Local Forms of Noncommutative Functions

Michael Wemyss

Paul Smith Conference, Seattle, 24th June 2022.

(joint with Gavin Brown)

Plan of Talk

- 1. Singularity Theory: commutative and noncommutative
- 2. The proposal, dimension and numerics
- 3. Main results, and ADE
- 4. Geometric Consequences

What is Singularity Theory?

To classify (even smooth points), you need to work suitably locally.

...so work in the commutative power series ring $\mathbb{C}[x_1,\ldots,x_d]$. Similar to the polynomial ring, but allow infinite sums

$$f = \lambda_1 + \lambda_2 x + \lambda_3 y + \lambda_4 x y + \dots$$

What is Singularity Theory?

To classify (even smooth points), you need to work suitably locally.

...so work in the commutative power series ring $\mathbb{C}[x_1,\ldots,x_d]$. Similar to the polynomial ring, but allow infinite sums

$$f = \lambda_1 + \lambda_2 x + \lambda_3 y + \lambda_4 x y + \dots$$

Singularity Theory (à la Arnold)

Classify all $f \in \mathbb{C}[x_1, \ldots, x_d]$, up to specified isomorphism, satisfying some fixed numerical criteria, and produce theory for when classification is not possible.

Key Example: Simple Singularities

Define $f \in \mathbb{C}[\![x_1,\ldots,x_d]\!] = \mathbb{C}[\![x]\!]$ to be a simple singularity if $\#\{I \mid I \text{ proper ideal of } \mathbb{C}[\![x]\!] \text{ with } f \in I^2\} < \infty.$

Key Example: Simple Singularities

Define $f \in \mathbb{C}[\![x_1,\ldots,x_d]\!] = \mathbb{C}[\![x]\!]$ to be a simple singularity if $\#\{I \mid I \text{ proper ideal of } \mathbb{C}[\![x]\!] \text{ with } f \in I^2\} < \infty.$

Theorem

If f is a simple singularity, then up to relabelling the variables $z_1, \ldots z_{d-2}, x, y$, and up to isomorphism, f is one of

$$A_{n} z_{1}^{2} + \ldots + z_{d-2}^{2} + x^{2} + y^{n+1} n \ge 1$$

$$D_{n} z_{1}^{2} + \ldots + z_{d-2}^{2} + x^{2}y + y^{n-1} n \ge 4$$

$$E_{6} \mathbf{z}^{2} + x^{3} + y^{4}$$

$$E_{7} \mathbf{z}^{2} + x^{3} + xy^{3}$$

$$E_{8} \mathbf{z}^{2} + x^{3} + y^{5}$$

NC Change in View

Consider instead the formal *noncommutative* power series ring $\mathbb{C}\langle\langle x_1,\ldots,x_d\rangle\rangle$. Basically the same as the free algebra in d variables, except now allow infinite sums

$$f = \lambda_1 + \lambda_2 x + \lambda_3 y + \lambda_4 x y + \lambda_5 y x + \dots$$

(the complete path algebra of the d-loop quiver)

But: when are $f, g \in \mathbb{C}\langle\langle x_1, \dots, x_d \rangle\rangle$ isomorphic? And what are the numerical criteria?

Jacobi Algebras

Given any $f \in \mathbb{C}\langle\langle x_1, \dots, x_d \rangle\rangle$, we can cyclically differentiate it with respect to any variable. For example

$$\delta_x(x^3y) = xxy + xyx + yxx$$
, and $\delta_y(x^3y) = xxx$.

Jacobi Algebras

Given any $f \in \mathbb{C}\langle\langle x_1, \dots, x_d \rangle\rangle$, we can cyclically differentiate it with respect to any variable. For example

$$\delta_x(x^3y) = xxy + xyx + yxx$$
, and $\delta_y(x^3y) = xxx$.

Definition

Given any $f \in \mathbb{C}\langle\!\langle x_1, \dots, x_d \rangle\!\rangle$, the Jacobi algebra is

$$\operatorname{Jac}(f) = \frac{\mathbb{C}\langle\langle x_1, \ldots, x_d \rangle\rangle}{((\delta_1 f, \ldots, \delta_d f))}.$$

Favourite Example: $f = x^4 + xy^2 \in \mathbb{C}\langle x, y \rangle$ gives

$$\frac{\mathbb{C}\langle\!\langle x,y\rangle\!\rangle}{((4x^3+y^2,xy+yx))}.$$

Small Digression: what is dimension?

