Quivers and Superpotentials for Semisimple Hopf Actions

Simon Crawford

University of Manchester

Recent Advances and New Directions in the Interplay of Noncommutative Algebra and Geometry

24th June 2022

Motivation for Noncommutative Invariant Theory

Motivation for Noncommutative Invariant Theory

► See Ellen Kirkman's talk.

▶ Throughout, write $R := k[x_1, ..., x_n]$.

- ▶ Throughout, write $R := k[x_1, ..., x_n]$.
- ► A will always denote an Artin-Schelter (AS) regular algebra.

- ▶ Throughout, write $R := k[x_1, ..., x_n]$.
- ► A will always denote an Artin-Schelter (AS) regular algebra.
 - ▶ Roughly speaking: a noncommutative polynomial ring.
 - ightharpoonup A is a graded ightharpoonup A-algebra and is "homologically nice".

- ▶ Throughout, write $R := k[x_1, ..., x_n]$.
- ► A will always denote an Artin-Schelter (AS) regular algebra.
 - ► Roughly speaking: a noncommutative polynomial ring.
 - ightharpoonup A is a graded ightharpoonup A-algebra and is "homologically nice".
- ► H will always denote a semisimple (⇒ finite-dimensional) Hopf algebra, which acts on A.

- ▶ Throughout, write $R := k[x_1, ..., x_n]$.
- ► A will always denote an Artin-Schelter (AS) regular algebra.
 - ▶ Roughly speaking: a noncommutative polynomial ring.
 - ightharpoonup A is a graded ightharpoonup A-algebra and is "homologically nice".
- ► H will always denote a semisimple (⇒ finite-dimensional) Hopf algebra, which acts on A.
 - ► *H* is a generalisation of a group algebra.
 - ▶ Necessary since *A* typically has "too few symmetries".
 - \blacktriangleright (+ technical hypotheses on the action of H on A.)

- ▶ Throughout, write $R := k[x_1, ..., x_n]$.
- ► A will always denote an Artin-Schelter (AS) regular algebra.
 - ▶ Roughly speaking: a noncommutative polynomial ring.
 - ightharpoonup A is a graded \mathbb{k} -algebra and is "homologically nice".
- ► H will always denote a semisimple (⇒ finite-dimensional) Hopf algebra, which acts on A.
 - ightharpoonup H is a generalisation of a group algebra.
 - ▶ Necessary since *A* typically has "too few symmetries".
 - \blacktriangleright (+ technical hypotheses on the action of H on A.)
- ► Can then construct and study the **invariant ring** A^H and the **smash product** A # H.

▶ Let G be a finite group. We say that A is G-graded if there is a vector space direct decomposition $A = \bigoplus_{g \in G} A_g$ with $A_g A_h \subseteq A_{gh}$.

- ▶ Let G be a finite group. We say that A is G-graded if there is a vector space direct decomposition $A = \bigoplus_{g \in G} A_g$ with $A_g A_h \subseteq A_{gh}$.
- ▶ Fact: $(\Bbbk G)^* := \mathsf{Hom}_{\Bbbk}(\Bbbk G, \Bbbk)$ is a semisimple Hopf algebra.

- ▶ Let G be a finite group. We say that A is G-graded if there is a vector space direct decomposition $A = \bigoplus_{g \in G} A_g$ with $A_g A_h \subseteq A_{gh}$.
- ▶ Fact: $(\Bbbk G)^* := \mathsf{Hom}_{\Bbbk}(\Bbbk G, \Bbbk)$ is a semisimple Hopf algebra.
- ▶ A is G-graded \Leftrightarrow $(\Bbbk G)^* Q A$.

- ▶ Let G be a finite group. We say that A is G-graded if there is a vector space direct decomposition $A = \bigoplus_{g \in G} A_g$ with $A_g A_h \subseteq A_{gh}$.
- ▶ Fact: $(\Bbbk G)^* := \mathsf{Hom}_{\Bbbk}(\Bbbk G, \Bbbk)$ is a semisimple Hopf algebra.
- ▶ A is G-graded \Leftrightarrow $(\Bbbk G)^* Q A$.
- ▶ The invariant ring A^H satisfies $A^H = A_{1_G}$.

▶ Let
$$A = \mathbb{K}\langle u, v \rangle / \langle u^2 - v^2 \rangle$$
 and $G = \langle a, b \mid a^2 = b^2 = (ab)^3 = 1 \rangle$.

- ▶ Let $A = \mathbb{k}\langle u, v \rangle / \langle u^2 v^2 \rangle$ and $G = \langle a, b \mid a^2 = b^2 = (ab)^3 = 1 \rangle$.
- ▶ Define $\deg_G u = a$ and $\deg_G v = b \implies (\Bbbk G)^* Q A$.

- ▶ Let $A = \mathbb{k}\langle u, v \rangle / \langle u^2 v^2 \rangle$ and $G = \langle a, b \mid a^2 = b^2 = (ab)^3 = 1 \rangle$.
- ▶ Define $\deg_G u = a$ and $\deg_G v = b \implies (\Bbbk G)^* Q A$.
- ▶ We have

$$A^H = A_{1_G}$$

- ▶ Let $A = \mathbb{k}\langle u, v \rangle / \langle u^2 v^2 \rangle$ and $G = \langle a, b \mid a^2 = b^2 = (ab)^3 = 1 \rangle$.
- ▶ Define $\deg_G u = a$ and $\deg_G v = b \implies (\Bbbk G)^* Q A$.
- ▶ We have

$$A^H = A_{1_G} \ni \quad u^2 \quad ,$$

- ▶ Let $A = \mathbb{k}\langle u, v \rangle / \langle u^2 v^2 \rangle$ and $G = \langle a, b \mid a^2 = b^2 = (ab)^3 = 1 \rangle$.
- ▶ Define $\deg_G u = a$ and $\deg_G v = b \implies (\Bbbk G)^* Q A$.
- ▶ We have

$$A^{H} = A_{1_{G}} \ni \quad u^{2} \ , \ (uv)^{3} \ ,$$

- ▶ Let $A = \mathbb{k}\langle u, v \rangle / \langle u^2 v^2 \rangle$ and $G = \langle a, b \mid a^2 = b^2 = (ab)^3 = 1 \rangle$.
- ▶ Define $\deg_G u = a$ and $\deg_G v = b \implies (\Bbbk G)^* Q A$.
- ▶ We have

$$A^{H} = A_{1_{G}} \ni u^{2} , (uv)^{3} , (vu)^{3} .$$

- ▶ Let $A = \mathbb{k}\langle u, v \rangle / \langle u^2 v^2 \rangle$ and $G = \langle a, b \mid a^2 = b^2 = (ab)^3 = 1 \rangle$.
- ▶ Define $\deg_G u = a$ and $\deg_G v = b \implies (\Bbbk G)^* Q A$.
- ▶ We have

$$A^H = A_{1_G} \ni \underbrace{u^2}_{:=z}, \underbrace{(uv)^3}_{:=x}, \underbrace{(vu)^3}_{:=y}.$$

