Support Varieties for Finite Tensor Categories

Sarah Witherspoon

Texas A&M University

Definition A **finite tensor category** \mathcal{C} is a locally finite k-linear abelian category with finitely many simple objects, enough projectives, and a bifunctor $\otimes : \mathcal{C} \times \mathcal{C} \to \mathcal{C}$ satisfying some conditions. There is a **unit object** 1 that is simple, and every object has both left and right duals. Assume $\operatorname{Hom}_{\mathcal{C}}(\mathbf{1},\mathbf{1})=k$, a field.

Definition A **finite tensor category** \mathcal{C} is a locally finite k-linear abelian category with finitely many simple objects, enough projectives, and a bifunctor $\otimes : \mathcal{C} \times \mathcal{C} \to \mathcal{C}$ satisfying some conditions. There is a **unit object** 1 that is simple, and every object has both left and right duals. Assume $\operatorname{Hom}_{\mathcal{C}}(\mathbf{1},\mathbf{1})=k$, a field.

Examples

(1) G - finite group, C = kG-mod

Definition A **finite tensor category** \mathcal{C} is a locally finite k-linear abelian category with finitely many simple objects, enough projectives, and a bifunctor $\otimes : \mathcal{C} \times \mathcal{C} \to \mathcal{C}$ satisfying some conditions. There is a **unit object** 1 that is simple, and every object has both left and right duals. Assume $\operatorname{Hom}_{\mathcal{C}}(\mathbf{1},\mathbf{1})=k$, a field.

Examples

- (1) G finite group, C = kG-mod
- (2) More generally, C = A-mod for a finite dimensional Hopf algebra A

Definition A **finite tensor category** \mathcal{C} is a locally finite k-linear abelian category with finitely many simple objects, enough projectives, and a bifunctor $\otimes : \mathcal{C} \times \mathcal{C} \to \mathcal{C}$ satisfying some conditions. There is a **unit object** 1 that is simple, and every object has both left and right duals. Assume $\operatorname{Hom}_{\mathcal{C}}(1,1) = k$, a field.

Examples

- (1) G finite group, C = kG-mod
- (2) More generally, C = A-mod for a finite dimensional Hopf algebra A
- (3) Benson-Etingof-Ostrik symmetric tensor categories

Module categories

Definition An **exact module category** \mathcal{M} over \mathcal{C} is a locally finite k-linear abelian category with a bifunctor $*: \mathcal{C} \times \mathcal{M} \to \mathcal{M}$, exact in the first argument and compatible with the structures of \mathcal{C} and \mathcal{M} , for which P*M is projective whenever P is projective. Assume \mathcal{M} has finitely many simple objects.

Examples

- (1) $\mathcal{M} = \mathcal{C}$ and * is \otimes
- (2) \mathcal{M} finite tensor category, $\mathcal{C} = Z(\mathcal{M})$ (the center of M), * is the forgetful functor $Z(\mathcal{M}) \to \mathcal{M}$ followed by \otimes
- (3) More generally, any C, \mathcal{M} for which \exists exact functor $C \to \mathcal{M}$, e.g. restriction functor from representation category of Hopf algebra to Hopf subalgebra

Hopf algebras

A **Hopf algebra** is an algebra A over a field k together with algebra homs. $\Delta:A\to A\otimes A,\ \varepsilon:A\to k$ and an algebra anti-hom. $S:A\to A$ satisfying some conditions.

Hopf algebras include:

- group algebras kG ($\Delta(g) = g \otimes g$ for all $g \in G$)
- universal enveloping algebras of Lie algebras $U(\mathfrak{g})$, restricted Lie algebras $(\Delta(x) = x \otimes 1 + 1 \otimes x \text{ for all } x \in \mathfrak{g})$
- quantum groups $U_q(\mathfrak{g})$, small quantum groups $u_q(\mathfrak{g})$

Their categories of modules are examples of tensor categories: If M, N are A-modules, then $M \otimes N$ is an A-module via Δ ; set $\mathbf{1} = k$, an A-module via the augmentation map $\varepsilon : A \to k$

Cohomology

 ${\mathcal C}$ - finite tensor category with tensor product \otimes and unit object ${f 1}$

Notation
$$\mathsf{H}^*(\mathcal{C}) := \mathsf{Ext}^*_{\mathcal{C}}(1,1) = \bigoplus_{n \geq 0} \mathsf{Ext}^n_{\mathcal{C}}(1,1)$$

where $\mathsf{Ext}^n_\mathcal{C}(1,1)$ consists of equivalence classes of n-extensions

$$1 \to X_{n-1} \to \cdots \to X_1 \to X_0 \to 1$$

of objects in C.