Gelfand–Kirillov dimension is problematic: $GKdim \mathbb{C}[\![x]\!] = \infty$.

Small Digression: what is dimension?

Gelfand–Kirillov dimension is problematic: GKdim $\mathbb{C}[\![x]\!] = \infty$. But $\mathfrak{J}\mathrm{ac}(f)$ is local, with Jacobson radical \mathfrak{J} , giving intrinsic filtration

$$\mathcal{J}ac(f) \supseteq \mathfrak{J} \supseteq \mathfrak{J}^2 \supseteq \ldots$$

Definition

JRdim $\Im ac(f)$ is the growth rate of this chain, namely

 $\inf\left\{r\in\mathbb{R}\mid\text{for some }c\in\mathbb{R},\text{ dim }\Im\mathrm{ac}(f)/\mathfrak{J}^n\leq cn^r\text{ for every }n\in\mathbb{N}\right\}.$

Calibration: $JRdim \mathbb{C}[\![x]\!] = 1$, and further $JRdim \mathcal{J}ac(f) = 0$ is equivalent to $\mathcal{J}ac(f)$ being a finite dimensional algebra.

Noncommutative Singularity Theory

Write $f \cong g$ to mean $\mathcal{J}ac(f) \cong \mathcal{J}ac(g)$. With ring $\mathbb{C}\langle\langle x_1, \ldots, x_d\rangle\rangle$ and equivalence relation \cong fixed, aim of singularity theory remains: classify all elements f satisfying some numerical criteria.

Noncommutative Singularity Theory

Write $f \cong g$ to mean $\mathcal{J}ac(f) \cong \mathcal{J}ac(g)$. With ring $\mathbb{C}\langle\langle x_1, \ldots, x_d\rangle\rangle$ and equivalence relation \cong fixed, aim of singularity theory remains: classify all elements f satisfying some numerical criteria.

Problem

For every $n \ge 0$, produce a set of elements S_n which realise *every* Jacobi algebra of JR-dimension n, up to isomorphism.

Key: We insist that the elements of S_n should be a *normal form*, namely if $f, g \in S_n$ with $f \neq g$, then $\Im ac(f) \ncong \Im ac(g)$.

Calibration: \mathcal{S}_0 gives complete list of finite dimensional Jacobi algebras, with no repetitions.

The Proposal

...for small n we propose that such a classification is desirable, and:

- 1. ...a classification is in fact possible! (c.f. Arnold)
- 2. ...there are no moduli. Just very few countable families.
- 3. ...the classification is ADE.
- 4. ...this algebraic classification *is* (and implies) the classification of flops, and of crepant divisorial contractions to curves.

Numerical Criteria

For $m \ge 1$, the *mth corank of f* is defined to be

$$\operatorname{Crk}_m(f) = \dim_{\mathbb{C}} \left(\frac{\mathfrak{J}^m}{\mathfrak{J}^{m+1}} \right),$$

where \mathfrak{J} is the Jacobson radical of $\mathfrak{J}ac(f)$.

Numerical Criteria

For $m \ge 1$, the *mth corank of f* is defined to be

$$\operatorname{Crk}_m(f) = \dim_{\mathbb{C}} \left(\frac{\mathfrak{J}^m}{\mathfrak{J}^{m+1}} \right),$$

where \mathfrak{J} is the Jacobson radical of $\mathfrak{J}ac(f)$.

Theorem (Iyudu-Shkarin, Brown-W)

If $\operatorname{JRdim} \operatorname{Jac}(f) \leq 1$, then one of the following holds

$\operatorname{\mathcal{C}rk}(f)$	$\operatorname{\mathcal{C}rk}_2(f)$
1	1
2	2
2	3

Numerical Criteria

For $m \ge 1$, the *mth corank of f* is defined to be

$$\operatorname{Crk}_m(f) = \dim_{\mathbb{C}} \left(\frac{\mathfrak{J}^m}{\mathfrak{J}^{m+1}} \right),$$

where \mathfrak{J} is the Jacobson radical of $\mathfrak{J}ac(f)$.

Theorem (Iyudu-Shkarin, Brown-W)

If $\operatorname{JRdim} \operatorname{\mathfrak{J}ac}(f) \leq 1$, then one of the following holds

Туре	$\operatorname{\mathcal{C}rk}(f)$	$\operatorname{\mathcal{C}rk}_2(f)$
Α	1	1
D	2	2
Е	2	3

Type A

...the case when $Crk(f) \leq 1$.

