Twists of graded Poisson algebras and related properties

Xingting Wang

Howard University

Joint with Xin Tang and James J. Zhang

A Conference in Honor of S. Paul Smith on the occasion of his 65th Birthday

June. 24, 2020

Twists of graded Poisson algebras and related properties

Xingting Wang

Howard University

Joint with Xin Tang and James J. Zhang

A Conference in Honor of S. Paul Smith on the occasion of his 65[2]th Birthday

June. 24, 2020[2]

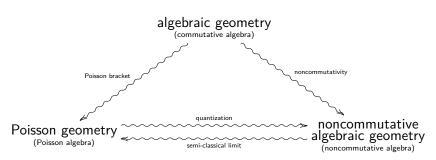
Table of Contents

- 1 Poisson Algebras and Where to Find Them
- Poisson Algebras: The Twists of Graded Poisson Brackets
- Openion of the structures of the structure of the
- 4 Poisson Algebras: The Secrets of H-ozoness

 The notion of Poisson bracket was introduced by French mathematician Siméon Denis Poisson in the search for integrals of motion in Hamiltonian mechanics.

- The notion of Poisson bracket was introduced by French mathematician Siméon Denis Poisson in the search for integrals of motion in Hamiltonian mechanics.
- The relations among algebraic geometry, noncommutative algebraic geometry, and Poisson geometry can be summarized in the following diagram.

- The notion of Poisson bracket was introduced by French mathematician Siméon Denis Poisson in the search for integrals of motion in Hamiltonian mechanics.
- The relations among algebraic geometry, noncommutative algebraic geometry, and Poisson geometry can be summarized in the following diagram.



• k: base field

• k: base field of char. zero

- k: base field of char. zero
- Poisson algebra A: commutative k-algebra with Poisson bracket

$$\pi := \{-, -\} : A \times A \to A$$

that is (1) Lie bracket and (2) biderivation.

- k: base field of char. zero
- Poisson algebra A: commutative k-algebra with Poisson bracket

$$\pi := \{-, -\} : A \times A \rightarrow A$$

that is (1) Lie bracket and (2) biderivation.

• graded Poisson algebra $A = \mathbb{k}[x_1, \dots, x_n]$: multiplication and bracket both graded.

Definition (Lecoutre-Sierra, 19)

Set $n \geq 1$ and $a \in \mathbb{k}$. Set $A(n, a) := \mathbb{k}[x_0, \dots, x_n]$ with

$$\{x_i, x_j\} := (a+j)x_{i-1}x_j - (a+i)x_{j-1}x_i.$$

Definition (Lecoutre-Sierra, 19)

Set $n \geq 1$ and $a \in \mathbb{k}$. Set $A(n, a) := \mathbb{k}[x_0, \dots, x_n]$ with

$$\{x_i, x_j\} := (a+j)x_{i-1}x_j - (a+i)x_{j-1}x_i.$$

• $A(1, a) = \mathbb{k}[x_0, x_1]$ with $\{x_0, x_1\} = -ax_0^2$

Definition (Lecoutre-Sierra, 19)

Set $n \geq 1$ and $a \in \mathbb{k}$. Set $A(n, a) := \mathbb{k}[x_0, \dots, x_n]$ with

$$\{x_i, x_j\} := (a+j)x_{i-1}x_j - (a+i)x_{j-1}x_i.$$

- $A(1, a) = \mathbb{k}[x_0, x_1]$ with $\{x_0, x_1\} = -ax_0^2$
- $A(2, a) = k[x_0, x_1, x_2]$ such that

$${x_0, x_1} = -ax_0^2,$$

 ${x_0, x_2} = -ax_0x_1,$
 ${x_1, x_2} = (a+2)x_0x_2 - (a+1)x_1^2.$

Definition (Lecoutre-Sierra, 19)

Set $n \ge 1$ and $a \in \mathbb{k}$. Set $A(n, a) := \mathbb{k}[x_0, \dots, x_n]$ with

$$\{x_i, x_j\} := (a+j)x_{i-1}x_j - (a+i)x_{j-1}x_i.$$

- $A(1, a) = \mathbb{k}[x_0, x_1]$ with $\{x_0, x_1\} = -ax_0^2$
- $A(2, a) = \mathbb{k}[x_0, x_1, x_2]$ such that

$$\{x_0, x_1\} = -ax_0^2,$$

 $\{x_0, x_2\} = -ax_0x_1,$
 $\{x_1, x_2\} = (a+2)x_0x_2 - (a+1)x_1^2.$

• $A(3, -\frac{5}{4})$ is Pym's exceptional Poisson algebra E(3)