- ▶ Let $A = \mathbb{k}\langle u, v \rangle / \langle u^2 v^2 \rangle$ and $G = \langle a, b \mid a^2 = b^2 = (ab)^3 = 1 \rangle$.
- ▶ Define $\deg_G u = a$ and $\deg_G v = b \implies (\Bbbk G)^* Q A$.
- ▶ We have

$$A^H = A_{1_G} \ni \underbrace{u^2}_{:=z}, \underbrace{(uv)^3}_{:=x}, \underbrace{(vu)^3}_{:=y}.$$

► It quickly follows that

$$A^H \cong \frac{\mathbb{k}[x,y,z]}{\langle xy-z^6 \rangle}.$$

- ▶ Let $A = \mathbb{k}\langle u, v \rangle / \langle u^2 v^2 \rangle$ and $G = \langle a, b \mid a^2 = b^2 = (ab)^3 = 1 \rangle$.
- ▶ Define $\deg_G u = a$ and $\deg_G v = b \implies (\Bbbk G)^* Q A$.
- ▶ We have

$$A^H = A_{1_G} \ni \underbrace{u^2}_{:=z}, \underbrace{(uv)^3}_{:=x}, \underbrace{(vu)^3}_{:=y}.$$

It quickly follows that

$$A^H \cong \frac{\mathbb{k}[x,y,z]}{\langle xy-z^6 \rangle}.$$

▶ The pair (A, H) is an example of a **quantum Kleinian singularity**.

▶ We additionally assume that *A* is a **derivation-quotient algebra**.

- \blacktriangleright We additionally assume that A is a **derivation-quotient algebra**.
- ▶ Let V be a vector space, $w \in V^{\otimes \ell}$, and $\sigma \in GL(V)$. Call w a σ -twisted superpotential if it is invariant under

$$v_1 \otimes v_2 \otimes \cdots \otimes v_\ell \mapsto v_2 \otimes \cdots \otimes v_\ell \otimes \sigma(v_1).$$

- ▶ We additionally assume that *A* is a **derivation-quotient algebra**.
- ▶ Let V be a vector space, $w \in V^{\otimes \ell}$, and $\sigma \in GL(V)$. Call w a σ -twisted superpotential if it is invariant under

$$v_1 \otimes v_2 \otimes \cdots \otimes v_\ell \mapsto v_2 \otimes \cdots \otimes v_\ell \otimes \sigma(v_1).$$

► The derivation-quotient algebra of w of order i is

$$\mathscr{D}(\mathsf{w},i) := \frac{T_{\Bbbk}(V)}{\langle \partial^i \mathsf{w} \rangle},$$

where ∂^i w consists of "formal *i*th order left derivatives of w".

- ▶ We additionally assume that *A* is a **derivation-quotient algebra**.
- ▶ Let V be a vector space, $w \in V^{\otimes \ell}$, and $\sigma \in GL(V)$. Call w a σ -twisted superpotential if it is invariant under

$$v_1 \otimes v_2 \otimes \cdots \otimes v_\ell \mapsto v_2 \otimes \cdots \otimes v_\ell \otimes \sigma(v_1).$$

► The derivation-quotient algebra of w of order *i* is

$$\mathscr{D}(\mathsf{w},i) := \frac{T_{\Bbbk}(V)}{\langle \partial^i \mathsf{w} \rangle},$$

where ∂^i w consists of "formal *i*th order left derivatives of w".

► More precisely:

$$\partial^i \mathsf{w} \coloneqq \{\psi_1 \otimes \psi_2 \otimes \cdots \otimes \psi_i \otimes \mathsf{id}^{\otimes (\ell-i)}(\mathsf{w}) \mid \psi_1, \dots, \psi_i \in V^*\}.$$

- ▶ We additionally assume that *A* is a **derivation-quotient algebra**.
- ▶ Let V be a vector space, $w \in V^{\otimes \ell}$, and $\sigma \in GL(V)$. Call w a σ -twisted superpotential if it is invariant under

$$v_1 \otimes v_2 \otimes \cdots \otimes v_\ell \mapsto v_2 \otimes \cdots \otimes v_\ell \otimes \sigma(v_1).$$

► The derivation-quotient algebra of w of order i is

$$\mathscr{D}(\mathsf{w},i) := \frac{T_{\Bbbk}(V)}{\langle \partial^i \mathsf{w} \rangle},$$

where ∂^i w consists of "formal *i*th order left derivatives of w".

▶ More precisely:

$$\partial^i \mathsf{w} \coloneqq \{\psi_1 \otimes \psi_2 \otimes \cdots \otimes \psi_i \otimes \mathsf{id}^{\otimes (\ell-i)}(\mathsf{w}) \mid \psi_1, \dots, \psi_i \in V^*\}.$$

▶ Polynomial rings are DQAs. (Exercise: what is w?)

▶ Let $A = \mathbb{k}\langle u, v \rangle / \langle u^2v - vu^2, uv^2 - v^2u \rangle$, a down-up algebra.

- ▶ Let $A = \mathbb{k}\langle u, v \rangle / \langle u^2v vu^2, uv^2 v^2u \rangle$, a down-up algebra.
- ▶ This is AS regular of global dimension 3. We claim it is a DQA.

- ▶ Let $A = \mathbb{k}\langle u, v \rangle / \langle u^2v vu^2, uv^2 v^2u \rangle$, a down-up algebra.
- ▶ This is AS regular of global dimension 3. We claim it is a DQA.
- ▶ Let $V = A_1$ and define

$$w := v^2u^2 - vu^2v + u^2v^2 - uv^2u \in V^{\otimes 4}.$$

This is a (-1)-twisted superpotential.

