal extension of its restriction $\mathcal{L} = \mathcal{G}_{\lambda}|_{V'}$ to the regular locus $V' = (\delta \neq 0)$.
- (2) If T is an equiv. eigendist. supported on a real form of $V \setminus V'$, then T = 0.

So Harish-Chandra's Theorem 1 generalises quite nicely.

Remarks: For nice symm. spaces, Theorem 6(1) was conjectured by Sekiguchi. For nice symmetric spaces, the result about δ -torsion factors (and hence part (2) of the corollary) was proved by Sekiguchi and Galina-Laurent.

Recall that Hotta-Kashiwara proved that \mathcal{G}_{λ} is semisimple in the adjoint case $V=\mathfrak{g}$. And that the analogous result fails for the Running Example.

Recall that Hotta-Kashiwara proved that \mathcal{G}_{λ} is semisimple in the adjoint case $V=\mathfrak{g}$. And that the analogous result fails for the Running Example.

Associated to (\mathfrak{h}, W) is a Hecke algebra H = H(W). This is a deformation of the group ring $\mathbb{C}W$ and is intimately connected to the representation theory of A_{κ} .

Recall that Hotta-Kashiwara proved that \mathcal{G}_{λ} is semisimple in the adjoint case $V=\mathfrak{g}$. And that the analogous result fails for the Running Example.

Associated to (\mathfrak{h}, W) is a Hecke algebra H = H(W). This is a deformation of the group ring $\mathbb{C}W$ and is intimately connected to the representation theory of A_{κ} .

Theorem 7 (BNS): If V is any symmetric space then

$$\mathfrak{G}_0 = \mathfrak{D}(V)/\mathfrak{D}(V)\mu(\mathfrak{g}) + \mathfrak{D}(V)Sym(V)_+^G$$

is semisimple if and only if the Hecke algebra H is a semisimple ring. (This forces A_{κ} to be simple.)

Recall that Hotta-Kashiwara proved that \mathcal{G}_{λ} is semisimple in the adjoint case $V=\mathfrak{g}$. And that the analogous result fails for the Running Example.

Associated to (\mathfrak{h},W) is a Hecke algebra H=H(W). This is a deformation of the group ring $\mathbb{C}W$ and is intimately connected to the representation theory of A_{κ} .

Theorem 7 (BNS): If V is any symmetric space then

$$\mathfrak{G}_0 = \mathfrak{D}(V)/\mathfrak{D}(V)\mu(\mathfrak{g}) + \mathfrak{D}(V)Sym(V)_+^G$$

is semisimple if and only if the Hecke algebra H is a semisimple ring. (This forces A_{κ} to be simple.)

Comments: (1) In the Running Example $W = \mathbb{Z}/2\mathbb{Z}$ and $H \cong \mathbb{C}[t]/(t^2)$.

Recall that Hotta-Kashiwara proved that \mathcal{G}_{λ} is semisimple in the adjoint case $V=\mathfrak{g}$. And that the analogous result fails for the Running Example.

Associated to (\mathfrak{h}, W) is a Hecke algebra H = H(W). This is a deformation of the group ring $\mathbb{C}W$ and is intimately connected to the representation theory of A_{κ} .

Theorem 7 (BNS): If V is any symmetric space then

$$\mathfrak{G}_0 = \mathfrak{D}(V)/\mathfrak{D}(V)\mu(\mathfrak{g}) + \mathfrak{D}(V)Sym(V)_+^G$$

is semisimple if and only if the Hecke algebra H is a semisimple ring. (This forces A_{κ} to be simple.)

Comments: (1) In the Running Example $W = \mathbb{Z}/2\mathbb{Z}$ and $H \cong \mathbb{C}[t]/(t^2)$.

(2) At the expense of more notation a similar result holds for the other \mathcal{G}_{λ} .

Recall that Hotta-Kashiwara proved that \mathcal{G}_{λ} is semisimple in the adjoint case $V=\mathfrak{g}$. And that the analogous result fails for the Running Example.

Associated to (\mathfrak{h}, W) is a Hecke algebra H = H(W). This is a deformation of the group ring $\mathbb{C}W$ and is intimately connected to the representation theory of A_{κ} .

