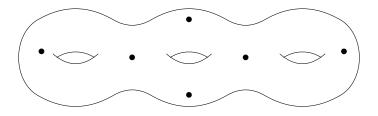
Deformations of gentle A_{∞} -algebras and some applications

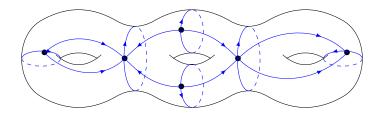
Raf Bocklandt (joint with Jasper van de Kreeke)

24 June 2022

A surface with marked points (S, M)



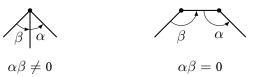
An arc collection ${\cal A}$



The gentle algebra Gtl_A

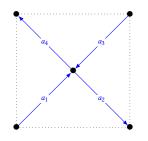
The gentle algebra $\mathrm{Gtl}_{\mathcal{A}}$ associated to an arc collection \mathcal{A} is the path algebra of a quiver Q with relations

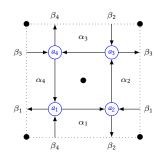
- The vertices of *Q* are 1-1 with the arcs.
- The arrows of *Q* are 1-1 with the angles of the polygons.
- The product of two consecutive angles in a polygon is zero.



• Each arrow gets a \mathbb{Z}_2 -degree.

An example of a gentle algebra





A_{∞} -algebras

Definition

An A_{∞} -algebra is a graded vector space A^{\bullet} with a collection of maps $\mu^i:A[1]^{\otimes i}\to A[1]$ of degree 1 with $i=1,2,\cdots$ such that the identities

$$[\mathbf{M}_{\mathbf{n}}] \qquad \sum_{\substack{r+s+t=n\\r,t\geq 0,s>0}} \mu^{r+t+1} \circ (\mathbf{1}^{\otimes r} \otimes \mu^{s} \otimes \mathbf{1}^{\otimes t}) = 0$$

hold for all $n \ge 1$. The formula can be graphically represented as

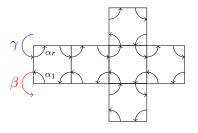
where the sum is over all rooted trees with *n* leaves and two nodes.

Representation theory of A_{∞} -algebras

Just like for ordinary algebras there are notions of

- A_{∞} -modules.
- Perfect Complexes (a.k.a. twisted complexes).
- The (Derived) Category of Perfect complexes is a triangulated category.
- Derived Morita equivalences.

An A_{∞} -structure on the gentle algebra using 'tree-gons'



$$\mu(\beta\alpha_1,\ldots,\alpha_r)=\pm\beta$$

$$\mu(\alpha_1,\ldots,\alpha_r\gamma)=\pm\gamma$$

Gentle A_{∞} -algebras as surface invariants

Theorem (B., Haiden-Katzarkov-Kontsevich)

- The products above turn Gtl_A into an A_∞ -algebra.
- Two arc collections of the same marked surface have Morita equivalent gentle A_{∞} -algebras.
- The derived category D(Gtl_A) is an algebraic model of the wrapped Fukaya category of the punctured surface.

Question: How to fill the punctures? Philosophy: Filling is deforming.

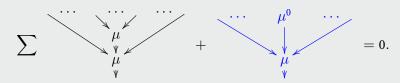
Curved A_{∞} -algebras

Definition

A *curved* A_{∞} -algebra is a graded vector space A^{\bullet} with a collection of maps $\mu^i:A[1]^{\otimes i}\to A[1]$ of degree 1 with $i=0,1,2,\cdots$ such that the identities

$$[\mathbf{M}_{\mathbf{n}}] \qquad \sum_{\substack{r+s+t=n\\r,t\geq 0,s\geq 0}} \mu^{r+t+1} \circ (\mathbf{1}^{\otimes r} \otimes \mu^{s} \otimes \mathbf{1}^{\otimes t}) = 0$$

hold for all $n \ge 0$. The formula can be graphically represented as



where the sum is over all rooted trees with n leaves and two nodes.

Representation theory of curved A_{∞} -algebras

You can make curved notions of modules and complexes but

- curved complexes have no homology theory $d^2 \neq 0$,
- curved modules do not give rise to a nice derived category,
- derived Morita equivalences are ill-defined.

We need curved A_{∞} -algebras in deformation theory

Morita-equivalent A_{∞} -algebras have the same deformation theory provided we allow curved deformations.

Example

 $\mathbb{C}[\![X]\!]$ with $\deg X=0$ and $\mathbb{C}[\xi]/(\xi)^2$ with $\deg \xi=1$ are derived Morita equivalent.