- ▶ Let $A = \mathbb{k}\langle u, v \rangle / \langle u^2v vu^2, uv^2 v^2u \rangle$, a down-up algebra.
- ▶ This is AS regular of global dimension 3. We claim it is a DQA.
- ▶ Let $V = A_1$ and define

$$w := v^2u^2 - vu^2v + u^2v^2 - uv^2u \in V^{\otimes 4}.$$

This is a (-1)-twisted superpotential.

▶ We have

$$\partial^{1} \mathbf{w} \ni (\phi_{u} \otimes \mathsf{id}^{\otimes 3})(\mathbf{w}) = uv^{2} - v^{2}u,$$
$$(\phi_{v} \otimes \mathsf{id}^{\otimes 3})(\mathbf{w}) = vu^{2} - u^{2}v,$$

so $\mathscr{D}(\mathsf{w},1)\cong A$.

▶ If $G ext{ } Q ext{ } R$, then det : $G o \mathbb{k}^{\times}$ controls properties of R^G .

▶ If $G ext{ } Q ext{ } R$, then det : $G o \mathbb{k}^{\times}$ controls properties of R^{G} , e.g.

Theorem (Watanabe '74)

If $\det g = 1$ for all $g \in G$, then R^G is Gorenstein.

▶ If $G ext{ } Q ext{ } R$, then det : $G o \mathbb{k}^{\times}$ controls properties of R^G , e.g.

Theorem (Watanabe '74)

If $\det g = 1$ for all $g \in G$, then R^G is Gorenstein.

▶ If *H* Q *A*, there is an analogue called the **homological determinant**:

▶ If $G ext{ } Q ext{ } R$, then det : $G o \mathbb{k}^{\times}$ controls properties of R^{G} , e.g.

Theorem (Watanabe '74)

If $\det g = 1$ for all $g \in G$, then R^G is Gorenstein.

- ▶ If $H ext{ Q } A$, there is an analogue called the **homological determinant**:
 - ▶ This is an algebra map $hdet_A : H \to \mathbb{k}$.

▶ If $G ext{ } Q ext{ } R$, then det : $G o \mathbb{k}^{\times}$ controls properties of R^G , e.g.

Theorem (Watanabe '74)

If $\det g = 1$ for all $g \in G$, then R^G is Gorenstein.

- ▶ If $H \cap A$, there is an analogue called the **homological determinant**:
 - ▶ This is an algebra map $hdet_A : H \to \mathbb{k}$.
 - ▶ If $H = \mathbb{k}G$ and $A = \mathbb{k}[x_1, ..., x_n]$, then hdet = det.

The Homological Determinant

▶ If $G ext{ Q } R$, then det : $G o \mathbb{k}^{\times}$ controls properties of R^{G} , e.g.

Theorem (Watanabe '74)

If $\det g = 1$ for all $g \in G$, then R^G is Gorenstein.

- ▶ If $H ext{ Q } A$, there is an analogue called the **homological determinant**:
 - ▶ This is an algebra map $hdet_A : H \to \mathbb{k}$.
 - ▶ If $H = \mathbb{k}G$ and $A = \mathbb{k}[x_1, ..., x_n]$, then hdet = det.
 - ▶ The homological determinant is **trivial** : \Leftrightarrow hdet = ε (the counit)

The Homological Determinant

▶ If $G ext{ Q } R$, then det : $G o \mathbb{k}^{\times}$ controls properties of R^{G} , e.g.

Theorem (Watanabe '74)

If $\det g = 1$ for all $g \in G$, then R^G is Gorenstein.

- ▶ If $H ext{ Q } A$, there is an analogue called the **homological determinant**:
 - ▶ This is an algebra map $hdet_A : H \to \mathbb{k}$.
 - ▶ If $H = \Bbbk G$ and $A = \Bbbk [x_1, ..., x_n]$, then hdet = det.
 - ▶ The homological determinant is **trivial** : \Leftrightarrow hdet = ε (the counit) $\stackrel{G \circ R}{\Longleftrightarrow} G \leqslant SL(n, k)$.

The Homological Determinant

▶ If $G ext{ Q } R$, then det : $G o \mathbb{k}^{\times}$ controls properties of R^{G} , e.g.

Theorem (Watanabe '74)

If $\det g = 1$ for all $g \in G$, then R^G is Gorenstein.

- ▶ If $H ext{ Q } A$, there is an analogue called the **homological determinant**:
 - ▶ This is an algebra map $hdet_A : H \to \mathbb{k}$.
 - ▶ If H = kG and $A = k[x_1, ..., x_n]$, then hdet = det.
 - ► The homological determinant is **trivial** : \Leftrightarrow hdet = ε (the counit) $\stackrel{G Q R}{\Longleftrightarrow} G \leqslant SL(n, \mathbb{k})$.

Theorem (Jorgensen–Zhang '00, Kirkman–Kuzmanovich–Zhang '09)

Let H Q A. If $hdet_A$ is trivial, then A^H is Gorenstein.

▶ Problem: The homological determinant is difficult to calculate!

- ▶ Problem: The homological determinant is difficult to calculate!
- Recall: the determinant can be defined/calculated using exterior powers.

- ▶ Problem: The homological determinant is difficult to calculate!
- ► Recall: the determinant can be defined/calculated using exterior powers. In a similar vein:

Theorem (Mori-Smith '16)

Suppose $G \ Q \ A = \mathscr{D}(\mathsf{w},i)$. Then $\Bbbk \mathsf{w}$ is an G-submodule of $V^{\otimes \ell}$ and $g \cdot \mathsf{w} = \mathsf{hdet}_A(g) \mathsf{w}$ for all $g \in G$.

- ▶ Problem: The homological determinant is difficult to calculate!
- ▶ Recall: the determinant can be defined/calculated using exterior powers. In a similar vein:

Theorem (Mori-Smith '16)

Suppose $G \ Q \ A = \mathscr{D}(\mathsf{w},i)$. Then $\&\mathsf{w}$ is an G-submodule of $V^{\otimes \ell}$ and $g \cdot \mathsf{w} = \mathsf{hdet}_A(g) \mathsf{w}$ for all $g \in G$.

▶ This generalises to arbitrary Hopf algebras:

Theorem (Mori-Smith '16, C. '21)

Suppose $H \ Q \ A = \mathscr{D}(\mathsf{w},i)$. Then $\&\mathsf{w}$ is an H-submodule of $V^{\otimes \ell}$ and $h \cdot \mathsf{w} = \mathsf{hdet}_A(h) \mathsf{w}$ for all $h \in H$.