Table of Contents

- 1 Poisson Algebras and Where to Find Them
- 2 Poisson Algebras: The Twists of Graded Poisson Brackets
- Poisson Algebras: The Rigidity of Unimodular Structures
- 4 Poisson Algebras: The Secrets of H-ozoness

$$\bullet \ A = \mathbb{k}[x_1, \dots, x_n]$$

- $\bullet \ A = \mathbb{k}[x_1, \ldots, x_n]$
- $\delta \in \operatorname{Der}_{\Bbbk}(A)$: homogenous of deg 0

- $\bullet \ A = \mathbb{k}[x_1, \ldots, x_n]$
- $\delta \in \operatorname{Der}_{\Bbbk}(A)$: homogenous of deg 0

Definition (Tang-Zhang-W. 22)

 δ is called semi-Poisson derivation if $p(\{-,-\},\delta,a,b,c)=0$, where

- $\bullet \ A = \mathbb{k}[x_1, \ldots, x_n]$
- $\delta \in \operatorname{Der}_{\Bbbk}(A)$: homogenous of deg 0

Definition (Tang-Zhang-W. 22)

 δ is called semi-Poisson derivation if $p(\{-,-\},\delta,a,b,c)=0$, where

$$\begin{split} p(\{-,-\},\delta;a,b,c) := &|a|a[\delta(\{b,c\}) - \{\delta(b),c\} - \{b,\delta(c)\}] \\ &- |b|b[\delta(\{a,c\}) - \{\delta(a),c\} - \{a,\delta(c)\}] \\ &+ |c|c[\delta(\{a,b\}) - \{\delta(a),b\} - \{a,\delta(b)\}]. \end{split}$$

- $\bullet \ A = \mathbb{k}[x_1, \ldots, x_n]$
- $\delta \in \operatorname{Der}_{\mathbb{k}}(A)$: homogenous of deg 0

Definition (Tang-Zhang-W. 22)

 δ is called semi-Poisson derivation if $p(\{-,-\},\delta,a,b,c)=0$, where

$$\begin{split} p(\{-,-\},\delta;a,b,c) := &|a|a[\delta(\{b,c\}) - \{\delta(b),c\} - \{b,\delta(c)\}] \\ &- |b|b[\delta(\{a,c\}) - \{\delta(a),c\} - \{a,\delta(c)\}] \\ &+ |c|c[\delta(\{a,b\}) - \{\delta(a),b\} - \{a,\delta(b)\}]. \end{split}$$

Poisson derivation \Rightarrow semi-Poisson derivation \Rightarrow derivation

• $E := (\deg) \circ id$: Euler derivation

- $E := (\deg) \circ id$: Euler derivation
- $\delta \in \operatorname{Der}_{\Bbbk}(A)$: homogenous semi-Poisson derivation of deg 0

- $E := (\deg) \circ id$: Euler derivation
- $\delta \in \operatorname{Der}_{\Bbbk}(A)$: homogenous semi-Poisson derivation of deg 0

Definition (Tang-Zhang-W. 22)

The twist of (A, π) is (A^{δ}, π_{new}) such that

- $E := (\deg) \circ id$: Euler derivation
- $\delta \in \operatorname{Der}_{\Bbbk}(A)$: homogenous semi-Poisson derivation of deg 0

Definition (Tang-Zhang-W. 22)

The twist of (A, π) is (A^{δ}, π_{new}) such that

• $A = A^{\delta}$ as commutative algebras

- $E := (deg) \circ id$: Euler derivation
- $\delta \in \operatorname{Der}_{\Bbbk}(A)$: homogenous semi-Poisson derivation of deg 0

Definition (Tang-Zhang-W. 22)

The twist of (A, π) is (A^{δ}, π_{new}) such that

- $A = A^{\delta}$ as commutative algebras
- $\pi_{new} = \pi + E \wedge \delta$ or

$$\{a,b\}_{new} = \{a,b\} + E(a)\delta(b) - \delta(a)E(b)$$

Definition (Lecoutre-Sierra, 19)