1 The curved A_{∞} -deformations of $\mathbb{C}[\xi]/(\xi)^2$ are parametrized by $(a_i)_{i\in\mathbb{N}}$ such that

$$\mu^i(\xi,\ldots,\xi)=a_i\cdot 1$$

2 The curved A_{∞} -deformations of $\mathbb{C}[\![X]\!]$ are parametrized by $(a_i)_{i\in\mathbb{N}}$ such that

$$\mu^{0}(1) = \sum_{i} a_{i}X^{i} \text{ and } \mu^{>1} = 0$$

The Hochschild complex for A_{∞} -algebras

Definition

If (A,μ) is a \mathbb{Z} - or \mathbb{Z}_2 -graded A_∞ -algebra over a semisimple algebra k, we define the A_∞ -Hochschild complex as

$$\operatorname{HC}^{ullet}(A) = \operatorname{\mathsf{Hom}}_k \left(\bigoplus_{i \geq 0} A[1]^{\otimes_k i}, A[1] \right)$$

On $HC^{\bullet}(A)$ we have a bracket of degree 0 and a differential of degree 1:

$$[\kappa,
u] = \sum_{\substack{\kappa \\ \nu \\ \psi}} \pm \sum_{\substack{\kappa \\ \kappa \\ \psi}}$$

Deformation theory and the Hochschild complex

- The A_{∞} Hochschild complex is a shift of the classical Hochschild complex such that $HC^1(A) = HC^2_{class}(A)$.
- The curved A_{∞} deformations are solutions to the Maurer-Cartan equation

$$d\nu + [\nu, \nu] = 0$$
 with $\nu \in HC^1(A) \otimes R$.

Equivalent deformations are in the same orbit under the infinitesimal action

$$\kappa \cdot \nu = d\kappa + [\kappa, \nu] + [\nu, \kappa] \text{ with } \kappa \in HC^0(A) \otimes R.$$

• Derived equivalent A_{∞} -algebras have quasi-isomorphic Hochschild complexes (Keller).

Hochschild cohomology of the Gentle A_{∞} -algebra

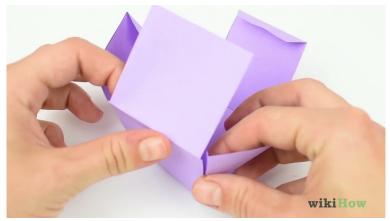
Theorem (B.-Van de Kreeke, Wong (1,2))

If the arc collection has no loops or 2-cycles then

- $\begin{array}{c} \bullet \hspace{0.1cm} \mathsf{HH}^{\mathrm{odd}}(A) \cong \mathbb{C} \oplus \bigoplus_{p \in M, i \geq 1} \nu_{p, i}^{o} \\ \cong Z(A) = \mathbb{C}[\ell_{p}|p \in M]/(\ell_{p}\ell_{q}|p \neq q \in M). \end{array}$
- 2 $\operatorname{HH}^{\operatorname{even}}(A) \cong \bigoplus_{a \in \mathcal{A} \setminus T} \mathbb{C} \nu_a \bigoplus_{p \in M, i \geq 1} \mathbb{C} \nu_{p,i}^e$
- **3** We have explicit representatives for each of the classes and formulas for the bracket and the cup product.
- The Hochschild complex is formal (quasi-isomorphic to its cohomology).

This implies that for each $r = r_0 + \sum r_{p,i} \nu_{p,i}^o$ there must be a deformation.

Orbigons and curved deformations



$$r_{\psi} = \prod_{\mathsf{internal}\;(p,i)} r_{p,i}$$
 $\mu^{\psi}(eta lpha_1, \dots, lpha_r) = \pm eta$ $\mu^{\psi}(lpha_1, \dots, lpha_r \gamma) = \pm \gamma$

Orbigons and curved deformations

Theorem (B.-Van de Kreeke)

For each $r=r_0+\sum r_{p,i}
u^o_{p,i}$ there is a curved deformation u_r satisfying

- $\nu_r^0 = r_0 + \sum r_{p,i} \ell_p^i$
- $\nu_r^k = \sum_{|\psi|=k} r_{\psi} \mu^{\psi}$

Advantage: all products are explicit (algorithmically determinable) Disadvantage: curved, so representation theory doesn't behave well.

Deforming complexes

- We can transport the deformation ν_r to the category D(A) by considering a complex of free modules as a 'complex' over the deformed algebra.
- **2** Problem: the complex becomes curved: $MC(\delta) \neq 0$.
- Solution: uncurving

$$(P,\delta) \to (P,\delta+\dots)$$

such that $MC(\delta + ...) = 0$. But not every object in D(A) can be uncurved.

- **4** Example: deform $A = \mathbb{C}[X]$ by adding curvature ϵX^n then
 - $\mathbb{C}[X] \xrightarrow{X} \mathbb{C}[X]$ can be uncurved as $\mathbb{C}[X] \xrightarrow{X \\ \epsilon X^{n-1}} \mathbb{C}[X]$
 - $\mathbb{C}[X] \xrightarrow{X-1} \mathbb{C}[X]$ cannot be uncurved.