- ▶ Problem: The homological determinant is difficult to calculate!
- ► Recall: the determinant can be defined/calculated using exterior powers. In a similar vein:

Theorem (Mori-Smith '16)

Suppose $G \ Q \ A = \mathscr{D}(\mathsf{w},i)$. Then $\&\mathsf{w}$ is an G-submodule of $V^{\otimes \ell}$ and $g \cdot \mathsf{w} = \mathsf{hdet}_A(g) \mathsf{w}$ for all $g \in G$.

▶ This generalises to arbitrary Hopf algebras:

Theorem (Mori-Smith '16, C. '21)

Suppose $H \ Q \ A = \mathscr{D}(w,i)$. Then &w is an H-submodule of $V^{\otimes \ell}$ and $h \cdot w = \mathsf{hdet}_A(h) w$ for all $h \in H$.

▶ Suppose $(\Bbbk G)^* \ Q \ A$. Then hdet_A is trivial $\Leftrightarrow \mathsf{deg}_G \ \mathsf{w} = 1_G$.

▶ $A = \mathbb{k}\langle u, v \rangle / \langle u^2 - v^2 \rangle$ and $G = \langle a, b \mid a^2 = b^2 = (ab)^3 = 1 \rangle$, with $\deg_G u = a$ and $\deg_G v = b$.

- ▶ $A = \mathbb{k}\langle u, v \rangle / \langle u^2 v^2 \rangle$ and $G = \langle a, b \mid a^2 = b^2 = (ab)^3 = 1 \rangle$, with $\deg_G u = a$ and $\deg_G v = b$.
- ▶ Setting $V = A_1$ and $w = u^2 v^2 \in V^{\otimes 2}$, we have $A \cong \mathcal{D}(w, 0)$.

- ▶ $A = \mathbb{k}\langle u, v \rangle / \langle u^2 v^2 \rangle$ and $G = \langle a, b \mid a^2 = b^2 = (ab)^3 = 1 \rangle$, with $\deg_G u = a$ and $\deg_G v = b$.
- ▶ Setting $V = A_1$ and $w = u^2 v^2 \in V^{\otimes 2}$, we have $A \cong \mathcal{D}(w, 0)$.
- lacktriangledown deg $_G u^2 = 1_G = \deg_G v^2$ so w is G-homogeneous and deg $_G w = 1_G$.

- ▶ $A = \mathbb{k}\langle u, v \rangle / \langle u^2 v^2 \rangle$ and $G = \langle a, b \mid a^2 = b^2 = (ab)^3 = 1 \rangle$, with $\deg_G u = a$ and $\deg_G v = b$.
- ▶ Setting $V = A_1$ and $w = u^2 v^2 \in V^{\otimes 2}$, we have $A \cong \mathcal{D}(w, 0)$.
- ightharpoonup deg_G $u^2 = 1_G = \deg_G v^2$ so w is G-homogeneous and deg_G w = 1_G.
- Trivial homological determinant

- ▶ $A = \mathbb{k}\langle u, v \rangle / \langle u^2 v^2 \rangle$ and $G = \langle a, b \mid a^2 = b^2 = (ab)^3 = 1 \rangle$, with $\deg_G u = a$ and $\deg_G v = b$.
- ▶ Setting $V = A_1$ and $w = u^2 v^2 \in V^{\otimes 2}$, we have $A \cong \mathcal{D}(w, 0)$.
- lacktriangledown deg $_G u^2 = 1_G = \deg_G v^2$ so w is G-homogeneous and deg $_G w = 1_G$.
- ► Trivial homological determinant $\Rightarrow A^H$ is Gorenstein by the earlier theorem.

► Consider $A = \mathbb{k}\langle u, v \rangle / \langle u^2v - vu^2, uv^2 - v^2u \rangle \cong \mathscr{D}(\mathsf{w}, 1)$, where $\mathsf{w} := v^2u^2 - vu^2v + u^2v^2 - uv^2u \in A_1^{\otimes 4}.$

► Consider $A = \mathbb{k}\langle u, v \rangle / \langle u^2v - vu^2, uv^2 - v^2u \rangle \cong \mathscr{D}(\mathsf{w}, 1)$, where $\mathsf{w} \coloneqq v^2u^2 - vu^2v + u^2v^2 - uv^2u \in A_1^{\otimes 4}.$

▶ Let $G = \langle a, b \mid a^4 = b^2 = 1, ba = a^3b \rangle \cong D_4$.

- ► Consider $A = \mathbb{k}\langle u, v \rangle / \langle u^2v vu^2, uv^2 v^2u \rangle \cong \mathscr{D}(\mathsf{w}, 1)$, where $\mathsf{w} \coloneqq v^2u^2 vu^2v + u^2v^2 uv^2u \in A_1^{\otimes 4}.$
- ▶ Let $G = \langle a, b \mid a^4 = b^2 = 1, ba = a^3b \rangle \cong D_4$.
- ▶ A is G-graded via $\deg_G u = a$ and $\deg_G v = b$.

► Consider $A = \mathbb{k}\langle u, v \rangle / \langle u^2v - vu^2, uv^2 - v^2u \rangle \cong \mathscr{D}(w, 1)$, where $w := v^2u^2 - vu^2v + u^2v^2 - uv^2u \in A_1^{\otimes 4}.$

- ▶ Let $G = \langle a, b \mid a^4 = b^2 = 1, ba = a^3 b \rangle \cong D_4$.
- ▶ A is G-graded via $\deg_G u = a$ and $\deg_G v = b$.
- ▶ $\deg_G w = \deg_G v^2 u^2 = b^2 a^2 = a^2$ so the homological determinant is nontrivial.

▶ Parts of the McKay correspondence have been extended to the noncommutative setting.

- ▶ Parts of the McKay correspondence have been extended to the noncommutative setting.
- ▶ Suppose H
 otin A, and set $V = A_1$. Let V_0, V_1, \dots, V_n be a complete list of irreducible H-modules, with V_0 the trivial module.