Set $n \geq 1$ and $a \in \mathbb{k}$. Set $A(n, a) := \mathbb{k}[x_0, \dots, x_n]$ with

$$\{x_i, x_j\} := (a+j)x_{i-1}x_j - (a+i)x_{j-1}x_i.$$

Definition (Lecoutre-Sierra, 19)

Set $n \geq 1$ and $a \in \mathbb{k}$. Set $A(n, a) := \mathbb{k}[x_0, \dots, x_n]$ with

$$\{x_i, x_j\} := (a+j)x_{i-1}x_j - (a+i)x_{j-1}x_i.$$

• $\Delta := x_0 \frac{\partial}{\partial x_1} + \dots + x_{n-1} \frac{\partial}{\partial x_n}$: downward Poisson derivation

Definition (Lecoutre-Sierra, 19)

Set $n \geq 1$ and $a \in \mathbb{k}$. Set $A(n, a) := \mathbb{k}[x_0, \dots, x_n]$ with

$$\{x_i,x_j\}:=(a+j)x_{i-1}x_j-(a+i)x_{j-1}x_i.$$

- $\Delta := x_0 \frac{\partial}{\partial x_1} + \dots + x_{n-1} \frac{\partial}{\partial x_n}$: downward Poisson derivation
- $A(n,a)^{b\Delta} \cong A(n,a-b)$

Table of Contents

- 1 Poisson Algebras and Where to Find Them
- 2 Poisson Algebras: The Twists of Graded Poisson Brackets
- 3 Poisson Algebras: The Rigidity of Unimodular Structures
- 4 Poisson Algebras: The Secrets of H-ozoness

Rigidity of A

Definition (Tang-Zhang-W. 22)

• G(s)pd(A):={graded (semi)-Poisson derivations of degree 0}

Rigidity of A

Definition (Tang-Zhang-W. 22)

- G(s)pd(A):={graded (semi)-Poisson derivations of degree 0}
- The rigidity of A is

$$rgt(A) := 1 - \dim_{\Bbbk} Gspd(A).$$

Rigidity of A

Definition (Tang-Zhang-W. 22)

- G(s)pd(A):={graded (semi)-Poisson derivations of degree 0}
- The rigidity of A is

$$\mathit{rgt}(A) := 1 - \dim_{\Bbbk} \mathit{Gspd}(A).$$

• A is rigid if rgt(A) = 0 and -1 rigid if rgt(A) = -1

• $\delta \in \operatorname{Der}_{\Bbbk}(A)$

- $\delta \in \operatorname{Der}_{\Bbbk}(A)$
- $\operatorname{Div}(\delta) = \sum_{i=1}^{n} \frac{\partial \delta(x_i)}{\partial x_i}$: divergence

- $\delta \in \operatorname{Der}_{\Bbbk}(A)$
- $\operatorname{Div}(\delta) = \sum_{i=1}^{n} \frac{\partial \delta(x_i)}{\partial x_i}$: divergence
- $H_a := \{a, -\}$: Hamiltonian derivation

- $\delta \in \operatorname{Der}_{\Bbbk}(A)$
- $\operatorname{Div}(\delta) = \sum_{i=1}^{n} \frac{\partial \delta(x_i)}{\partial x_i}$: divergence
- $H_a := \{a, -\}$: Hamiltonian derivation
- $PH^1(A) := \frac{Pder(A)}{Ham(A)}$

- $\delta \in \operatorname{Der}_{\mathbb{k}}(A)$
- $\operatorname{Div}(\delta) = \sum_{i=1}^{n} \frac{\partial \delta(x_i)}{\partial x_i}$: divergence
- $H_a := \{a, -\}$: Hamiltonian derivation
- $PH^1(A) := \frac{Pder(A)}{Ham(A)}$

Definition

The modular derivation \mathfrak{m} of A is

$$\mathfrak{m}(a) := \mathrm{Div}(H_a).$$

A is called unimodular if $\mathfrak{m} = 0$.