Theorem 7 (BNS): If V is any symmetric space then

$$\mathfrak{G}_0 = \mathfrak{D}(V)/\mathfrak{D}(V)\mu(\mathfrak{g}) + \mathfrak{D}(V)Sym(V)_+^G$$

is semisimple if and only if the Hecke algebra H is a semisimple ring. (This forces A_{κ} to be simple.)

Comments: (1) In the Running Example $W = \mathbb{Z}/2\mathbb{Z}$ and $H \cong \mathbb{C}[t]/(t^2)$.

(2) At the expense of more notation a similar result holds for the other \mathcal{G}_{λ} .

Corollary (BNS): Assume H(W) is semisimple (and hence A_{κ} is simple). Then $\mathcal{G}_0 = \bigoplus \{\mathcal{G}_{0,\rho} \otimes_{\mathbb{C}} \rho^* \mid \rho \in \operatorname{Irr}(H(W))\},$

as a $(\mathcal{D}(V), H(W))$ -bimodule. Each $\mathcal{G}_{0,\rho}$ is irreducible as a $\mathcal{D}(V)$ -module and they are non-isomorphic for distinct ρ .

Corollary (BNS): (g a simple Lie algebra.) Over a symmetric space V, the Harish-Chandra module \mathcal{G}_0 is semisimple for precisely the following families of symmetric spaces:

Corollary (BNS): (g a simple Lie algebra.) Over a symmetric space V, the Harish-Chandra module \mathcal{G}_0 is semisimple for precisely the following families of symmetric spaces:

- (0) The adjoint case $V = \mathfrak{g}$ (Hotta-Kashiwara);
- (1) $(\widetilde{\mathfrak{g}}, \mathfrak{g}) = (\mathfrak{sl}(2n), \mathfrak{sp}(2n)) \quad n \geq 2;$
- (2) $(\widetilde{\mathfrak{g}},\mathfrak{g}) = (\mathfrak{so}(2p),\mathfrak{so}(2p-1)) \quad p \geq 3;$
- (3) $(\widetilde{\mathfrak{g}},\mathfrak{g}) = (\mathfrak{e}_6,\mathfrak{f}_4);$

Corollary (BNS): (g a simple Lie algebra.) Over a symmetric space V, the Harish-Chandra module \mathcal{G}_0 is semisimple for precisely the following families of symmetric spaces:

- (0) The adjoint case $V = \mathfrak{g}$ (Hotta-Kashiwara);
- (1) $(\widetilde{\mathfrak{g}},\mathfrak{g}) = (\mathfrak{sl}(2n), \mathfrak{sp}(2n)) \quad n \geq 2;$
- (2) $(\widetilde{\mathfrak{g}},\mathfrak{g}) = (\mathfrak{so}(2p),\mathfrak{so}(2p-1)) \quad p \geq 3;$
- (3) $(\widetilde{\mathfrak{g}},\mathfrak{g}) = (\mathfrak{e}_6,\mathfrak{f}_4);$

In 1999, Levasseur and I conjectured that \mathcal{G}_{0} was semisimple for all nice symmetric spaces.

Corollary (BNS): (g a simple Lie algebra.) Over a symmetric space V, the Harish-Chandra module \mathcal{G}_0 is semisimple for precisely the following families of symmetric spaces:

- (0) The adjoint case $V = \mathfrak{g}$ (Hotta-Kashiwara);
- (1) $(\widetilde{\mathfrak{g}},\mathfrak{g}) = (\mathfrak{sl}(2n), \mathfrak{sp}(2n)) \quad n \geq 2;$
- (2) $(\widetilde{\mathfrak{g}},\mathfrak{g}) = (\mathfrak{so}(2p),\,\mathfrak{so}(2p-1)) \quad p \geq 3;$
- (3) $(\widetilde{\mathfrak{g}},\mathfrak{g}) = (\mathfrak{e}_6,\mathfrak{f}_4);$

In 1999, Levasseur and I conjectured that \mathcal{G}_{0} was semisimple for all nice symmetric spaces.

Possibly our worst conjecture ever!

Idea of the proof:

For $U(\mathfrak{g})$ the most important category of modules is Category \mathfrak{O} and this has a natural analogue for both A_{κ} and $\mathfrak{D}(V)$.

Idea of the proof:

For $U(\mathfrak{g})$ the most important category of modules is Category \mathfrak{O} and this has a natural analogue for both A_{κ} and $\mathfrak{D}(V)$.