Similarly denote $H^*(M) := \operatorname{Ext}_{\mathcal{M}}^*(M, M)$ for objects M of \mathcal{M} , defined in terms of equivalence classes of n-extensions of M by M.

 $\bullet \ \ H^*(\mathcal{C}) := \mathsf{Ext}^*_{\mathcal{C}}(1,1)$ is a graded commutative algebra under cup product

- $\bullet \ \ H^*(\mathcal{C}) := \mathsf{E} \times \mathsf{t}^*_{\mathcal{C}}(1,1)$ is a graded commutative algebra under cup product
- ullet For all objects M of $\mathcal M$, the cohomology $\mathrm H^*(M):=\mathrm{Ext}^*_{\mathcal M}(M,M)$ is an $\mathrm H^*(\mathcal C)$ -module via "-*M"

- ullet $H^*(\mathcal{C}):= \operatorname{Ext}^*_{\mathcal{C}}(1,1)$ is a graded commutative algebra under cup product
- For all objects M of \mathcal{M} , the cohomology $\mathrm{H}^*(M) := \mathrm{Ext}^*_{\mathcal{M}}(M,M)$ is an $\mathrm{H}^*(\mathcal{C})$ -module via "-*M"

Conjecture

If C is a finite tensor category, then $H^*(C)$ is finitely generated, and $H^*(X)$ is a finitely generated $H^*(C)$ -module for all $X \in C$.

For those C for which the conjecture holds, it follows, by a theorem of Negron-Plavnik (2022), that $H^*(\mathcal{M})$ is a finitely generated $H^*(C)$ -module.

- \bullet $\mathsf{H}^*(\mathcal{C}):=\mathsf{Ext}^*_{\mathcal{C}}(1,1)$ is a graded commutative algebra under cup product
- For all objects M of \mathcal{M} , the cohomology $H^*(M) := \mathsf{Ext}^*_{\mathcal{M}}(M,M)$ is an $H^*(\mathcal{C})$ -module via "-*M"

Conjecture

If C is a finite tensor category, then $H^*(C)$ is finitely generated, and $H^*(X)$ is a finitely generated $H^*(C)$ -module for all $X \in C$.

For those C for which the conjecture holds, it follows, by a theorem of Negron-Plavnik (2022), that $H^*(\mathcal{M})$ is a finitely generated $H^*(C)$ -module.

Caution Analogous Hochschild cohomology of finite dimensional algebra not finitely generated in general.

Status of the conjecture

 $H^*(\mathcal{C})$ is known to be finitely generated etc. in case:

• C = A-mod for a fin. dim. cocommutative Hopf algebra A in positive characteristic (Friedlander-Suslin 1997, generalizing work of Golod 1959, Venkov 1959, Evens 1960, Friedlander-Parshall 1983)

Status of the conjecture

 $H^*(\mathcal{C})$ is known to be finitely generated etc. in case:

- C = A-mod for a fin. dim. cocommutative Hopf algebra A in positive characteristic (Friedlander-Suslin 1997, generalizing work of Golod 1959, Venkov 1959, Evens 1960, Friedlander-Parshall 1983)
- $C = u_q(\mathfrak{g})$ -mod for a small quantum group $u_q(\mathfrak{g})$ in characteristic 0 (Ginzburg-Kumar 1993, Bendel-Nakano-Parshall-Pillen 2010)

Status of the conjecture

 $H^*(\mathcal{C})$ is known to be finitely generated etc. in case:

- C = A-mod for a fin. dim. cocommutative Hopf algebra A in positive characteristic (Friedlander-Suslin 1997, generalizing work of Golod 1959, Venkov 1959, Evens 1960, Friedlander-Parshall 1983)
- $C = u_q(\mathfrak{g})$ -mod for a small quantum group $u_q(\mathfrak{g})$ in characteristic 0 (Ginzburg-Kumar 1993, Bendel-Nakano-Parshall-Pillen 2010)
- $\mathcal{C}=A$ -mod for many other classes of Hopf algebras (Gordon 2000, Mastnak-Pevtsova-Schauenburg-W 2010, Vay-Ştefan 2016, Drupieski 2016, Erdmann-Solberg-Wang 2018, Nguyen-Wang-W 2018, Friedlander-Negron 2018, Negron-Plavnik 2018, Negron 2021, Angiono-Andruskiewitsch-Pevtsova-W 2022, . . .)

Varieties for tensor categories

From now on, let \mathcal{C} be a finite tensor category and \mathcal{M} a module category for which $H^*(\mathcal{C})$ is finitely generated etc.

Varieties for tensor categories

From now on, let \mathcal{C} be a finite tensor category and \mathcal{M} a module category for which $H^*(\mathcal{C})$ is finitely generated etc.

 $\mathcal{C} \longrightarrow \mathsf{H}^*(\mathcal{C}) := \mathsf{Ext}^*_{\mathcal{C}}(1,1),$ a (graded) commut. algebra (and its maximal ideal spectrum)

Varieties for tensor categories

From now on, let \mathcal{C} be a finite tensor category and \mathcal{M} a module category for which $H^*(\mathcal{C})$ is finitely generated etc.

$$\mathcal{C} \longrightarrow \mathsf{H}^*(\mathcal{C}) := \mathsf{Ext}^*_{\mathcal{C}}(1,1),$$
 a (graded) commut. algebra (and its maximal ideal spectrum)

Object M of \mathcal{M} \longrightarrow $H^*(\mathcal{C})$ -module $H^*(M) := \mathsf{Ext}^*_{\mathcal{M}}(M,M)$ (and the maximal ideal spectrum of the quotient of $H^*(\mathcal{C})$ by its annihilator)

From now on let \mathcal{C} be a finite tensor category for which $\mathsf{H}^*(\mathcal{C}) := \mathsf{Ext}^*_{\mathcal{C}}(1,1)$ is a finitely generated graded commutative algebra over the field k, and $\mathsf{H}^*(M) := \mathsf{Ext}^*_{\mathcal{M}}(M,M)$ is a finitely generated $\mathsf{H}^*(\mathcal{C})$ -module for each object M of \mathcal{M} .

From now on let \mathcal{C} be a finite tensor category for which $\mathsf{H}^*(\mathcal{C}) := \mathsf{Ext}^*_{\mathcal{C}}(1,1)$ is a finitely generated graded commutative algebra over the field k, and $\mathsf{H}^*(M) := \mathsf{Ext}^*_{\mathcal{M}}(M,M)$ is a finitely generated $\mathsf{H}^*(\mathcal{C})$ -module for each object M of \mathcal{M} .

Define support varieties:

From now on let \mathcal{C} be a finite tensor category for which $\mathsf{H}^*(\mathcal{C}) := \mathsf{Ext}^*_{\mathcal{C}}(1,1)$ is a finitely generated graded commutative algebra over the field k, and $\mathsf{H}^*(M) := \mathsf{Ext}^*_{\mathcal{M}}(M,M)$ is a finitely generated $\mathsf{H}^*(\mathcal{C})$ -module for each object M of \mathcal{M} .

Define **support varieties**:

$$\mathcal{V}(M) := \operatorname{Max}(H^*(\mathcal{C})/\operatorname{Ann}_{H^*(\mathcal{C})}H^*(M))$$

From now on let \mathcal{C} be a finite tensor category for which $\mathsf{H}^*(\mathcal{C}) := \mathsf{Ext}^*_{\mathcal{C}}(1,1)$ is a finitely generated graded commutative algebra over the field k, and $\mathsf{H}^*(M) := \mathsf{Ext}^*_{\mathcal{M}}(M,M)$ is a finitely generated $\mathsf{H}^*(\mathcal{C})$ -module for each object M of \mathcal{M} .