Remark

 $\mathfrak{m} \in Pder(A)$ and $\mathrm{Div}(\mathfrak{m}) = 0$

Lemma (Tang-Zhang-W. 22)

• $A = \mathbb{k}[x_1, \dots, x_n]$: \mathbb{Z} -graded Poisson polynomial algebra

Lemma (Tang-Zhang-W. 22)

- $A = \mathbb{k}[x_1, \cdots, x_n]$: \mathbb{Z} -graded Poisson polynomial algebra
- $\delta \in Pder(A)$

Lemma (Tang-Zhang-W. 22)

- $A = \mathbb{k}[x_1, \cdots, x_n]$: \mathbb{Z} -graded Poisson polynomial algebra
- $\delta \in Pder(A)$
- m: modular derivation of A

Lemma (Tang-Zhang-W. 22)

- $A = \mathbb{k}[x_1, \cdots, x_n]$: \mathbb{Z} -graded Poisson polynomial algebra
- $\delta \in Pder(A)$
- m: modular derivation of A
- \mathfrak{n} : modular derivation of A^{δ}

Lemma (Tang-Zhang-W. 22)

- $A = \mathbb{k}[x_1, \cdots, x_n]$: \mathbb{Z} -graded Poisson polynomial algebra
- $\delta \in Pder(A)$
- m: modular derivation of A
- \mathfrak{n} : modular derivation of A^{δ}

Then

$$\mathbf{n} = \mathbf{m} + \left(\sum_{i=1}^n \deg(x_i)\right) \delta - \mathrm{Div}(\delta) E.$$

Theorem (Tang-Zhang-W. 22)

- $(A = k[x_1, ..., x_n], \pi)$: graded Poisson algebra
- $\operatorname{Div}(E) = \deg(x_1) + \cdots + \deg(x_n) \neq 0$ in k
- $\mathfrak{m}(-) = \operatorname{Div}(H_{-})$: modular derivation of A.

Then $\left(A^{-\frac{1}{\mathrm{Div}(E)}\,\mathfrak{m}},\,\pi_{\mathit{unim}}
ight)$ is unimodular and

$$\pi = \pi_{unim} + \frac{1}{\mathrm{Div}(E)} (E \wedge \mathfrak{m}).$$

Theorem (Tang-Zhang-W. 22)

• A is unimodular \Rightarrow Gspd(A) = Gpd(A)

- A is unimodular \Rightarrow Gspd(A) = Gpd(A)
- $\dim_{\mathbb{k}} Gspd(A) = \dim_{\mathbb{k}} Gspd(A^{\delta})$

- A is unimodular \Rightarrow Gspd(A) = Gpd(A)
- $\dim_{\mathbb{k}} Gspd(A) = \dim_{\mathbb{k}} Gspd(A^{\delta})$
- $rgt(A) = 0 \Rightarrow A$ is unimodular

- A is unimodular \Rightarrow Gspd(A) = Gpd(A)
- $\dim_{\mathbb{k}} Gspd(A) = \dim_{\mathbb{k}} Gspd(A^{\delta})$
- $rgt(A) = 0 \Rightarrow A$ is unimodular
- $rgt(A) = -1 \Rightarrow \dim_{\mathbb{k}} Gspd(A) = \dim_{\mathbb{k}} Gpd(A) = 2$

• $A = \mathbb{k}[x, y, z]$ with deg(x, y, z) = 1

- $A = \mathbb{k}[x, y, z]$ with $\deg(x, y, z) = 1$
- (A, π) : unimodular

- $A = \mathbb{k}[x, y, z]$ with deg(x, y, z) = 1
- (A, π) : unimodular

 $\pi = \Omega_{z} \frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y} + \Omega_{x} \frac{\partial}{\partial y} \wedge \frac{\partial}{\partial z} + \Omega_{y} \frac{\partial}{\partial z} \wedge \frac{\partial}{\partial x}$

for some cubic Ω .

- $A = \mathbb{k}[x, y, z]$ with deg(x, y, z) = 1
- (A, π) : unimodular

•

$$\pi = \Omega_z \frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y} + \Omega_x \frac{\partial}{\partial y} \wedge \frac{\partial}{\partial z} + \Omega_y \frac{\partial}{\partial z} \wedge \frac{\partial}{\partial x}$$

for some cubic Ω .

