Tensor triangular geometry in representation theory

Julia Pevtsova University of Washington, Seattle

S. Paul Smith' 65th birthday conference Advances, Directions and Interplay, Seattle, June 20, 2022

G - finite group; k - field V – vector space over k, G acts on V via k-linear transformations:

$$G \times V \longrightarrow V$$
.

tt-geometry

Equivalently, if $\dim_k V = n$,

$$G \longrightarrow \operatorname{Aut}_k(V) \cong \operatorname{GL}_n(k)$$

$$g \longmapsto (a_{ij}).$$

V is a representation of G $\operatorname{\mathsf{Rep}}_k G$ - the category of representations of G over k Tensor categories

00000

V, W - representations of G. dim V = n, dim W = m.

- **1** Addition. $V \oplus W$, dim = n + m. Action is coordinate-wise. In matrix form: g acts via a matrix A on V, and via a matrix *B* on *W*. Then *g* acts via the block matrix $\begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$ on $V \oplus W$.
- **2** Multiplication. $V \otimes W$, dim = nm. Action is diagonal:

$$g(v\otimes w)=gv\otimes gw$$

1 "Unit". There is a trivial 1-dimensional representation *k*.

$$V \otimes k \simeq k \otimes V \simeq V$$

"Laws". Associativity, distributivity.

For groups, we also have $V \otimes W \cong W \otimes V$.

 Rep_kG - symmetric (finite) tensor category

Another example of a symmetric tensor category: Qcoh(X).

Theorem (Maschke, 1898)

Let $G \to \operatorname{GL}_n(\mathbb{C})$ be a complex matrix representation of a finite group G, and assume that all matrices corresponding to the elements of the group have the form $\begin{pmatrix} A_1 & B \\ 0 & A_2 \end{pmatrix}$, where the dimension of A_1 is a fixed number r < n. Then the representation is equivalent to the one of the same form where all submatrices B are equal to D.

$$\left\{ \begin{array}{l} \text{Maschke's} \\ \text{theorem} \end{array} \right\} \quad \Rightarrow \quad \left\{ \begin{array}{l} \text{any f.d. complex representation} \\ \text{of a finite group G is a direct sum} \\ \text{of irreducible representations} \end{array} \right\}$$

 Rep_kG is semi-simple.

Stronger Maschke's thm: $\mathsf{Rep}_k G$ is semi-simple \Leftrightarrow char $k \not \mid \mid G \mid$.

REGULAR REPRESENTATION / GROUP ALGEBRA kG

kG is generated by $\{g\}_{g\in G}$ as a k-vector space. $\dim kG = |G|$. Multiplication is extended linearly from *G*; action of *G* is by left multiplication.

For
$$k = \mathbb{C}$$

Tensor categories

00000

$$kG = \bigoplus S_i^{a_i}$$

where S_i run through **all** irreducible representations of G.

REGULAR REPRESENTATION / GROUP ALGEBRA kG

kG is generated by $\{g\}_{g \in G}$ as a k-vector space. $\dim kG = |G|$. Multiplication is extended linearly from *G*; action of *G* is by left multiplication.

For
$$k = \mathbb{C}$$

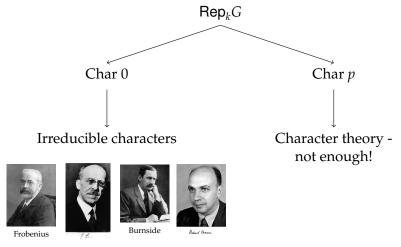
Tensor categories

00000

$$kG = \bigoplus S_i^{a_i}$$

where S_i run through **all** irreducible representations of G. The structure of $Rep_{k}G$:

- **1** Rep_kG is semisimple: all representations are direct sums of irreducibles
- 2 Irreducibles are direct summands of the free module *kG* (\Rightarrow projective)
- Every representation is a projective representation



tt-geometry

C. Curtis, "Pioneers of Representation Theory".

kG - group algebra; generated by $\{g \in G\}$ as k-vector space. Multiplication

$$kG \otimes kG \rightarrow kG \quad g \otimes h \mapsto gh$$

Diagonal map (comultiplication)

$$kG \to kG \otimes kG \quad g \to g \otimes g$$

Inverse

Tensor categories

$$kG \rightarrow kG \quad g \mapsto g^{-1}$$

kG - group algebra; generated by $\{g \in G\}$ as k-vector space. Multiplication

$$kG \otimes kG \rightarrow kG \quad g \otimes h \mapsto gh$$

tt-geometry

Diagonal map (comultiplication)