Type A

...the case when $\operatorname{Crk}(f) \leq 1$.

Proposition (really just the Splitting Lemma)

Suppose $f \in \mathbb{C}\langle\!\langle z_1, \dots, z_{d-2}, x, y \rangle\!\rangle$ with $\mathrm{Crk}(f) \leq 1$. Then either

$$f \cong \begin{cases} z_1^2 + \ldots + z_{d-2}^2 + x^2 \\ z_1^2 + \ldots + z_{d-2}^2 + x^2 + y^n & \text{for some } n \ge 2. \end{cases}$$

In all cases, JRdim $\Im ac(f) \leq 1$.

Theorem (Brown-W)

$$f \cong \begin{cases} \mathbf{z}^2 + xy^2 \\ \end{cases}$$

Theorem (Brown-W)

$$f \cong \begin{cases} \mathbf{z}^2 + xy^2 + x^{even} \\ \end{cases}$$

Theorem (Brown-W)

$$f \cong \begin{cases} \mathbf{z}^2 + xy^2 & + x^{odd} \\ \end{cases}$$

Theorem (Brown-W)

$$f \cong \begin{cases} \mathbf{z}^2 + xy^2 + x^{even} + x^{odd} \end{cases}$$

Theorem (Brown-W)

$$f \cong \begin{cases} \mathbf{z}^2 + xy^2 \\ \end{cases}$$

Theorem (Brown-W)

Theorem (Brown-W)

$$f \cong \begin{cases} \mathbf{z}^2 + xy^2 \\ \mathbf{z}^2 + xy^2 + x^{2m+1} & \text{with } m \ge 1 \\ \mathbf{z}^2 + xy^2 + x^{2n} & \text{with } n \ge 2 \end{cases}$$

Theorem (Brown-W)

$$f \cong \begin{cases} \mathbf{z}^{2} + xy^{2} \\ \mathbf{z}^{2} + xy^{2} + x^{2m+1} & \text{with } m \ge 1 \\ \mathbf{z}^{2} + xy^{2} + x^{2n} & \text{with } n \ge 2 \\ \mathbf{z}^{2} + xy^{2} + x^{2n} + x^{2m+1} & \text{with } n \ge 2, \ n \le m \end{cases}$$

Theorem (Brown-W)

$$f \cong \begin{cases} \mathbf{z}^2 + xy^2 \\ \mathbf{z}^2 + xy^2 + x^{2m+1} & \text{with } m \ge 1 \\ \mathbf{z}^2 + xy^2 + x^{2n} & \text{with } n \ge 2 \\ \mathbf{z}^2 + xy^2 + x^{2n} + x^{2m+1} & \text{with } n \ge 2, \ n \le m \\ \mathbf{z}^2 + xy^2 + x^{2m+1} + x^{2n} & \text{with } m \ge 1, \ n \ge m+1. \end{cases}$$

Theorem (Brown-W)

$$f \cong \begin{cases} \mathbf{z}^2 + xy^2 \\ \mathbf{z}^2 + xy^2 + x^{2m+1} & \text{with } m \ge 1 \\ \mathbf{z}^2 + xy^2 + x^{2n} & \text{with } n \ge 2 \\ \mathbf{z}^2 + xy^2 + x^{2n} + x^{2m+1} & \text{with } n \ge 2, \ n \le m \le 2n - 2 \\ \mathbf{z}^2 + xy^2 + x^{2m+1} + x^{2n} & \text{with } m \ge 1, \ n \ge m + 1. \end{cases}$$

Theorem (Brown-W)

Suppose that $f \in \mathbb{C}\langle\langle z_1, \dots z_{d-2}, x, y \rangle\rangle$ with $\operatorname{Crk}(f) = 2$ and $\operatorname{Crk}_2(f) = 2$. Then either

$$f \cong \begin{cases} \mathbf{z}^2 + xy^2 \\ \mathbf{z}^2 + xy^2 + x^{2m+1} & \text{with } m \ge 1 \\ \mathbf{z}^2 + xy^2 + x^{2n} & \text{with } n \ge 2 \\ \mathbf{z}^2 + xy^2 + x^{2n} + x^{2m+1} & \text{with } n \ge 2, \ n \le m \le 2n - 2 \\ \mathbf{z}^2 + xy^2 + x^{2m+1} + x^{2n} & \text{with } m \ge 1, \ n \ge m + 1. \end{cases}$$

These are normal forms. All satisfy JRdim $\Im c(f) \leq 1$.