 $\bullet \ \mathit{rgt}(A) = 1 - \dim_{\Bbbk} \mathit{Gspd}(A) = 1 - \dim_{\Bbbk} \mathit{Gpd}(A) = 1 - \dim_{\Bbbk} (\mathit{PH}^1(A))_0$

- $A = \mathbb{k}[x, y, z]$ with deg(x, y, z) = 1
- (A, π) : unimodular

•

$$\pi = \Omega_{z} \frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y} + \Omega_{x} \frac{\partial}{\partial y} \wedge \frac{\partial}{\partial z} + \Omega_{y} \frac{\partial}{\partial z} \wedge \frac{\partial}{\partial x}$$

for some cubic Ω .

• $rgt(A) = 1 - \dim_{\mathbb{k}} Gspd(A) = 1 - \dim_{\mathbb{k}} Gpd(A) = 1 - \dim_{\mathbb{k}} (PH^1(A))_0$

Proposition (Tang-Zhang-W. 22)

Ω	0	<i>x</i> ³	x^2y	xyz	xy(x+y)	$xyz + x^3$	$xy^2 + z^2z$	irred.
rgt(A)	-8	-5	-3	-2	-2	-1	-1	0

Definition (Lecoutre-Sierra, 19)

$$|\{x_i,x_j\}:=(a+j)x_{i-1}x_j-(a+i)x_{j-1}x_i.$$

Definition (Lecoutre-Sierra, 19)

Set $n \ge 1$ and $a \in \mathbb{k}$. Set $A(n, a) := \mathbb{k}[x_0, \dots, x_n]$ with

$$\{x_i, x_j\} := (a+j)x_{i-1}x_j - (a+i)x_{j-1}x_i.$$

• $\Delta := x_0 \frac{\partial}{\partial x_1} + \dots + x_{n-1} \frac{\partial}{\partial x_n}$: downward Poisson derivation

Definition (Lecoutre-Sierra, 19)

$$\{x_i, x_j\} := (a+j)x_{i-1}x_j - (a+i)x_{j-1}x_i.$$

- $\Delta := x_0 \frac{\partial}{\partial x_1} + \dots + x_{n-1} \frac{\partial}{\partial x_n}$: downward Poisson derivation
- ullet modular derivation $\mathfrak{m}=((n+1)a+\binom{n+1}{2}-1)\Delta$

Definition (Lecoutre-Sierra, 19)

$$\{x_i, x_j\} := (a+j)x_{i-1}x_j - (a+i)x_{j-1}x_i.$$

- $\Delta := x_0 \frac{\partial}{\partial x_1} + \dots + x_{n-1} \frac{\partial}{\partial x_n}$: downward Poisson derivation
- ullet modular derivation $\mathfrak{m}=((n+1)a+\binom{n+1}{2}-1)\Delta$
- A(n, a) is unimodular $\Leftrightarrow a = \frac{(n+2)(1-n)}{2(n+1)} =: a_0 \ (n=3, a_0 = -\frac{5}{4})$

Definition (Lecoutre-Sierra, 19)

$$\{x_i, x_j\} := (a+j)x_{i-1}x_j - (a+i)x_{j-1}x_i.$$

- $\Delta := x_0 \frac{\partial}{\partial x_1} + \dots + x_{n-1} \frac{\partial}{\partial x_n}$: downward Poisson derivation
- modular derivation $\mathfrak{m} = ((n+1)a + \binom{n+1}{2} 1)\Delta$
- A(n, a) is unimodular $\Leftrightarrow a = \frac{(n+2)(1-n)}{2(n+1)} =: a_0 \ (n=3, a_0 = -\frac{5}{4})$
- $Gspd(A(n, a_0)) = Gpd(A(n, a_0)) = \operatorname{span}_{\mathbb{k}}(E, \Delta)$

Definition (Lecoutre-Sierra, 19)

$$\{x_i, x_j\} := (a+j)x_{i-1}x_j - (a+i)x_{j-1}x_i.$$

- $\Delta := x_0 \frac{\partial}{\partial x_1} + \dots + x_{n-1} \frac{\partial}{\partial x_n}$: downward Poisson derivation
- modular derivation $\mathfrak{m} = ((n+1)a + \binom{n+1}{2} 1)\Delta$
- A(n, a) is unimodular $\Leftrightarrow a = \frac{(n+2)(1-n)}{2(n+1)} =: a_0 \ (n=3, a_0 = -\frac{5}{4})$
- $Gspd(A(n, a_0)) = Gpd(A(n, a_0)) = \operatorname{span}_{\mathbb{k}}(E, \Delta)$
- A(n, a) are graded twists of each other for each $n \ge 1$