$$kG \to kG \otimes kG \quad g \to g \otimes g$$

Inverse

$$kG \rightarrow kG \quad g \mapsto g^{-1}$$

The tensor structure on the category Rep_kG is given by the diagonal map

$$g \rightarrow g \otimes g$$

Hopf algebra \mathfrak{u} is a k-vector space with product

 $\mathfrak{u} \otimes \mathfrak{u} \to \mathfrak{u}$,

tt-geometry

coproduct

$$\mathfrak{u} \to \mathfrak{u} \otimes \mathfrak{u}$$
,

coinverse (antipode)

$$\mathfrak{u} \to \mathfrak{u}$$

unit and counit

$$k \to \mathfrak{u}, \quad \mathfrak{u} \to k$$

+ compatibility conditions.

 \mathfrak{u} is a finite dimensional Hopf algebra if $\dim_k \mathfrak{u} < \infty$.

 $\mathsf{Rep}_k\mathfrak{u}$ - finite tensor category (not necessarily symmetric)

EXAMPLES

Tensor categories

- $\mathbf{0}$ $\mathfrak{u} = kG$, G finite group (or any group)
- $\mathcal{U}(\mathfrak{g})$ universal enveloping algebra of a Lie algebra \mathfrak{g}
- \circ char k = p. $\mathfrak{u}(\mathfrak{g})$ restricted enveloping algebra of a restricted Lie algebra \mathfrak{g} ; a finite Hopf quotient of $\mathcal{U}(\mathfrak{g})$.
- char k = p. G finite group scheme over k. $kG := k[G]^*$ linear dual to the ring of functions of G. Finite dimensional cocommutative Hopf algebra, incorporates finite groups and restricted Lie algebras
- **5** any k. G finite supergroup scheme. $kG = k[G]^*$ finite dimensional cocommutative Hopf superalgebra. (Slight lie! But allows to add $\Lambda^*(V)$ into the mix).
- **6** $k = \mathbb{C}$. $\mathcal{U}_q(\mathfrak{g})$ quantized enveloping algebras (quantum groups)
- $\delta k = \mathbb{C}$. $\mathfrak{u}_a(\mathfrak{g})$ Lusztig's small quantum groups: finite dimensional quotients of $U_q(\mathfrak{g})$ at roots of unity.

stab u

Tensor categories

Want to "measure" the non semisimplicity of $\mathsf{Rep}_k\mathfrak{u}$. Let $\langle \operatorname{proj} \mathfrak{u} \rangle$ be the *additive closure* of all direct summands of \mathfrak{u} (the subcategory of projective \mathfrak{u} -modules)

$$\operatorname{stab}\mathfrak{u}$$
 "=" $\operatorname{\mathsf{Rep}}_k\mathfrak{u}/\langle\operatorname{proj}\mathfrak{u}\rangle$

stabu

Tensor categories

Want to "measure" the non semisimplicity of $Rep_k u$. Let $\langle \text{proj } \mathfrak{u} \rangle$ be the *additive closure* of all direct summands of \mathfrak{u} (the subcategory of projective u-modules)

$$\operatorname{stab}\mathfrak{u}$$
 "=" $\operatorname{\mathsf{Rep}}_k\mathfrak{u}/\langle\operatorname{proj}\mathfrak{u}\rangle$

Formally, stab u is a category with objects - representations of u; but morphisms are adjusted:

$$\operatorname{Hom}_{\operatorname{stab} \mathfrak{u}}(V, W) := \frac{\operatorname{Hom}_{\mathfrak{u}}(V, W)}{\operatorname{PHom}_{\mathfrak{u}}(V, W)}$$

where

$$PHom_{\mathfrak{u}}(V, W) = \{f : V \to W \mid f \text{ factors through a projective} \}$$

Tensor categories

$$\operatorname{stab}\mathfrak{u}$$
 "=" $\operatorname{\mathsf{Rep}}_k\mathfrak{u}/\langle\operatorname{proj}\mathfrak{u}\rangle$

• If $\mathsf{Rep}_k \mathfrak{u}$ is semisimple (for example, $\mathfrak{u} = \mathbb{C}G$), then $\operatorname{stab} \mathfrak{u} = 0.$

2

$$\operatorname{stab}\mathfrak{u}$$
 "=" $\operatorname{\mathsf{Rep}}_k\mathfrak{u}/\langle\operatorname{proj}\mathfrak{u}\rangle$

• If $\mathsf{Rep}_k \mathfrak{u}$ is semisimple (for example, $\mathfrak{u} = \mathbb{C}G$), then $\operatorname{stab} \mathfrak{u} = 0$.