- ▶ Parts of the McKay correspondence have been extended to the noncommutative setting.
- ▶ Suppose H
 otin A, and set $V = A_1$. Let V_0, V_1, \dots, V_n be a complete list of irreducible H-modules, with V_0 the trivial module.
- ▶ The McKay quiver of the pair (H, A) is the quiver with:

- ▶ Parts of the McKay correspondence have been extended to the noncommutative setting.
- ▶ Suppose H
 otin A, and set $V = A_1$. Let V_0, V_1, \dots, V_n be a complete list of irreducible H-modules, with V_0 the trivial module.
- ► The McKay quiver of the pair (H, A) is the quiver with:
 - ▶ Vertices $\{0, 1, ..., n\}$; and

- ▶ Parts of the McKay correspondence have been extended to the noncommutative setting.
- ▶ Suppose H
 otin A, and set $V = A_1$. Let V_0, V_1, \dots, V_n be a complete list of irreducible H-modules, with V_0 the trivial module.
- ► The McKay quiver of the pair (H, A) is the quiver with:
 - \blacktriangleright Vertices $\{0, 1, \dots, n\}$; and
 - ▶ $\dim_{\mathbb{R}} \operatorname{Hom}_{H}(V_{i}, V \otimes V_{j})$ arrows from i to j.

▶ The following generalises a result of Bocklandt–Schedler–Wemyss:

▶ The following generalises a result of Bocklandt–Schedler–Wemyss:

Theorem (C. '21)

Suppose that $H Q A = \mathscr{D}(w,i)$ with $w \in (A_1)^{\otimes \ell}$, and Q is the corresponding McKay quiver. Then there exists a "twisted quiver superpotential" $\Phi \in (\Bbbk Q)_{\ell}$ such that A # H is Morita equivalent to

$$\Lambda = \mathscr{D}(\Phi, i) := \frac{\Bbbk Q}{\langle \partial_{\alpha} \Phi \mid \alpha \in (\Bbbk Q)_i \rangle}.$$

Moreover, $A^H \cong e_0 \Lambda e_0$.

▶ The following generalises a result of Bocklandt–Schedler–Wemyss:

Theorem (C. '21)

Suppose that $H Q A = \mathscr{D}(w,i)$ with $w \in (A_1)^{\otimes \ell}$, and Q is the corresponding McKay quiver. Then there exists a "twisted quiver superpotential" $\Phi \in (\Bbbk Q)_{\ell}$ such that A # H is Morita equivalent to

$$\Lambda = \mathscr{D}(\Phi, i) := \frac{\mathbb{k} Q}{\langle \partial_{\alpha} \Phi \mid \alpha \in (\mathbb{k} Q)_i \rangle}.$$

Moreover, $A^H \cong e_0 \Lambda e_0$.

lackbox " ∂_{lpha} " means "formal left differentiation with respect to the path lpha".

▶ The following generalises a result of Bocklandt–Schedler–Wemyss:

Theorem (C. '21)

Suppose that $H Q A = \mathscr{D}(w,i)$ with $w \in (A_1)^{\otimes \ell}$, and Q is the corresponding McKay quiver. Then there exists a "twisted quiver superpotential" $\Phi \in (\Bbbk Q)_{\ell}$ such that A # H is Morita equivalent to

$$\Lambda = \mathscr{D}(\Phi, i) := \frac{\mathbb{k} Q}{\langle \partial_{\alpha} \Phi \mid \alpha \in (\mathbb{k} Q)_i \rangle}.$$

Moreover, $A^H \cong e_0 \Lambda e_0$.

- lackbox " ∂_{α} " means "formal left differentiation with respect to the path α ".
- There is a recipe to construct Φ using representation theory.

▶ The following generalises a result of Bocklandt–Schedler–Wemyss:

Theorem (C. '21)

Suppose that $H Q A = \mathscr{D}(w,i)$ with $w \in (A_1)^{\otimes \ell}$, and Q is the corresponding McKay quiver. Then there exists a "twisted quiver superpotential" $\Phi \in (\Bbbk Q)_{\ell}$ such that A # H is Morita equivalent to

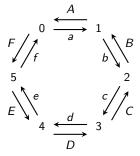
$$\Lambda = \mathscr{D}(\Phi, i) := \frac{\mathbb{k} Q}{\langle \partial_{\alpha} \Phi \mid \alpha \in (\mathbb{k} Q)_i \rangle}.$$

Moreover, $A^H \cong e_0 \Lambda e_0$.

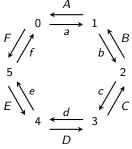
- lacktriangleright " ∂_{α} " means "formal left differentiation with respect to the path α ".
- ightharpoonup There is a recipe to construct Φ using representation theory.
- ▶ If a path p in Φ starts at the vertex corresponding to V_i , then it ends at the vertex corresponding to $(hdet_A)^* \otimes V_i$.

▶ $A = \mathcal{D}(w, 0)$ where $w = u^2 - v^2$, hdet_A is trivial.

- ▶ $A = \mathcal{D}(w, 0)$ where $w = u^2 v^2$, hdet_A is trivial.
- ► The corresponding McKay quiver is:

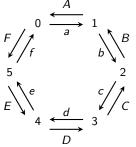


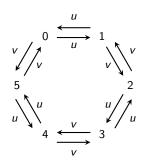
- ▶ $A = \mathcal{D}(w, 0)$ where $w = u^2 v^2$, hdet_A is trivial.
- ► The corresponding McKay quiver is:



How do we determine Φ?

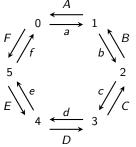
- ▶ $A = \mathcal{D}(w, 0)$ where $w = u^2 v^2$, hdet_A is trivial.
- ► The corresponding McKay quiver is:

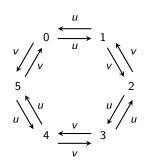




- ► How do we determine Φ?
- \blacktriangleright We can identify arrows with elements of A_1 .