For A_{κ} the category is $\mathfrak{O}^{\mathrm{sph}}$; the category of finitely generated left A_{κ} -modules on which $\mathrm{Sym}(\mathfrak{h})^W$ acts locally finitely.

For $\mathcal{D}(V)$ one has the category \mathcal{C} of admissible modules; finitely generated, G-equivariant left $\mathcal{D}(V)$ -modules on which $\operatorname{Sym}(V)^G \cong \operatorname{Sym}(\mathfrak{h})^W$ acts locally finitely. (This category contains the \mathcal{G}_{λ} .)

Idea of the proof:

For $U(\mathfrak{g})$ the most important category of modules is Category \mathfrak{O} and this has a natural analogue for both A_{κ} and $\mathfrak{D}(V)$.

For A_{κ} the category is $\mathbb{O}^{\mathrm{sph}}$; the category of finitely generated left A_{κ} -modules on which $\mathrm{Sym}(\mathfrak{h})^W$ acts locally finitely.

For $\mathcal{D}(V)$ one has the category \mathfrak{C} of admissible modules; finitely generated, G-equivariant left $\mathcal{D}(V)$ -modules on which $\operatorname{Sym}(V)^G \cong \operatorname{Sym}(\mathfrak{h})^W$ acts locally finitely. (This category contains the \mathcal{G}_{λ} .)

The key to these results is to understand the relationship between these two categories. For this we use the $(\mathcal{D}(V), A_{\kappa})$ -bimodule

$$\mathfrak{M}=\mathfrak{D}(V)/\mathfrak{D}(V)\mu(\mathfrak{g}).$$

Notice that $A_{\kappa} = \mathfrak{M}^{\mathsf{G}}$ while $\mathfrak{G}_{\lambda} = \mathfrak{M} \otimes_{A_{\kappa}} \mathfrak{N}_{\lambda}$ for $\mathfrak{N}_{\lambda} = A_{\kappa}/A_{\kappa}\mathfrak{m}_{\lambda}$.

Idea behind the proof cont:

Set
$$A=A_{\kappa}$$
, $\mathfrak{D}=\mathfrak{D}(V)$ and $\mathfrak{N}_{\lambda}=A/A\mathfrak{m}_{\lambda}$. Set

$$\mathbb{D}_{\mathcal{D}}(-) = \operatorname{Ext}_{\mathcal{D}}^{n+m}(-, \mathcal{D})$$
 for $n+m = \dim V = \frac{1}{2}\operatorname{\mathsf{GKdim}}(\mathcal{D})$.

and, similarly, $\mathbb{D}_A(-) = \operatorname{Ext}_A^n(-, A)$ for $n = \dim \mathfrak{h} = \frac{1}{2}\operatorname{\mathsf{GKdim}}(A)$.

Idea behind the proof cont:

Set
$$A = A_{\kappa}$$
, $\mathcal{D} = \mathcal{D}(V)$ and $\mathcal{N}_{\lambda} = A/A\mathfrak{m}_{\lambda}$. Set

$$\mathbb{D}_{\mathcal{D}}(-) = \mathsf{Ext}_{\mathcal{D}}^{n+m}(-, \mathcal{D}) \qquad \text{for } n+m = \dim V = \frac{1}{2}\mathsf{GKdim}(\mathcal{D}).$$

and, similarly, $\mathbb{D}_A(-) = \operatorname{Ext}_A^n(-, A)$ for $n = \dim \mathfrak{h} = \frac{1}{2}\operatorname{\mathsf{GKdim}}(A)$.

Fact: (A) $\mathbb{D}_{\mathcal{D}}$ gives a contravariant equivalence between left and right holonomic \mathcal{D} -modules that maps admissible left modules to admissible right modules and δ -torsion modules to δ -torsion modules.

(B) If $Z \in \mathcal{O}^{\mathrm{sph}}$ then $\mathsf{GKdim}(Z) = n$ and (hence) Z cannot have δ -torsion. (Here we identify $\delta \in \mathbb{C}[\mathfrak{h}]^W \subset A$.)