$$D^{perf}(\mathfrak{u}) \to D^b(\mathfrak{u}) \to \operatorname{stab} \mathfrak{u}$$

(Buchweitz, Rickard, Orlov) $\mathsf{Rep}_k \mathfrak{u} \text{ is semi-simple} \Leftrightarrow \mathrm{D}^{\mathrm{perf}}(\mathfrak{u}) \simeq \mathrm{D}^{\mathrm{b}}(\mathfrak{u}) \\ \mathrm{stab}\, \mathfrak{u} = \mathrm{Sing}\, \mathfrak{u}$

$$\operatorname{stab}\mathfrak{u}$$
 "=" $\operatorname{\mathsf{Rep}}_k\mathfrak{u}/\langle\operatorname{proj}\mathfrak{u}\rangle$

tt-geometry

- If $\mathsf{Rep}_k \mathfrak{u}$ is semisimple (for example, $\mathfrak{u} = \mathbb{C}G$), then $\operatorname{stab} \mathfrak{u} = 0$.
- $\mathrm{D}^{\mathrm{perf}}(\mathfrak{u}) o \mathrm{D}^{\mathrm{b}}(\mathfrak{u}) o \mathrm{stab}\,\mathfrak{u}$

(Buchweitz, Rickard, Orlov) $\mathsf{Rep}_k \mathfrak{u} \text{ is semi-simple} \Leftrightarrow \mathrm{D}^{\mathrm{perf}}(\mathfrak{u}) \simeq \mathrm{D}^{\mathrm{b}}(\mathfrak{u})$ $\mathrm{stab}\, \mathfrak{u} = \mathrm{Sing}\, \mathfrak{u}$

 stab u inherits all the operations from Rep_ku: sums, tensor products, unit + homological operations: syzygies/shifts, extensions/cones 2

$$\operatorname{stab}\mathfrak{u}$$
 "=" $\operatorname{\mathsf{Rep}}_k\mathfrak{u}/\langle\operatorname{proj}\mathfrak{u}\rangle$

tt-geometry

• If $\mathsf{Rep}_k \mathfrak{u}$ is semisimple (for example, $\mathfrak{u} = \mathbb{C}G$), then $\operatorname{stab} \mathfrak{u} = 0.$

$$D^{perf}(\mathfrak{u}) \to D^b(\mathfrak{u}) \to \operatorname{stab} \mathfrak{u}$$

(Buchweitz, Rickard, Orlov) $\mathsf{Rep}_k \mathfrak{u}$ is semi-simple $\Leftrightarrow \mathsf{D}^{\mathsf{perf}}(\mathfrak{u}) \simeq \mathsf{D}^{\mathsf{b}}(\mathfrak{u})$ $\operatorname{stab} \mathfrak{u} = \operatorname{Sing} \mathfrak{u}$

- \odot stab u inherits all the operations from Rep_ku: sums, tensor products, unit + homological operations: syzygies/shifts, extensions/cones
- \bullet u is a Frobenius algebra (projectives = injectives) \Rightarrow stab u is a tensor triangulated category

- Triangles. $V_1 \rightarrow V_2 \rightarrow V_3 \rightarrow$ Extensions of length 1 in stab u.
- Shift Syzygy: $V \hookrightarrow I(V) \twoheadrightarrow \Sigma V$

$$\Sigma:\operatorname{stab}\mathfrak{u}\to\operatorname{stab}\mathfrak{u}$$

• $V \otimes_k W$, coproduct in \mathfrak{u}

stab u is a tensor triangulated category Study stab u via tensor triangular geometry (tt-geometry)

TT-GEOMETRY

T - essentially small (symmetric) tensor triangulated category. $(T = \operatorname{stab} kG, T = \mathbb{D}^{\operatorname{perf}}(\operatorname{coh}(X)))$

Thick subcategory $\mathcal{C} \subset T$: full triangulated subcategory closed under direct summands.

Tensor ideal: $V \in \mathcal{C} \Rightarrow V \otimes W, W \otimes V \in \mathcal{C}$ for any N.

Prime tensor ideal: exercise:)

Define

 $\operatorname{Spec}_{Bal}\mathsf{T}$

as the set of prime ideals in T with Zariski topology.

TT-GEOMETRY

Tensor categories

T - essentially small (symmetric) tensor triangulated category. $(T = \operatorname{stab} kG, T = \mathbb{D}^{\operatorname{perf}}(\operatorname{coh}(X)))$

Thick subcategory $\mathcal{C} \subset T$: full triangulated subcategory closed under direct summands.