Theorem (Brown-W)

Suppose that $f \in \mathbb{C}\langle\!\langle z_1, \dots z_{d-2}, x, y \rangle\!\rangle$ with $\operatorname{Crk}(f) = 2$ and $\operatorname{Crk}_2(f) = 2$. Then either

$$f \cong \begin{cases} \mathbf{z}^2 + xy^2 \\ \mathbf{z}^2 + xy^2 + x^{2m+1} & \text{with } m \ge 1 \\ \mathbf{z}^2 + xy^2 + x^{2n} & \text{with } n \ge 2 \\ \mathbf{z}^2 + xy^2 + x^{2n} + x^{2m+1} & \text{with } n \ge 2, \ n \le m \le 2n - 2 \\ \mathbf{z}^2 + xy^2 + x^{2m+1} + x^{2n} & \text{with } m \ge 1, \ n \ge m + 1. \end{cases}$$

These are normal forms. All satisfy JRdim $\Im c(f) \leq 1$.

...there are no moduli!

Summary of families: JRdim 0 case

Theorem (Brown-W)

If $\dim_{\mathbb{C}} \mathfrak{J}ac(f) < \infty$, then $f \cong$ to one of the following

		Normal form	Conditions
Α	A_n	$\mathbf{z}^2 + x^2 + y^n$	$n \ge 2$
D	$D_{n,m}$ $D_{n,\infty}$	$\mathbf{z}^2 + xy^2 + x^{2n} + x^{2m-1}$ $\mathbf{z}^2 + xy^2 + x^{2n}$	$n, m \ge 2, m \le 2n - 1$ $n \ge 2$
Е	E _{6,n}	$z^{2} + x^{3} + xy^{3} + y^{n}$ $z^{2} + x^{3} + 0_{4}$	$n \ge 4$ (various cases)

Summary of families: JRdim 1 case

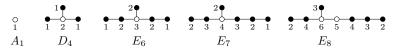
Theorem (Brown-W)

If $\operatorname{JRdim} \operatorname{\it Jac}(f) = 1$, then $f \cong \operatorname{to}$ one of the following

		Normal form	Conditions
Α	A_{∞}	$\mathbf{z}^2 + x^2$	
D	$D_{\infty,m} \ D_{\infty,\infty}$	$\mathbf{z}^2 + xy^2 + x^{2m-1}$ $\mathbf{z}^2 + xy^2$	$m \ge 2$
E	$E_{6,\infty}$	$\mathbf{z}^2 + x^3 + xy^3$ $\mathbf{z}^2 + x^3 + 0_4$	

Extracting ADE

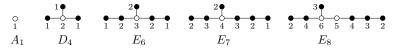
Consider the ADE Dynkin diagrams, with their highest roots.



To each, can associate the preprojective algebra Π .

Extracting ADE

Consider the ADE Dynkin diagrams, with their highest roots.



To each, can associate the preprojective algebra Π .

Definition

Write $\mathcal{Z}=Z(\mathfrak{J}\mathrm{ac}(f))$. We say that $\mathfrak{J}\mathrm{ac}(f)$ has Type X if for all finite dimensional vector spaces $V\subset\mathfrak{m}_{\mathcal{Z}}$ such that $V\twoheadrightarrow\mathfrak{m}_{\mathcal{Z}}/\mathfrak{m}_{\mathcal{Z}}^2$, there exists a Zariski open subset U of V such that $\mathfrak{J}\mathrm{ac}(f)/(u)\cong e\Pi e$ for all $u\in U$, where Π is the preprojective algebra of Type X, and e is an idempotent marked \circ above.

...a general hyperplane section $u \in \mathbb{Z}$ satisfies $\Im ac(f)/(u) \cong e \Pi e$.

Theorem (Brown-W)

Consider the previous normal forms, and define s as follows

Туре	Normal form	Conditions	S
Α	$\mathbf{z}^2 + x^2 + \varepsilon_1 y^n$	$n \in \mathbb{N}_{\geq 2} \cup \{\infty\}$	У
D	$\mathbf{z}^2 + xy^2 + \varepsilon_2 x^{2n} + \varepsilon_3 x^{2m-1}$	$m, n \in \mathbb{N}_{\geq 2} \cup \{\infty\}$	x^2
Е	$\mathbf{z}^2 + x^3 + xy^3 + \varepsilon_4 y^n$	$n\in\mathbb{N}_{\geq 4}$	g 6,n

where $g_{6,n}$ some explicit element.