- ▶ $A = \mathcal{D}(w, 0)$ where $w = u^2 v^2$, hdet_A is trivial.
- ► The corresponding McKay quiver is:

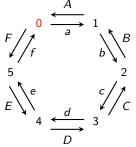


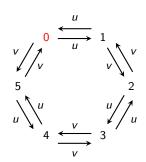


- How do we determine Φ?
- ▶ We can identify arrows with elements of A_1 .
- For each vertex i, Φ contains a sum of paths from V_i to $hdet_A^* \otimes V_i = V_i$ which "trace out w":

$$\Phi =$$

- ▶ $A = \mathcal{D}(w, 0)$ where $w = u^2 v^2$, hdet_A is trivial.
- ► The corresponding McKay quiver is:

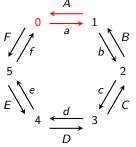


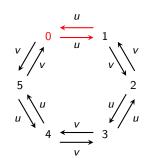


- How do we determine Φ?
- ▶ We can identify arrows with elements of A_1 .
- For each vertex i, Φ contains a sum of paths from V_i to $hdet_A^* \otimes V_i = V_i$ which "trace out w":

$$\Phi =$$

- $ightharpoonup A = \mathscr{D}(w,0)$ where $w = u^2 v^2$, hdet_A is trivial.
- ► The corresponding McKay quiver is:

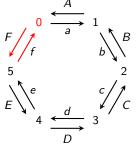


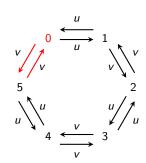


- ► How do we determine Φ?
- ▶ We can identify arrows with elements of A_1 .
- For each vertex i, Φ contains a sum of paths from V_i to $hdet_A^* \otimes V_i = V_i$ which "trace out w":

$$\Phi = aA$$

- ▶ $A = \mathcal{D}(w, 0)$ where $w = u^2 v^2$, hdet_A is trivial.
- ► The corresponding McKay quiver is:

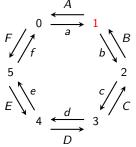


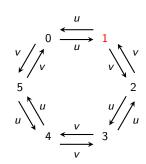


- ► How do we determine Φ?
- ▶ We can identify arrows with elements of A_1 .
- ► For each vertex i, Φ contains a sum of paths from V_i to $\mathsf{hdet}_A^* \otimes V_i = V_i$ which "trace out w":

$$\Phi = aA - Ff$$

- ▶ $A = \mathcal{D}(w, 0)$ where $w = u^2 v^2$, hdet_A is trivial.
- ► The corresponding McKay quiver is:

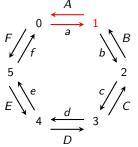


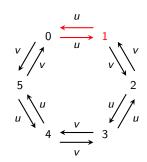


- ► How do we determine Φ?
- ▶ We can identify arrows with elements of A_1 .
- For each vertex i, Φ contains a sum of paths from V_i to $hdet_A^* \otimes V_i = V_i$ which "trace out w":

$$\Phi = aA - Ff$$

- $ightharpoonup A = \mathscr{D}(w,0)$ where $w = u^2 v^2$, hdet_A is trivial.
- ► The corresponding McKay quiver is:

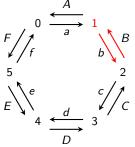


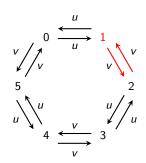


- ► How do we determine Φ?
- ▶ We can identify arrows with elements of A_1 .
- For each vertex i, Φ contains a sum of paths from V_i to $hdet_A^* \otimes V_i = V_i$ which "trace out w":

$$\Phi = aA - Ff + Aa$$

- ▶ $A = \mathcal{D}(w, 0)$ where $w = u^2 v^2$, hdet_A is trivial.
- ► The corresponding McKay quiver is:

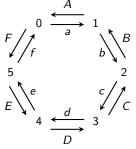


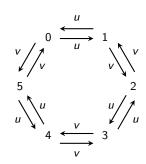


- ► How do we determine Φ?
- ▶ We can identify arrows with elements of A_1 .
- ► For each vertex i, Φ contains a sum of paths from V_i to $\mathsf{hdet}_A^* \otimes V_i = V_i$ which "trace out w":

$$\Phi = aA - Ff + Aa - bB$$

- ▶ $A = \mathcal{D}(w, 0)$ where $w = u^2 v^2$, hdet_A is trivial.
- ► The corresponding McKay quiver is:

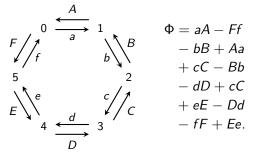




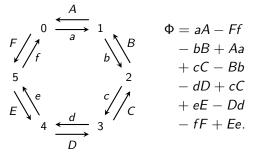
- How do we determine Φ?
- ▶ We can identify arrows with elements of A_1 .
- ▶ For each vertex i, Φ contains a sum of paths from V_i to $\mathsf{hdet}_A^* \otimes V_i = V_i$ which "trace out w":

$$\Phi = aA - Ff + Aa - bB + cC - Bb + Cc - dD + eE - Dd + Ee - fF.$$

- ▶ $A = \mathcal{D}(w, 0)$ where $w = u^2 v^2$, hdet_A is trivial.
- ► The corresponding McKay quiver is:

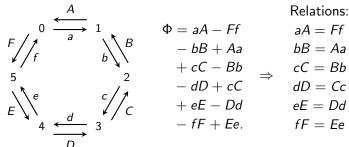


- ▶ $A = \mathcal{D}(w, 0)$ where $w = u^2 v^2$, hdet_A is trivial.
- ► The corresponding McKay quiver is:



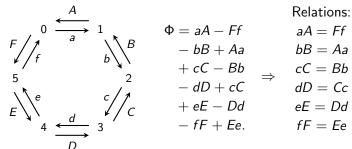
▶ A # H is Morita equivalent to $\Lambda = \mathcal{D}(\Phi, 0)$.

- ▶ $A = \mathcal{D}(w, 0)$ where $w = u^2 v^2$, hdet_A is trivial.
- ► The corresponding McKay quiver is:



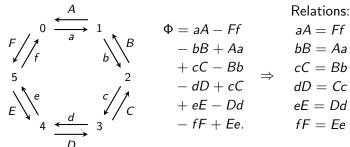
▶ A # H is Morita equivalent to $Λ = \mathscr{D}(Φ, 0)$.

- ▶ $A = \mathcal{D}(w, 0)$ where $w = u^2 v^2$, hdet_A is trivial.
- ▶ The corresponding McKay quiver is:



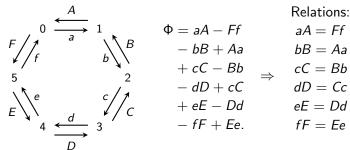
- ▶ A # H is Morita equivalent to $Λ = \mathscr{D}(Φ, 0)$.
- $ightharpoonup \Lambda$ is the preprojective algebra of an $\widetilde{\mathbb{A}}_5$ quiver.