Tensor ideal: $V \in \mathcal{C} \Rightarrow V \otimes W, W \otimes V \in \mathcal{C}$ for any N.

Prime tensor ideal: exercise:)

Define

 $\operatorname{Spec}_{Bal}\mathsf{T}$

as the set of prime ideals in T with Zariski topology.

Balmer theory (2005): T is symmetric Non symmetric, non braided settings: Buan-Krause-Solberg; Nakano-Vashaw-Yakimov

 $\operatorname{Spec}_{Ral} \mathsf{T}$ effectively classifies thick tensor ideals in T . There is one-to-one order preserving correspondence:

$$\left\{ \begin{array}{c} \text{Thick tensor} \\ \text{ideals of T} \end{array} \right\} \quad \sim \quad \left\{ \begin{array}{c} \text{Subsets of } \operatorname{Spec}_{\textit{Bal}} \mathsf{T} \\ \text{closed under specialization} \end{array} \right\}$$

via the universal/abstract notion of support in tt-geometry

$$\mathcal{C} \longmapsto \bigcup_{V \in \mathcal{C}} \operatorname{supp}^{univ} V$$

tt-geometry

00000

$$\mathcal{C}_Z = \{ V \mid \operatorname{supp}^{univ} V \subset Z \} \longleftarrow Z$$

$$\operatorname{supp}^{univ}(V) = \{ \mathfrak{P} \in \operatorname{Spec}_{Bal} \mathsf{T} \mid V \not\in \mathfrak{P} \}$$

 $\operatorname{Spec}_{Bal}\mathsf{T}$ effectively classifies thick tensor ideals in T . There is one-to-one order preserving correspondence:

$$\left\{ \begin{array}{c} \text{Thick tensor} \\ \text{ideals of T} \end{array} \right\} \quad \sim \quad \left\{ \begin{array}{c} \text{Subsets of } \operatorname{Spec}_{\textit{Bal}} \mathsf{T} \\ \text{closed under specialization} \end{array} \right\}$$

via the universal/abstract notion of support in tt-geometry

$$\mathcal{C} \longmapsto \bigcup_{V \in \mathcal{C}} \operatorname{supp}^{univ} V$$

$$C_Z = \{V \mid \operatorname{supp}^{univ} V \subset Z\} \longleftarrow Z$$

$$\operatorname{supp}^{univ}(V) = \{ \mathfrak{P} \in \operatorname{Spec}_{Bal} \mathsf{T} \mid V \notin \mathfrak{P} \}$$

For $T = \operatorname{stab} \mathfrak{u}$, non semi-simple, $\operatorname{Spec}_{Rol} T$ classifies \mathfrak{u} -modules not up to direct sums (too hard!) but up to homological operations allowed in stab u.

Precursors/motivation:

Tensor categories

- Stable Homotopy Theory: Devinatz Hopkins Smith ('88)
- Commutative Algebra: $\mathbb{D}^{perf}(R mod)$, $\mathbb{D}(R mod)$, Hopkins ('87), Neeman ('92)
- Algebraic Geometry: $\mathbb{D}^{perf}(coh(X))$, Thomason ('97)
- Rep Theory of finite groups: stab kG, Benson Carlson -Rickard ('97)

EQUIVARIANT BALMER SPECTRUM

- Equivariant stable homotopy theory (Balmer Sanders' 17)
- **2** Perfect complexes on a stack $\mathbb{D}^{perf}([X/G])$: bounded derived category of perfect complexes of G-equivariant vector bundles on a (nice) scheme X. (P. Smith, A. Krishna ('09))

$$D^{\mathrm{perf}}([X/G]) \to D^{\mathrm{b}}([X/G]) \to \mathrm{Sing}[X/G]$$

Antibiotics Time Machines Are Hard to Build

page 1136

Tensor categories

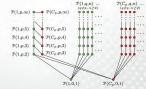
Fall Western Sectional Sampler

page 1142

Backlog of Mathematics Research Journals

page 1184

Biennial Overview of AMS Honors page 1200



See "An Invitation to Tensor-Triangular Geometry" (page 1143).

How to compute Balmer spectrum? Construct a "good" support theory (lavish)

 $V \in \operatorname{stab} \mathfrak{u} \to \operatorname{supp} V \in X$ - realizations of support.