Idea behind the proof cont:

Set
$$A = A_{\kappa}$$
, $\mathcal{D} = \mathcal{D}(V)$ and $\mathcal{N}_{\lambda} = A/A\mathfrak{m}_{\lambda}$. Set

$$\mathbb{D}_{\mathcal{D}}(-) = \operatorname{Ext}_{\mathcal{D}}^{n+m}(-, \mathcal{D})$$
 for $n+m = \dim V = \frac{1}{2}\operatorname{\mathsf{GKdim}}(\mathcal{D})$.

and, similarly, $\mathbb{D}_A(-) = \operatorname{Ext}_A^n(-, A)$ for $n = \dim \mathfrak{h} = \frac{1}{2}\operatorname{\mathsf{GKdim}}(A)$.

Fact: (A) $\mathbb{D}_{\mathcal{D}}$ gives a contravariant equivalence between left and right holonomic \mathcal{D} -modules that maps admissible left modules to admissible right modules and δ -torsion modules to δ -torsion modules.

(B) If $Z \in \mathcal{O}^{\mathrm{sph}}$ then $\mathsf{GKdim}(Z) = n$ and (hence) Z cannot have δ -torsion. (Here we identify $\delta \in \mathbb{C}[\mathfrak{h}]^W \subset A$.)

Intertwining Theorem 8 (BNS). Assume that A is simple. Then

$$\mathbb{D}_{\mathcal{D}}(\mathcal{G}_{\lambda}) = \mathbb{D}_{\mathcal{D}}(\mathcal{M} \otimes_{A} \mathcal{N}_{\lambda}) = \mathbb{D}_{A}(\mathcal{N}_{\lambda}) \otimes_{\mathcal{D}} \mathcal{M}', \qquad \text{for } \mathcal{M}' = \mathsf{Ext}^{m}_{\mathcal{D}}(\mathcal{M}, \mathcal{D}).$$

Theorem: If $A = A_{\kappa}$ is simple, then \mathcal{G}_{λ} has no δ -torsion.

Theorem: If $A = A_{\kappa}$ is simple, then \mathcal{G}_{λ} has no δ -torsion.

Proof: Suppose that $0 \neq T \subseteq \mathcal{G}_{\lambda}$ is a δ -torsion submodule. By Fact A $0 \neq S = \mathbb{D}_{\mathcal{D}}(T)$ is a δ -torsion factor module of $\mathbb{D}(\mathcal{G}_{\lambda})$ that lies in \mathcal{C}^{op} .

Theorem: If $A = A_{\kappa}$ is simple, then \mathcal{G}_{λ} has no δ -torsion.

Proof: Suppose that $0 \neq T \subseteq \mathcal{G}_{\lambda}$ is a δ -torsion submodule. By Fact A $0 \neq S = \mathbb{D}_{\mathcal{D}}(T)$ is a δ -torsion factor module of $\mathbb{D}(\mathcal{G}_{\lambda})$ that lies in \mathcal{C}^{op} . Hence,

$$0 \neq \mathsf{Hom}_{\mathcal{D}}(\mathbb{D}_{\mathcal{D}}(\mathcal{G}_{\lambda}), S)$$

= $\mathsf{Hom}_{\mathcal{D}}(\mathbb{D}_{\mathcal{D}}(\mathcal{M} \otimes_{A} \mathcal{N}_{\lambda}), S)$

Theorem: If $A = A_{\kappa}$ is simple, then \mathcal{G}_{λ} has no δ -torsion.

Proof: Suppose that $0 \neq T \subseteq \mathcal{G}_{\lambda}$ is a δ -torsion submodule. By Fact A $0 \neq S = \mathbb{D}_{\mathcal{D}}(T)$ is a δ -torsion factor module of $\mathbb{D}(\mathcal{G}_{\lambda})$ that lies in \mathcal{C}^{op} . Hence,

$$0 \neq \mathsf{Hom}_{\mathcal{D}}(\mathbb{D}_{\mathcal{D}}(\mathcal{G}_{\lambda}), S)$$

$$= \mathsf{Hom}_{\mathcal{D}}(\mathbb{D}_{\mathcal{D}}(\mathcal{M} \otimes_{A} \mathcal{N}_{\lambda}), S)$$

$$= \mathsf{Hom}(\mathbb{D}_{A}(\mathcal{N}_{\lambda}) \otimes_{\mathcal{D}} \mathcal{M}', S)$$

by the Intertwining Theorem

Theorem: If $A = A_{\kappa}$ is simple, then \mathcal{G}_{λ} has no δ -torsion.