Definition (Lecoutre-Sierra, 19)

$$\{x_i, x_j\} := (a+j)x_{i-1}x_j - (a+i)x_{j-1}x_i.$$

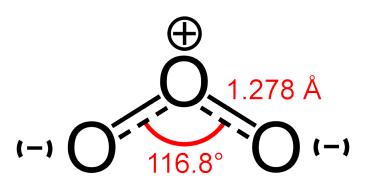
- $\Delta := x_0 \frac{\partial}{\partial x_1} + \dots + x_{n-1} \frac{\partial}{\partial x_n}$: downward Poisson derivation
- modular derivation $\mathfrak{m} = ((n+1)a + \binom{n+1}{2} 1)\Delta$
- A(n, a) is unimodular $\Leftrightarrow a = \frac{(n+2)(1-n)}{2(n+1)} =: a_0 \ (n=3, a_0 = -\frac{5}{4})$
- $Gspd(A(n, a_0)) = Gpd(A(n, a_0)) = \operatorname{span}_{\mathbb{k}}(E, \Delta)$
- A(n, a) are graded twists of each other for each $n \ge 1$
- rgt(A(n, a)) = -1

Table of Contents

- Poisson Algebras and Where to Find Them
- 2 Poisson Algebras: The Twists of Graded Poisson Brackets
- Openion of the structures of the structure of the
- 4 Poisson Algebras: The Secrets of H-ozoness

What is ozone?

Definition



Definition

Poisson algebra \boldsymbol{A} with Poisson center \boldsymbol{Z}

Definition

Poisson algebra A with Poisson center Z

• A Poisson derivation ϕ of A is called ozone if $\phi(Z) = 0$

Definition

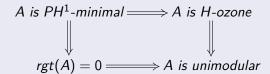
Poisson algebra A with Poisson center Z

- A Poisson derivation ϕ of A is called ozone if $\phi(Z) = 0$
- A is H-ozone if every ozone Poisson derivation is Hamiltonian

Definition

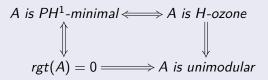
Poisson algebra A with Poisson center Z

- A Poisson derivation ϕ of A is called ozone if $\phi(Z) = 0$
- A is H-ozone if every ozone Poisson derivation is Hamiltonian
- A is PH^1 -minimal if $PH^1(A) \cong ZE$



Theorem (Tang-Zhang-W. 22)

A = k[x, y, z] with Poisson center Z.



Theorem (Tang-Zhang-W. 22)

A = k[x, y, z] with Poisson center Z.

$$A \text{ is } PH^1\text{-minimal} \Longleftrightarrow A \text{ is } H\text{-ozone}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$rgt(A) = 0 \Longrightarrow A \text{ is unimodular}$$

which are further equivalent to:

- (4) Any graded twist of A is isomorphic to A.
- (5) $h_{Pder(A)}(t) = \frac{1}{(1-t)^3}$.
- (6) $h_{PH^1(A)}(t) = \frac{1}{1-t^3}$.
- (7) $h_{PH^1(A)}(t) = h_Z(t)$.
- (8) $h_{PH^3(A)}(t) h_{PH^2(A)}(t) = t^{-3}$.
- (9) A is unimodular with irreducible Ω .

Poisson cohomology of $\mathbb{k}[x, y, z]$

Corollary (Tang-Zhang-W. 22)

 $A = \mathbb{k}[x, y, z]$ unimodular quadratic Poisson algebra with irreducible potential Ω . Then

Poisson cohomology of $\mathbb{k}[x, y, z]$

Corollary (Tang-Zhang-W. 22)

 $A = \mathbb{k}[x, y, z]$ unimodular quadratic Poisson algebra with irreducible potential Ω . Then

- (1) $h_{PH^0(A)}(t) = \frac{1}{1-t^3}$
- (2) $h_{PH^1(A)}(t) = \frac{1}{1-t^3}$
- (3) $h_{PH^2(A)}(t) = \frac{1}{t^3} (\frac{(1+t)^3}{1-t^3} 1)$
- (4) $h_{PH^3(A)}(t) = \frac{(1+t)^3}{t^3(1-t^3)}$

Thank You! Happy Birthday, Paul!