Theorem (Brown-W)

Consider the previous normal forms, and define s as follows

Туре	Normal form	Conditions	S
Α	$\mathbf{z}^2 + x^2 + \varepsilon_1 y^n$	$n \in \mathbb{N}_{\geq 2} \cup \{\infty\}$	У
D	$\mathbf{z}^2 + xy^2 + \varepsilon_2 x^{2n} + \varepsilon_3 x^{2m-1}$	$m, n \in \mathbb{N}_{\geq 2} \cup \{\infty\}$	x^2
Е	$\mathbf{z}^2 + x^3 + xy^3 + \varepsilon_4 y^n$	$n \in \mathbb{N}_{\geq 4}$	g 6,n

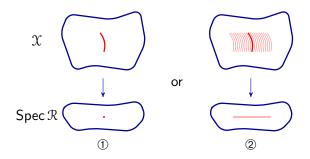
where $g_{6,n}$ some explicit element.

- 1. s is central in $\Im ac(f)$, with $\Im ac(f)/(s) \cong e \Pi e$, where Π has Type A_1 , D_4 , or E_6 , and e is the idempotent marked \circ .
- 2. In Type A and D, a generic central element g satisfies $\Im (f)/(g) \cong e \Pi e$.

Applications: why do we care?

Contraction algebras arise in the birational geometry.

Today: crepant contractions of two types:



Assumptions: X is smooth, and only one curve above the origin.

To this data associate the contraction algebra $A_{\rm con}$

Contraction Algebras

The contraction algebra $A_{\rm con}$ is defined using (noncommutative) deformation theory of the reduced fibre above the origin.

Details are unimportant, the only facts we need today are:

- 1. Since only one curve, A_{con} is a factor of $\mathbb{C}\langle\langle x,y\rangle\rangle$.
- 2. Since \mathfrak{X} is smooth, there exists f such that $A_{con} \cong \mathfrak{J}ac(f)$.

Contraction Algebras

The contraction algebra $A_{\rm con}$ is defined using (noncommutative) deformation theory of the reduced fibre above the origin.

Details are unimportant, the only facts we need today are:

- 1. Since only one curve, A_{con} is a factor of $\mathbb{C}\langle\langle x,y\rangle\rangle$.
- 2. Since \mathfrak{X} is smooth, there exists f such that $A_{con} \cong \mathfrak{J}ac(f)$.

Theorem (Donovan-W)

 $\text{Situation} \ \textcircled{1} \ (\mathsf{flopping}) \quad \Longleftrightarrow \quad \mathsf{JRdim} \ A_{\mathrm{con}} = 0.$

Situation @ (div \rightarrow curve) \iff JRdim $A_{con} = 1$.

...motivates studying f such that $JRdim \mathcal{J}ac(f) \leq 1$.

Classification Conjecture (Donovan–W) Contraction algebras classify.

Classification Conjecture (Donovan-W)

Contraction algebras classify. If $\mathcal{X}_1 \to \operatorname{Spec} \mathcal{R}_1$ and $\mathcal{X}_2 \to \operatorname{Spec} \mathcal{R}_2$ be 3-fold irreducible crepant contractions, with one-dimensional fibres, where \mathcal{X}_i are smooth, and \mathcal{R}_i are complete local. Denote their corresponding contraction algebras by $\operatorname{A}_{\operatorname{con}}$ and $\operatorname{B}_{\operatorname{con}}$. Then

$$\mathcal{R}_1 \cong \mathcal{R}_2 \iff \mathrm{A}_{\mathrm{con}} \cong \mathrm{B}_{\mathrm{con}}.$$

Classification Conjecture (Donovan-W)

Contraction algebras classify. If $\mathcal{X}_1 \to \operatorname{Spec} \mathcal{R}_1$ and $\mathcal{X}_2 \to \operatorname{Spec} \mathcal{R}_2$ be 3-fold irreducible crepant contractions, with one-dimensional fibres, where \mathcal{X}_i are smooth, and \mathcal{R}_i are complete local. Denote their corresponding contraction algebras by $\operatorname{A}_{\operatorname{con}}$ and $\operatorname{B}_{\operatorname{con}}$. Then

$$\mathcal{R}_1 \cong \mathcal{R}_2 \iff A_{con} \cong B_{con}.$$

Realisation Conjecture (Brown–W)

Contraction algebras=Jacobi algebras.