Towards the relative Fukaya category

If all arrows have degree 1, we have a family of objects in D(A)

$$\mathcal{Z}_{\lambda} := A \xrightarrow{\sum_{\alpha \in \mathcal{Q}_1} \lambda_i \alpha} A$$

Theorem (Van de Kreeke)

Fix the deformation $\sum_{p} r_{p} \ell_{p}^{n_{p}}$. If the arc system is consistent then

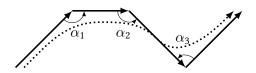
- **1** \mathcal{Z}_{λ} can be uncurved.
- **2** The minimal model of $\operatorname{End}_{D(A)}(\mathcal{Z}_{\lambda})$ has an uncurved deformation that matches the endomorphism ring of a certain generator of the relative Fukaya category.

Fukaya categories in all shapes and sizes

In general a Fukaya category has as objects Lagrangian submanifolds of a symplectic manifold and as morphisms linear combinations of intersection points.

- The wrapped Fukaya category describes the intersection theory of open curves on a punctured surface.
- The exact Fukaya category describes the intersection theory of closed curves on a punctured surface.
- The Fukaya category describes the intersection theory of closed curves on a closed surface (defined over a special field: the Novikov field).
- The relative Fukaya category describes the intersection theory
 of closed curves on a closed surface relative to a divisor (can be
 seen as a deformation of the exact Fukaya category).

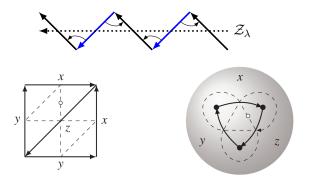
Basic idea: taking cones is stitching



can be represented by a twisted complex

$$(L,\delta) := \left(\bigoplus a_j[i_j], \sum_{j=1}^{k-1} \alpha_u\right).$$

Basic idea: taking cones is stitching



Koszul duality

• If $A = k\langle\!\langle X \rangle\!\rangle/I$ is an augmented completed algebra then the Koszul dual is defined as $A^! = \operatorname{Ext}^{\bullet}(k,k)$.

E.g.
$$A = \mathbb{C}[X, Y] \implies A^! = \mathbb{C}[\xi, \eta]/(\xi^2, \eta^2, \xi \eta + \eta \xi)$$

2 The degree n coefficients of the relations of A are encoded in the higher products of A! (Lu-Palmieri-Wu-Zhang)

$$r = \lambda X_{i_1} \dots X_{i_k} + \dots \iff \mu_{A!}(\xi_{i_k}, \dots, \xi_{i_1}) = \lambda \rho + \dots$$

3 We can reconstruct a resolution for k as an A-module using $A^!$: $(A \otimes A^!, d)$ with

$$d(1 \otimes u) = \lambda X_{i_1} \dots X_{i_k} \otimes v + \dots \iff \mu_{A!}(\xi_{i_k}, \dots, \xi_{i_1}, v) = \lambda u + \dots$$

4 Starting from $A^!$ we can get A and a resolution for k.

'Koszul duality' with curvature (after Cho-Hong-Lau)

- **1** If $A^!$ is \mathbb{Z}_2 -graded then $\mu(\dots) = \lambda 1 + \dots$
- **3** There is a relation dual to 1, keep it aside and call it W and group the relations dual to $[A^!]^2$ in R.
- **1** Construct $A = T_k[A^!]^{1*}/R$ then W is a central element in A and $(A \otimes A^!, d)$ satisfies $d^2 = W$.
- **5** Starting from $A^!$ we can get (A, W) and a matrix factorization for k.

'Koszul duality' for \mathcal{Z}_λ over the bowling ball

For the $(S^2, \{p_1, p_2, p_3\})$ and deformation $r = r_1 \ell_1^3 + r_2 \ell_2^3 + r_2 \ell_3^3$.

- **1** \mathcal{Z}_{-1} over the undeformed (A, μ) : $(\mathbb{C}[X, Y, Z], XYZ)$
- $2 \hspace{-.1cm} \mathcal{Z}_{\lambda} \text{ over the undeformed } (A,\mu) \hspace{-.1cm} : (\mathbb{C}_{q_{\lambda}} [\![X,Y,Z]\!], XYZ)$
- 3 \mathcal{Z}_{-1}^{uc} over the deformed $(A, \mu + \nu_r)$: $(\mathbb{C}[X, Y, Z], XYZ + a_rX^3 + b_rY^3 + c_rZ^3)$
- **4** $\mathcal{Z}_{\lambda}^{uc}$ over the deformed $(A, \mu + \nu_r)$: $(\widehat{\operatorname{Skl}_{\lambda,r}}, W_{\lambda,r})$

'Koszul duality' for \mathcal{Z}_λ in general

Theorem (Cho-Hong-Lau)

 \mathcal{Z}_{-1} over the undeformed $(Gtl_{\mathcal{A}}, \mu)$ gives the completed Jacobi algebra with its standard central element.

Theorem (Van de Kreeke)

If the arc collection is consistent then \mathcal{Z}_{-1}^{uc} ($\mathcal{Z}_{\lambda}^{uc}$) over the deformed $(Gtl_{\mathcal{A}}, \mu + \nu_r)$ gives a flat family of Calabi-Yau deformations of the completed (quantum) Jacobi algebra.

And finally...