Properties:

• $\operatorname{supp}(V) = \operatorname{supp}(\Sigma V)$ for all V in \mathcal{T} , and $\operatorname{supp}(0) = \emptyset$.

tt-geometry

- **⑤** For any exact triangle $V \to W \to V' \to \Sigma V$, we have $\operatorname{supp}(W) \subset (\operatorname{supp}(V) \cup \operatorname{supp}(V'))$
- **1 exhaustive**: All closed subsets $Y \subset X$ are realized as supports of objects in \mathcal{T} .
- **⑤** "Extend well" to the big stable category $\widetilde{\mathcal{T}} = \operatorname{Stab} \mathfrak{u}$. In particular, faithful: For $V \in \operatorname{Stab} \mathfrak{u}$,

$$\operatorname{supp} V = \emptyset \Leftrightarrow V \cong 0.$$

TENSOR PRODUCT PROPERTY

• supp $V \otimes W = \text{supp } V \cap \text{supp } W$.

TENSOR PRODUCT PROPERTY

• supp $V \otimes W = \text{supp } V \cap \text{supp } W$.

Remark

Tensor categories

- For general finite dimensional Hopf algebras the tensor product property is known to fail for the *cohomological* realization of supports - see Benson-Witherspoon, Plavnik-Witherspoon
- These counter-examples are in non-braided settings, whereas in all my examples of Hopf algebras the representation categories were braided.
- Yet, even in the study of braided categories, the non braided ones often arise naturally. In general, we weaken the "tensor product property" by asking for it to hold when *V* or *W* satisfies a certain centralizing condition.

REALIZATIONS OF SUPPORT THEORY

Tensor categories

- Cohomological support. $X = \text{Proj } H^*(\mathfrak{u}, k)$
- Elementary abelian p-groups: rank varieties (Carlson)
- Restricted Lie algebras: nullcone (Friedlander-Parshall)
- cocommutative f.d. Hopf algebras (finite groups schemes) π -supports (Friedlander-P.)
- finite supergroup schemes: hypersurface support and π -support (Benson-Iyengar-Krause-P.)
- **6** Lie super algebras $\mathfrak{gl}(n|m)$ in char 0 (Boe-Nakano-Kujawa)
- Complete intersections (commutative algebra): hypersurface support, support via Matrix factorizations (Eisenbud, Avramov-Buchweitz, Avramov-Iyengar). Applies to various "quantum" situations, in particular via the work on non-commutative MF by Cassidy-Conner-Kirkman-Moore (Negron-P., N. Courts)

SMALL OUANTUM GROUPS

G - almost simple algebraic group, $\mathfrak{g} = \operatorname{Lie} G$, *q* - primitive root of unity, ord(q) > h. $\mathfrak{u}_a(\mathfrak{g})$ - Lusztig's small quantum group

Conjecture (Ostrik'98)

$$V, W \in \mathsf{Rep}_{\mathbb{C}}\mathfrak{u}_q(\mathfrak{g})$$
,

$$\operatorname{supp}(M\otimes N)=\operatorname{supp} M\cap\operatorname{supp} N.$$

 $\mathfrak{u}_a(\mathfrak{g})$ - finite dimensional complex Hopf algebra with braided but highly non semi-simple representation category.

Can we compute the Balmer spectrum for $\operatorname{stab} \mathfrak{u}_q(\mathfrak{g})$?

Can we compute the Balmer spectrum for $\operatorname{stab}\mathfrak{u}_q(\mathfrak{g})$? No. But we can say something about it; via the "equivariant" approach:

$$\mathsf{Repu}_q(\mathfrak{g}) \cong \mathsf{Qcoh}[G/G_q]$$

Can we compute the Balmer spectrum for stab $\mathfrak{u}_q(\mathfrak{g})$? No. But we can say something about it; via the "equivariant" approach:

$$\mathsf{Repu}_q(\mathfrak{g}) \cong \mathsf{Qcoh}[G/G_q]$$

Let $\mathcal{N} = \mathcal{N}(\mathfrak{g})$ be the nilpotent cone of \mathfrak{g} , and let $\pi: \widetilde{\mathcal{N}} = T^*(G/B) \to \mathcal{N}$ be the Springer resolution.

Theorem (Negron-P.)

There is a sequence of surjective maps

$$\mathbb{P}(\widetilde{\mathcal{N}}) \to \operatorname{Spec}_{\textit{Bal}} \operatorname{stab} \mathfrak{u}_{\textit{q}}(\mathfrak{g}) \to \mathbb{P}(\mathcal{N})$$

where the composition is the moment map π .

In particular, there is a support theory for stab $u_q(\mathfrak{g})$ living on $\mathbb{P}(\mathcal{N})$ which does satisfy the tensor product property for $G = \operatorname{SL}_n$.

THANK YOU

Tensor categories