Define **support varieties**:

$$\mathcal{V}(M) := \operatorname{Max}(H^*(\mathcal{C})/\operatorname{Ann}_{H^*(\mathcal{C})}H^*(M))$$

See also Buan-Krause-Snashall-Solberg 2020, Nakano-Vashaw-Yakimov arXiv 2019, 2020, 2021, for tensor triangulated categories; Maurer 2019 for Lie superalgebras via relative cohomology

Varieties for tensor categories: example

 $\mathcal{C} = \mathcal{M} = kG$ -mod, where G is a cyclic group of prime order p and k has characteristic p:

 $H^*(\mathcal{C})$ is essentially k[x], so $\mathcal{V}(k)$ is a line.

More generally if M is the indecomposable kG-module with $\dim_k(M) = n$ and n < p, then $\mathcal{V}(M)$ is a line.

Complexity

The **complexity** cx(M) of an object M is the rate of growth of a minimal projective resolution P of M, $\cdots \to P_2 \to P_1 \to P_0 \to M \to 0$, as measured by length of the P_n .

Theorem (Bergh-Plavnik-W) Let M be an object of \mathcal{M} . Then $cx(M) = \dim \mathcal{V}(M)$.

Carlson's L_{ζ} -objects

Let $\Omega^n(1)$ be the nth syzygy of 1, and $\zeta \in H^n(\mathcal{C}) \cong \operatorname{Hom}_{\mathcal{C}}(\Omega^n(1), 1)$, nonzero. Since 1 is simple, there is an object L_{ζ} and a short exact sequence

$$0 o L_{\zeta} \longrightarrow \Omega^n(1) \stackrel{\zeta}{\longrightarrow} 1 o 0.$$

Carlson's L_{ζ} -objects

Let $\Omega^n(1)$ be the nth syzygy of 1, and $\zeta \in H^n(\mathcal{C}) \cong \operatorname{Hom}_{\mathcal{C}}(\Omega^n(1), 1)$, nonzero. Since 1 is simple, there is an object L_{ζ} and a short exact sequence

$$0 o L_{\zeta} \longrightarrow \Omega^n(1) \stackrel{\zeta}{\longrightarrow} 1 o 0.$$

Theorem (Bergh-Plavnik-W) For every object M of \mathcal{M} ,

$$\mathcal{V}(L_{\zeta} * M) = \mathcal{V}(L_{\zeta}) \cap \mathcal{V}(M),$$

and $\mathcal{V}(L_{\zeta}) = Z(\zeta) := \text{Max}(H^*(\mathcal{C})/(\zeta)).$

Module product property

$$\mathcal{V}(X*M) \stackrel{?}{=} \mathcal{V}(X) \cap \mathcal{V}(M)$$

Module product property

$$\mathcal{V}(X * M) \stackrel{?}{=} \mathcal{V}(X) \cap \mathcal{V}(M)$$

Remark This is known to be an equality when $\mathcal{C}=\mathcal{M}=A$ -mod for a cocommutative Hopf algebra A (Friedlander-Pevtsova 2005) and for some quantum groups A (Negron-Pevtsova arXiv 2020, Nakano-Vashaw-Yakimov arXiv 2020).

Module product property

$$\mathcal{V}(X * M) \stackrel{?}{=} \mathcal{V}(X) \cap \mathcal{V}(M)$$

Remark This is known to be an equality when $\mathcal{C}=\mathcal{M}=A$ -mod for a cocommutative Hopf algebra A (Friedlander-Pevtsova 2005) and for some quantum groups A (Negron-Pevtsova arXiv 2020, Nakano-Vashaw-Yakimov arXiv 2020).

In general, it is only known to be an equality when $X=L_{\zeta}$ for some ζ .

It is known **not** to be an equality for some modules of some noncocommutative Hopf algebras (Benson-W 2014, Plavnik-W 2018).