Classification Conjecture (Donovan–W)

Contraction algebras classify. If $\mathcal{X}_1 \to \operatorname{Spec} \mathcal{R}_1$ and $\mathcal{X}_2 \to \operatorname{Spec} \mathcal{R}_2$ be 3-fold irreducible crepant contractions, with one-dimensional fibres, where \mathcal{X}_i are smooth, and \mathcal{R}_i are complete local. Denote their corresponding contraction algebras by $\operatorname{A}_{\operatorname{con}}$ and $\operatorname{B}_{\operatorname{con}}$. Then

$$\mathcal{R}_1 \cong \mathcal{R}_2 \iff A_{con} \cong B_{con}.$$

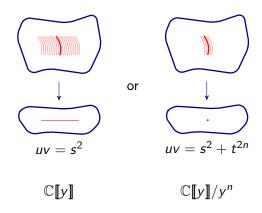
Realisation Conjecture (Brown-W)

Contraction algebras=Jacobi algebras. If $f \in \mathbb{C}\langle\!\langle x,y \rangle\!\rangle$ satisfies $\mathsf{JRdim}\, \mathfrak{Jac}(f) \leq 1$, then $\mathfrak{Jac}(f) \cong \mathrm{A}_{\mathrm{con}}$ for either a flopping contraction (JR zero), or div \rightarrow curve contraction (JR 1).

Type A

For Type A contractions, either:

 A_{con}



...these are precisely the Type A $\Im ac(f)$ from earlier.

All Type *D* are also geometric!

$$f\cong \begin{cases} xy^2 & \text{[Donovan-W] div}\rightarrow\text{curve} \\ xy^2+x^{2m+1} & \text{[Brown-W] div}\rightarrow\text{curve} \\ xy^2+x^{2n} & \text{[Aspinwall-Morrison] Laufer flops} \\ xy^2+x^{2n}+x^{2m+1} & \text{[BW, van Garderen, Kawamata] flops} \\ xy^2+x^{2m+1}+x^{2n} & \text{[van Garderen, Kawamata] flops} \end{cases}$$

...in all cases, in the corresponding geometric contraction, the elephant has type D singularities.

Corollary

The Realisation Conjecture is true, except possibly the only remaining case $f = x^3 + \text{higher}$.

Classification of Type D

Theorem (Brown-W)

Suppose that $f: \mathcal{X} \to \operatorname{Spec} \mathcal{R}$ is any smooth type D flop, or div \to curve contraction, one curve above the origin. Then

$$A_{con} \cong \mathcal{J}ac(f)$$

for some f on the previous slide.

...so all possible contraction algebras in Type D are now classified.

GV invariants

To every flop is an associated tuple of numbers (n_1, \ldots, n_6) called the Gopakumar–Vafa (GV) invariants.

..basically deform your flopping curve C into a disjoint union of (-1,-1) curves, and count those. It is a bit more refined than this: n_j equals the number of such curves with curve class j[C].

GV invariants

To every flop is an associated tuple of numbers (n_1, \ldots, n_6) called the Gopakumar–Vafa (GV) invariants.

..basically deform your flopping curve C into a disjoint union of (-1,-1) curves, and count those. It is a bit more refined than this: n_j equals the number of such curves with curve class j[C].

Upshot

Type D flops have GV invariants (a, b, 0, 0, 0, 0) = (a, b) for some $a, b \in \mathbb{N}$. Different flops can have the same GV invariants.

Question

What possible (a, b) can arise?

Corollary

For Type D flops, the only possible GV invariants (a, b) are:

(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)(5,1)(6,2)(6,3)(6,4)(6,5)(6,6)(7,2)(8,5)(8,6)(8,3)(8,4)(9,3)

(10,4)

(10,5)

(10,6)

Corollary

For Type D flops, the only possible GV invariants (a, b) are:

Corollary

For Type D flops, the only possible GV invariants (a, b) are:

Corollary

For Type D flops, the only possible GV invariants (a, b) are:

Corollary

For Type D flops, the only possible GV invariants (a, b) are:

Key: The obstruction to e.g. (5,2) existing is noncommutative.