Proof: Suppose that $0 \neq T \subseteq \mathcal{G}_{\lambda}$ is a δ -torsion submodule. By Fact A $0 \neq S = \mathbb{D}_{\mathcal{D}}(T)$ is a δ -torsion factor module of $\mathbb{D}(\mathcal{G}_{\lambda})$ that lies in \mathcal{C}^{op} . Hence,

$$0 \neq \mathsf{Hom}_{\mathcal{D}}(\mathbb{D}_{\mathcal{D}}(\mathfrak{G}_{\lambda}), S)$$

$$= \mathsf{Hom}_{\mathcal{D}}(\mathbb{D}_{\mathcal{D}}(\mathbb{M} \otimes_{\mathcal{A}} \mathbb{N}_{\lambda}), \, \mathcal{S})$$

$$= \mathsf{Hom}(\mathbb{D}_{A}(\mathcal{N}_{\lambda}) \otimes_{\mathfrak{D}} \mathcal{M}', S)$$

by the Intertwining Theorem

$$=\mathsf{Hom}ig(\mathbb{D}_{A}(\mathfrak{N}_{\lambda}),\,\mathsf{Hom}_{\mathfrak{D}}(\mathfrak{M}',\,\mathcal{S})ig)$$

by adjunction.

Theorem: If $A = A_{\kappa}$ is simple, then \mathcal{G}_{λ} has no δ -torsion.

Proof: Suppose that $0 \neq T \subseteq \mathcal{G}_{\lambda}$ is a δ -torsion submodule. By Fact A $0 \neq S = \mathbb{D}_{\mathcal{D}}(T)$ is a δ -torsion factor module of $\mathbb{D}(\mathcal{G}_{\lambda})$ that lies in \mathcal{C}^{op} . Hence,

$$0 \neq \mathsf{Hom}_{\mathcal{D}}(\mathbb{D}_{\mathcal{D}}(\mathfrak{G}_{\lambda}), S)$$

$$=\mathsf{Hom}_{\mathcal{D}}(\mathbb{D}_{\mathcal{D}}(\mathbb{M}\otimes_{\mathcal{A}}\mathbb{N}_{\lambda}),\,\mathcal{S})$$

$$= \mathsf{Hom}(\mathbb{D}_{A}(\mathcal{N}_{\lambda}) \otimes_{\mathfrak{D}} \mathcal{M}', S)$$

by the Intertwining Theorem

$$=\mathsf{Hom}ig(\mathbb{D}_{\mathcal{A}}(\mathcal{N}_{\lambda}),\,\mathsf{Hom}_{\mathcal{D}}(\mathcal{M}',\,\mathcal{S})ig)$$

by adjunction.

In particular, $0 \neq Z = \text{Hom}_{\mathcal{D}}(\mathcal{M}', S)$.

Theorem: If $A = A_{\kappa}$ is simple, then \mathcal{G}_{λ} has no δ -torsion.

Proof: Suppose that $0 \neq T \subseteq \mathcal{G}_{\lambda}$ is a δ -torsion submodule. By Fact A $0 \neq S = \mathbb{D}_{\mathcal{D}}(T)$ is a δ -torsion factor module of $\mathbb{D}(\mathcal{G}_{\lambda})$ that lies in \mathcal{C}^{op} . Hence,

$$0 \neq \mathsf{Hom}_{\mathfrak{D}}(\mathbb{D}_{\mathfrak{D}}(\mathfrak{G}_{\lambda}), S)$$

= $\mathsf{Hom}_{\mathfrak{D}}(\mathbb{D}_{\mathfrak{D}}(\mathfrak{M} \otimes_{A} \mathfrak{N}_{\lambda}), S)$

 $=\operatorname{\mathsf{Hom}}(\mathbb{D}_{\mathsf{A}}(\mathcal{N}_{\lambda})\otimes_{\mathbb{D}}\mathcal{M}',\,S)$ by the Intertwining Theorem

 $= \operatorname{\mathsf{Hom}} (\mathbb{D}_{\mathsf{A}}(\mathfrak{N}_{\lambda}), \operatorname{\mathsf{Hom}}_{\mathfrak{D}}(\mathfrak{M}', S))$ by adjunction.