Module product property: reduction to complexity 1

Theorem (Bergh-Plavnik-W) Let C be a *braided* finite tensor category with finitely generated cohomology etc., M an exact module category. TFAE:

(i) $\mathcal{V}(X * M) = \mathcal{V}(X) \cap \mathcal{V}(M)$ for all objects X, M.

(ii) $\mathcal{V}(X*M) = \mathcal{V}(X) \cap \mathcal{V}(M)$ for all objects X, M of complexity 1.

Module product property: reduction to complexity 1

Theorem (Bergh-Plavnik-W) Let C be a *braided* finite tensor category with finitely generated cohomology etc., M an exact module category. TFAE:

(i) $\mathcal{V}(X * M) = \mathcal{V}(X) \cap \mathcal{V}(M)$ for all objects X, M.

(ii) $\mathcal{V}(X*M) = \mathcal{V}(X) \cap \mathcal{V}(M)$ for all objects X, M of complexity 1.

Remark

 $\mathcal{V}(X*M)\subseteq\mathcal{V}(X)\cap\mathcal{V}(M)$ follows from defins of actions and braiding.

Module product property: reduction to complexity 1

Thm TFAE: (i) $\mathcal{V}(X*M) = \mathcal{V}(X) \cap \mathcal{V}(M)$ for all X, M. (ii) $\mathcal{V}(X*M) = \mathcal{V}(X) \cap \mathcal{V}(M)$ for all X, M of complexity 1.

Idea of proof that (ii) implies (i): Assume $cx(X) \ge 1$, $cx(M) \ge 1$. Induction on cx(X) + cx(M); (ii) is case cx(X) + cx(M) = 2.

Case $\operatorname{cx}(M) \geq 2$: Reduce to case $\mathcal{V}(M) = Z(\mathfrak{p})$ for a minimal prime \mathfrak{p} . Reduce complexity: $\exists \ \zeta_i \in \operatorname{H}^*(\mathcal{C})$ with $\operatorname{cx}(L_{\zeta_i} * M) = \operatorname{cx}(M) - 1$ and $(a) \ \mathcal{V}(M) = \cup_i \mathcal{V}(L_{\zeta_i} * M)$. By induction, $(b) \ \mathcal{V}(X * (L_{\zeta_i} * M)) = \mathcal{V}(X) \cap \mathcal{V}(L_{\zeta_i} * M)$.

Combining (a) and (b): $\mathcal{V}(X) \cap \mathcal{V}(M) \stackrel{(a)}{=} \mathcal{V}(X) \cap (\cup_i \mathcal{V}(L_{\zeta_i} * M)) \stackrel{(b)}{=} \cup_i \mathcal{V}(X * (L_{\zeta_i} * M)) \stackrel{(c)}{\subseteq} \mathcal{V}(X * M),$ (c) by properties of * and varieties.

Let \mathcal{C} be a finite tensor category, \mathcal{M} an exact module category.

(1) Is $H^*(C)$ finitely generated?

Let \mathcal{C} be a finite tensor category, \mathcal{M} an exact module category.

(1) Is $H^*(C)$ finitely generated? (Known to be true for many classes of examples, unknown in general.)

Let \mathcal{C} be a finite tensor category, \mathcal{M} an exact module category.

(1) Is $H^*(\mathcal{C})$ finitely generated? (Known to be true for many classes of examples, unknown in general.)

This opens the door to support varieties with good properties.

Let \mathcal{C} be a finite tensor category, \mathcal{M} an exact module category.

(1) Is $H^*(\mathcal{C})$ finitely generated? (Known to be true for many classes of examples, unknown in general.)

This opens the door to support varieties with good properties.

(2) Is
$$\mathcal{V}(X * M) = \mathcal{V}(X) \cap \mathcal{V}(M)$$
?

Let \mathcal{C} be a finite tensor category, \mathcal{M} an exact module category.

(1) Is $H^*(C)$ finitely generated? (Known to be true for many classes of examples, unknown in general.)

This opens the door to support varieties with good properties.

(2) Is $\mathcal{V}(X*M) = \mathcal{V}(X) \cap \mathcal{V}(M)$? (Known to be true in some settings; known not to be true in others; unknown in general; for \mathcal{C} braided, reduced to objects of complexity 1.)