- ▶ $A = \mathcal{D}(w, 0)$ where $w = u^2 v^2$, hdet_A is trivial.
- ► The corresponding McKay quiver is:



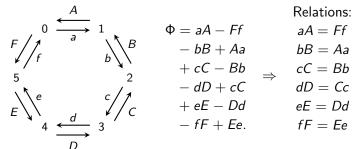
- ▶ A # H is Morita equivalent to Λ = 𝒯(Φ, 0).
- $ightharpoonup \Lambda$ is the preprojective algebra of an $\widetilde{\mathbb{A}}_5$ quiver.
- Observe: Φ is closed under cyclic permutation of arrows.

- ▶ $A = \mathcal{D}(w, 0)$ where $w = u^2 v^2$, hdet_A is trivial.
- ► The corresponding McKay quiver is:



▶ By the theorem, $A^H \cong e_0 \Lambda e_0$.

- ▶ $A = \mathcal{D}(w, 0)$ where $w = u^2 v^2$, hdet_A is trivial.
- ► The corresponding McKay quiver is:

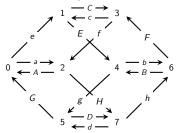


- ▶ By the theorem, $A^H \cong e_0 \Lambda e_0$.
- ▶ Set x = abcdef, y = FEDCBA, z = aA. Then $xy = z^6$, and

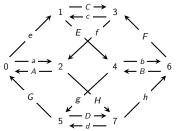
$$e_0 \Lambda e_0 \cong rac{\mathbb{k}[x,y,z]}{\langle xy - z^6
angle} \cong A^H.$$

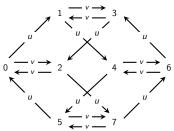
 $A = \mathscr{D}(\mathsf{w},1), \ \mathsf{w} = v^2 u^2 - v u^2 v + u^2 v^2 - u v^2 u \in A_1^{\otimes 4}, \ \mathsf{hdet}_A \neq \varepsilon.$

- $A = \mathscr{D}(\mathsf{w},1), \ \mathsf{w} = \mathsf{v}^2 \mathsf{u}^2 \mathsf{v} \mathsf{u}^2 \mathsf{v} + \mathsf{u}^2 \mathsf{v}^2 \mathsf{u} \mathsf{v}^2 \mathsf{u} \in A_1^{\otimes 4}, \ \mathsf{hdet}_{\mathcal{A}} \neq \varepsilon.$
- ► This has McKay quiver

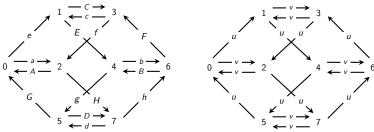


- $ightharpoonup A = \mathscr{D}(w,1)$, $w = v^2u^2 vu^2v + u^2v^2 uv^2u \in A_1^{\otimes 4}$, $hdet_A \neq \varepsilon$.
- ▶ This has McKay quiver, with an identification:

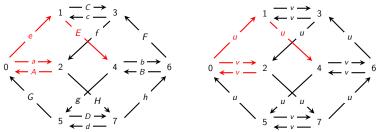




- $ightharpoonup A = \mathscr{D}(\mathsf{w},1), \ \mathsf{w} = v^2u^2 vu^2v + u^2v^2 uv^2u \in A_1^{\otimes 4}, \ \mathsf{hdet}_A \neq \varepsilon.$
- ▶ This has McKay quiver, with an identification:

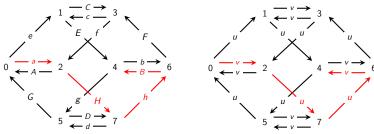


- $A = \mathscr{D}(\mathsf{w},1), \ \mathsf{w} = \frac{\mathsf{v}^2 \mathsf{u}^2}{\mathsf{v}^2} \mathsf{v} \mathsf{u}^2 \mathsf{v} + \mathsf{u}^2 \mathsf{v}^2 \mathsf{u} \mathsf{v}^2 \mathsf{u} \in A_1^{\otimes 4}, \ \mathsf{hdet}_{\mathcal{A}} \neq \varepsilon.$
- ▶ This has McKay quiver, with an identification:



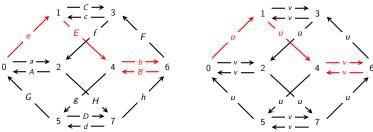
$$\Phi = aAeE$$

- $A = \mathscr{D}(\mathsf{w},1), \ \mathsf{w} = \mathsf{v}^2 \mathsf{u}^2 \mathsf{v} \mathsf{u}^2 \mathsf{v} + \mathsf{u}^2 \mathsf{v}^2 \mathsf{u} \mathsf{v}^2 \mathsf{u} \in A_1^{\otimes 4}, \ \mathsf{hdet}_A \neq \varepsilon.$
- ▶ This has McKay quiver, with an identification:



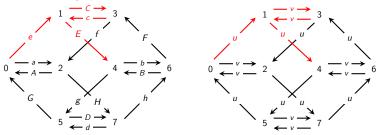
$$\Phi = aAeE - aHhB$$

- $A = \mathscr{D}(\mathsf{w},1), \ \mathsf{w} = \mathsf{v}^2 \mathsf{u}^2 \mathsf{v} \mathsf{u}^2 \mathsf{v} + \mathsf{u}^2 \mathsf{v}^2 \mathsf{u} \mathsf{v}^2 \mathsf{u} \in A_1^{\otimes 4}, \ \mathsf{hdet}_A \neq \varepsilon.$
- ▶ This has McKay quiver, with an identification:



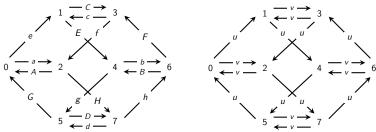
$$\Phi = aAeE - aHhB + eEbB$$

- $A = \mathscr{D}(\mathsf{w},1), \ \mathsf{w} = \mathsf{v}^2 \mathsf{u}^2 \mathsf{v} \mathsf{u}^2 \mathsf{v} + \mathsf{u}^2 \mathsf{v}^2 \mathsf{u} \mathsf{v}^2 \mathsf{u} \in A_1^{\otimes 4}, \ \mathsf{hdet}_A \neq \varepsilon.$
- ▶ This has McKay quiver, with an identification:



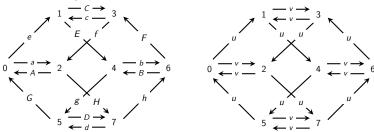
$$\Phi = aAeE - aHhB + eEbB - eCcE$$

- $A = \mathscr{D}(\mathsf{w},1), \ \mathsf{w} = \mathsf{v}^2 \mathsf{u}^2 \mathsf{v} \mathsf{u}^2 \mathsf{v} + \mathsf{u}^2 \mathsf{v}^2 \mathsf{u} \mathsf{v}^2 \mathsf{u} \in A_1^{\otimes 4}, \ \mathsf{hdet}_A \neq \varepsilon.$
- ▶ This has McKay quiver, with an identification:



$$\begin{split} \Phi &= aAeE - aHhB + eEbB - eCcE + CcEg - CfHd + EgDd - EbBg + AaHh - AeEb + HhBb - HdDh \\ &+ cCfH - cEgD + fHdD - fAaH + bBgG - bFfA + gGaA - gDdG + DdGe - DhFc + GeCc - GaAe \\ &+ BbFf - BgGa + FfAa - FcCf + dDhF - dGeC + hFcC - hBbF. \end{split}$$

- $A = \mathscr{D}(\mathsf{w},1), \ \mathsf{w} = \mathsf{v}^2 \mathsf{u}^2 \mathsf{v} \mathsf{u}^2 \mathsf{v} + \mathsf{u}^2 \mathsf{v}^2 \mathsf{u} \mathsf{v}^2 \mathsf{u} \in A_1^{\otimes 4}, \ \mathsf{hdet}_{\mathcal{A}} \neq \varepsilon.$
- ▶ This has McKay quiver, with an identification:



▶ Fact: $hdet_A$ tells us that paths in Φ have distinct start and end points, but are equal mod 4. We have:

$$\Phi = aAeE - aHhB + eEbB - eCcE + CcEg - CfHd + EgDd - EbBg + AaHh - AeEb + HhBb - HdDh \\ + cCfH - cEgD + fHdD - fAaH + bBgG - bFfA + gGaA - gDdG + DdGe - DhFc + GeCc - GaAe \\ + BbFf - BgGa + FfAa - FcCf + dDhF - dGeC + hFcC - hBbF.$$

▶ A # H is Morita equivalent to $\Lambda = \mathscr{D}(\Phi, 1)$. The relations in Λ are, e.g. $\partial_a \Phi = AeE - HhB$, $\partial_b \Phi = EbB - CcE$, etc.

Application: The Auslander Map

► There is a natural map

$$\gamma: A \# H \to \operatorname{End}_{A^H}(A).$$

If γ is an isomorphism, there are bijections between various module categories.

Application: The Auslander Map

► There is a natural map

$$\gamma: A \# H \to \operatorname{End}_{A^H}(A).$$

If γ is an isomorphism, there are bijections between various module categories.

Using a result of Bao–He–Zhang:

Corollary (C. '21)

Suppose H Q A with associated quiver algebra Λ , and GKdim A=n. Then γ is an isomorphism \Leftrightarrow GKdim $\Lambda/\langle e_0 \rangle \leqslant n-2$.

Application: The Auslander Map

► There is a natural map

$$\gamma: A \# H \to \operatorname{End}_{A^H}(A).$$

If γ is an isomorphism, there are bijections between various module categories.

▶ Using a result of Bao−He−Zhang:

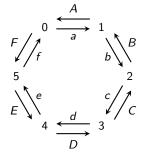
Corollary (C. '21)

Suppose H Q A with associated quiver algebra Λ , and GKdim A=n. Then γ is an isomorphism \Leftrightarrow GKdim $\Lambda/\langle e_0 \rangle \leqslant n-2$.

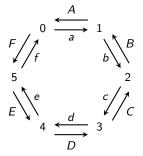
▶ This condition is (sometimes) easy to check!

- $ightharpoonup A = \mathbb{k}\langle u, v \rangle / \langle u^2 v^2 \rangle$ and GKdim A = 2.
- Λ is given by the quiver below, with "preprojective relations":

- ▶ $A = \mathbb{k}\langle u, v \rangle / \langle u^2 v^2 \rangle$ and GKdim A = 2.
- Λ is given by the quiver below, with "preprojective relations":

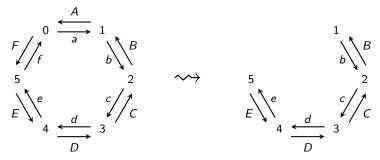


- $ightharpoonup A = \mathbb{k}\langle u, v \rangle / \langle u^2 v^2 \rangle$ and GKdim A = 2.
- Λ is given by the quiver below, with "preprojective relations":



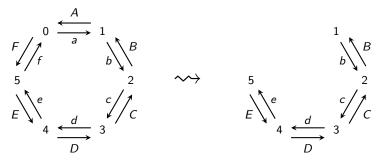
▶ Factoring by $\langle e_0 \rangle$ corresponds to deleting the vertex 0.

- $ightharpoonup A = \mathbb{k}\langle u, v \rangle / \langle u^2 v^2 \rangle$ and GKdim A = 2.
- Λ is given by the quiver below, with "preprojective relations":



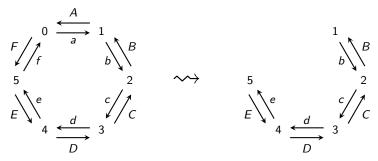
▶ Factoring by $\langle e_0 \rangle$ corresponds to deleting the vertex 0.

- ▶ $A = \mathbb{k}\langle u, v \rangle / \langle u^2 v^2 \rangle$ and GKdim A = 2.
- Λ is given by the quiver below, with "preprojective relations":



- ▶ Factoring by $\langle e_0 \rangle$ corresponds to deleting the vertex 0.
- ▶ This gives a preprojective algebra of Type \mathbb{A}_5 . This is well-known to be finite-dimensional, so $\mathsf{GKdim}\,\Lambda/\langle e_0\rangle=0$, so γ is an isomorphism.

- $ightharpoonup A = \mathbb{k}\langle u, v \rangle / \langle u^2 v^2 \rangle$ and GKdim A = 2.
- Λ is given by the quiver below, with "preprojective relations":



- ▶ Factoring by $\langle e_0 \rangle$ corresponds to deleting the vertex 0.
- ▶ This gives a preprojective algebra of Type \mathbb{A}_5 . This is well-known to be finite-dimensional, so $\mathsf{GKdim}\,\Lambda/\langle e_0\rangle=0$, so γ is an isomorphism.
- ▶ A similar argument works for all quantum Kleinian singularities.

Thank you

And congratulations Paul!