In particular, $0 \neq Z = \operatorname{Hom}_{\mathcal{D}}(\mathcal{M}', S)$. But one can prove that each non-zero fin gen submodule Z' of Z lies in $\mathbb{O}^{\mathrm{sph,op}}$ and is also δ -torsion.

Theorem: If $A = A_{\kappa}$ is simple, then \mathcal{G}_{λ} has no δ -torsion.

Proof: Suppose that $0 \neq T \subseteq \mathcal{G}_{\lambda}$ is a δ -torsion submodule. By Fact A $0 \neq S = \mathbb{D}_{\mathcal{D}}(T)$ is a δ -torsion factor module of $\mathbb{D}(\mathcal{G}_{\lambda})$ that lies in \mathcal{C}^{op} . Hence,

$$0 \neq \mathsf{Hom}_{\mathcal{D}}(\mathbb{D}_{\mathcal{D}}(\mathfrak{G}_{\lambda}), S)$$

$$= \mathsf{Hom}_{\mathcal{D}}(\mathbb{D}_{\mathcal{D}}(\mathcal{M} \otimes_{\mathcal{A}} \mathcal{N}_{\lambda}), S)$$

 $= \operatorname{\mathsf{Hom}}(\mathbb{D}_{\mathcal{A}}(\mathcal{N}_{\lambda}) \otimes_{\mathbb{D}} \mathcal{M}', S)$ by the Intertwining Theorem

$$= \operatorname{\mathsf{Hom}}(\mathbb{D}_A(\mathfrak{N}_\lambda), \operatorname{\mathsf{Hom}}_{\mathfrak{D}}(\mathfrak{M}', S))$$
 by adjunction.

In particular, $0 \neq Z = \operatorname{Hom}_{\mathbb{D}}(\mathbb{M}', S)$. But one can prove that each non-zero fin gen submodule Z' of Z lies in $\mathbb{O}^{\mathrm{sph,op}}$ and is also δ -torsion.

This contradicts Fact B.

Using these sorts of ideas, one gets strong relationships between the categories $\mathbb{O}^{\mathrm{sph}}$ and \mathbb{C} . For example, in order to pass from $\mathbb{D}(V)$ -modules to A_{κ} -modules we have:

Using these sorts of ideas, one gets strong relationships between the categories $\mathbb{O}^{\mathrm{sph}}$ and \mathbb{C} . For example, in order to pass from $\mathbb{D}(V)$ -modules to A_{κ} -modules we have:

Proposition: Assume that A_{κ} is simple. If L is a nonzero submodule of \mathfrak{G}_{λ} then

$$L^G \cong \mathsf{Hom}_{\mathfrak{D}(V)}(\mathfrak{M}, \ L) \ \neq \ 0.$$

Using these sorts of ideas, one gets strong relationships between the categories $\mathbb{O}^{\mathrm{sph}}$ and \mathbb{C} . For example, in order to pass from $\mathbb{D}(V)$ -modules to A_{κ} -modules we have:

Proposition: Assume that A_{κ} is simple. If L is a nonzero submodule of \mathcal{G}_{λ} then

$$L^{\mathsf{G}} \cong \mathsf{Hom}_{\mathfrak{D}(V)}(\mathfrak{M}, L) \neq 0.$$

In the other direction we have:

Theorem 9 (BNS): Assume that A_{κ} is simple. Then:

(1) \mathcal{G}_{λ} is both projective and injective as an object in \mathcal{C} .

Using these sorts of ideas, one gets strong relationships between the categories $\mathbb{O}^{\mathrm{sph}}$ and \mathbb{C} . For example, in order to pass from $\mathbb{D}(V)$ -modules to A_{κ} -modules we have:

Proposition: Assume that A_{κ} is simple. If L is a nonzero submodule of \mathfrak{G}_{λ} then

$$L^{\mathsf{G}} \cong \mathsf{Hom}_{\mathfrak{D}(V)}(\mathfrak{M}, L) \neq 0.$$

In the other direction we have:

Theorem 9 (BNS): Assume that A_{κ} is simple. Then:

(1) \mathcal{G}_{λ} is both projective and injective as an object in \mathcal{C} .

Generalisation. Everything we stated for the \mathcal{G}_{λ} also holds for $\mathcal{G}=\mathcal{M}\otimes_{A_{\kappa}}\mathcal{P}$, where \mathcal{P} a projective object in $\mathcal{O}^{\mathrm{sph}}$. This class includes the $\mathcal{G}_{\lambda}=\mathcal{M}\otimes_{A_{\kappa}}A_{\kappa}/A_{\kappa}\mathfrak{m}_{\lambda}$.

The correct context for these results is for the polar representations (G, V) of Dadok-Kac, since these are perhaps the most general class of representations for which one has an analogue $\mathbb{C}[V]^G \cong \mathbb{C}[\mathfrak{h}]^W$ of the Chevalley isomorphism.

The correct context for these results is for the polar representations (G, V) of Dadok-Kac, since these are perhaps the most general class of representations for which one has an analogue $\mathbb{C}[V]^G \cong \mathbb{C}[\mathfrak{h}]^W$ of the Chevalley isomorphism.

The correct context for these results is for the polar representations (G, V) of Dadok-Kac, since these are perhaps the most general class of representations for which one has an analogue $\mathbb{C}[V]^G \cong \mathbb{C}[\mathfrak{h}]^W$ of the Chevalley isomorphism.

A nice example of a polar rep. is the following. Let Q_ℓ denote the cyclic quiver with ℓ nodes. Set $V=V_{\ell,n}$ for representation space $V=\operatorname{Rep}(Q_\ell,n\mathfrak{d})$ for dimension vector $n\mathfrak{d}=(n,\ldots,n)$, regarded as a representation for $G=GL(n)^\ell$. Note that the Running Example can also be regarded as $V_{2,1}$.

The correct context for these results is for the polar representations (G, V) of Dadok-Kac, since these are perhaps the most general class of representations for which one has an analogue $\mathbb{C}[V]^G \cong \mathbb{C}[\mathfrak{h}]^W$ of the Chevalley isomorphism.

A nice example of a polar rep. is the following. Let Q_ℓ denote the cyclic quiver with ℓ nodes. Set $V=V_{\ell,n}$ for representation space $V=\operatorname{Rep}(Q_\ell,n\mathfrak{d})$ for dimension vector $n\mathfrak{d}=(n,\ldots,n)$, regarded as a representation for $G=GL(n)^\ell$. Note that the Running Example can also be regarded as $V_{2,1}$.

All our earlier results apply to $V_{\ell,n}$. In particular, Theorem 5 (saying that $[\mathcal{D}(V_{\ell,n})/\mathcal{D}(V_{\ell,n})\mu(\mathfrak{g})]^G\cong A_\kappa$ for some κ) is a result of Oblomkov and Gordon. The corresponding Harish-Chandra module \mathcal{G}_0 is quite striking. For n=1, \mathcal{G}_0 still has simple socle and top but has roughly $2^{\ell-1}$ δ -torsion subfactors.

The correct context for these results is for the polar representations (G, V) of Dadok-Kac, since these are perhaps the most general class of representations for which one has an analogue $\mathbb{C}[V]^G \cong \mathbb{C}[\mathfrak{h}]^W$ of the Chevalley isomorphism.

A nice example of a polar rep. is the following. Let Q_ℓ denote the cyclic quiver with ℓ nodes. Set $V=V_{\ell,n}$ for representation space $V=\operatorname{Rep}(Q_\ell,n\mathfrak{d})$ for dimension vector $n\mathfrak{d}=(n,\ldots,n)$, regarded as a representation for $G=GL(n)^\ell$. Note that the Running Example can also be regarded as $V_{2,1}$.

All our earlier results apply to $V_{\ell,n}$. In particular, Theorem 5 (saying that $[\mathcal{D}(V_{\ell,n})/\mathcal{D}(V_{\ell,n})\mu(\mathfrak{g})]^G\cong A_\kappa$ for some κ) is a result of Oblomkov and Gordon. The corresponding Harish-Chandra module \mathcal{G}_0 is quite striking. For n=1, \mathcal{G}_0 still has simple socle and top but has roughly $2^{\ell-1}$ δ -torsion subfactors.

The earlier results generalise to suitable polar reps. However those results are not as clean as the results for symmetric spaces, so I will skip them.

Thank you.