Dual Reflection Groups

W. Frank Moore*

moorewf@math.wfu.edu

June 20th, 2022

Department of Mathematics

Joint work with Pete Goetz, Ellen Kirkman and Kent Vashaw

Throughout, let k be an algebraically closed field with char k=0.

Let G be a finite subgroup of $GL_n(k)$. Then G acts on $A = k[x_1, \dots, x_n]$ via the linear action on $A_1 = kx_1 + \dots + kx_n$.

The invariant ring is

Classical Invariant Theory

$$A^G = \{ f \in A \mid g.f = f \ \forall g \in G \}.$$

Then A^G is a Noetherian graded ring, and A is a finitely generated A^G -module.

There are many interesting results in this context; in this talk we will focus on the following:

Theorem (Chevalley-Shephard-Todd)

The invariant ring A^G is isomorphic to a polynomial ring if and only if *G* is generated by pseudoreflections.

An element $g \in GL_n(k)$ is a pseudoreflection if it is not the identity, has finite order, and fixes a hyperplane in k^n .

There are many interesting results in this context; in this talk we will focus on the following:

Theorem (Chevalley-Shephard-Todd)

The invariant ring A^G is isomorphic to a polynomial ring if and only if G is generated by pseudoreflections.

An element $g \in GL_n(k)$ is a pseudoreflection if it is not the identity, has finite order, and fixes a hyperplane in k^n .

Question

What are some extensions of this result to the context of noncommutative algebras?

One often broadens the context as follows:

 Require A to be an AS-regular algebra over k. (Recall that a k-algebra A is AS-regular if A is connected graded, AS-Gorenstein ring of finite global dimension and finite GK dimension.)

One often broadens the context as follows:

- Require A to be an AS-regular algebra over k. (Recall that a k-algebra A is AS-regular if A is connected graded, AS-Gorenstein ring of finite global dimension and finite GK dimension.)
- Replace the *G*-action on *A* with the action of a (usually semisimple) Hopf algebra *H*, acting linearly. This action is defined via the coproduct of *H*:

$$h.(ab) = \sum (h_{(1)}.a)(h_{(2)}.b)$$

where we have used Sweedler notation: $\Delta(h) = \sum h_{(1)} \otimes h_{(2)}$.

- Require A to be an AS-regular algebra over k. (Recall that a k-algebra A is AS-regular if A is connected graded, AS-Gorenstein ring of finite global dimension and finite GK dimension.)
- Replace the G-action on A with the action of a (usually semisimple) Hopf algebra H, acting linearly. This action is defined via the coproduct of H:

$$h.(ab) = \sum (h_{(1)}.a)(h_{(2)}.b)$$

where we have used Sweedler notation: $\Delta(h) = \sum h_{(1)} \otimes h_{(2)}$.

In this context, the invariant ring becomes

$$A^H = \{ f \in A \mid h.f = \epsilon(h)f \}.$$

where $\epsilon: H \to k$ is the counit of H.

Definition (Kirkman-Kuzmanovich-Zhang)

If A is an AS-regular algebra, and H acts linearly and inner faithfully on A such that A^H is also an AS-regular algebra, we say that H is a reflection Hopf algebra for A.

To search for examples of reflection Hopf algebras H acting on (quadratically defined, say) AS-regular algebras A, one may:

Fix a Hopf algebra H

To search for examples of reflection Hopf algebras H acting on (quadratically defined, say) AS-regular algebras A, one may:

- Fix a Hopf algebra H
- Choose an inner-faithful representation V of H. This determines a linear action of H on T(V), the tensor algebra of V.

To search for examples of reflection Hopf algebras H acting on (quadratically defined, say) AS-regular algebras A, one may:

- Fix a Hopf algebra H
- Choose an inner-faithful representation V of H. This determines a linear action of H on T(V), the tensor algebra of V.
- Let W be a H-subrepresentation of $V \otimes V$. Let $I = \langle W \rangle$, and let A = T(V)/I. Restrict your choices of W such that A is AS-regular. (This is the tricky part!)

In this talk, we will focus on the particular case of $H=(kG)^*$, the linear dual of the group algebra of G over k.

In this context:

• A vector space V is a representation of $(kG)^*$ precisely when it carries a G-grading. Since V carries a G-grading, so does T(V).

Dual Reflection Groups

In this talk, we will focus on the particular case of $H=(kG)^*$, the linear dual of the group algebra of G over k.

In this context:

- A vector space V is a representation of $(kG)^*$ precisely when it carries a G-grading. Since V carries a G-grading, so does T(V).
- This action is inner-faithful if the support of the representation is a (not necessarily minimal) generating set of G.

In this talk, we will focus on the particular case of $H=(kG)^*$, the linear dual of the group algebra of G over k.

In this context:

- A vector space V is a representation of (kG)* precisely when it carries a G-grading. Since V carries a G-grading, so does T(V).
- This action is inner-faithful if the support of the representation is a (not necessarily minimal) generating set of G.
- To choose W, one need only choose a set of G-homogeneous relations to impose in order to define $A = T(V)/\langle W \rangle$.

In this talk, we will focus on the particular case of $H=(kG)^*$, the linear dual of the group algebra of G over k.

In this context:

- A vector space V is a representation of (kG)* precisely when it carries a G-grading. Since V carries a G-grading, so does T(V).
- This action is inner-faithful if the support of the representation is a (not necessarily minimal) generating set of G.
- To choose W, one need only choose a set of G-homogeneous relations to impose in order to define $A = T(V)/\langle W \rangle$.
- The counit of $(kG)^*$ sends the dual basis element corresponding to nonidentity group elements to zero and that of the identity to 1. Therefore the invariant subring is the component of A in the identity group grade, denoted A_e .

In this project, we therefore seek AS-regular algebras A which are graded by a finite group G such that:

In this project, we therefore seek AS-regular algebras A which are graded by a finite group G such that:

- A is defined by quadratic relations;
- A is generated by $\{x_1, \ldots, x_n\}$ with group grades $\mathcal{R} = \{g_1, \ldots, g_n\}$, with \mathcal{R} a generating set of G.
- A_e is again an AS-regular algebra.

In this project, we therefore seek AS-regular algebras A which are graded by a finite group G such that:

- A is defined by quadratic relations;
- A is generated by $\{x_1, \ldots, x_n\}$ with group grades $\mathcal{R} = \{g_1, \ldots, g_n\}$, with \mathcal{R} a generating set of G.
- ullet A_e is again an AS-regular algebra.

One calls such a group G a *dual reflection group* for the AS-regular algebra A.

Finding such examples was the content of Vashaw's 2016 Master's Thesis.

How can one recognize such behavior? We give some necessary conditions due to Kirkman-Kuzmanovich-Zhang.

Definition

Let G be a finite group and let \mathcal{R} be a generating set of G. For $g \in G$, the length of g with respect to \mathcal{R} is defined to be:

$$\ell_{\mathcal{R}}(g) := \min\{r \mid v_1 \cdots v_r = g \text{ for some } v_i \in \mathcal{R}\}.$$

How can one recognize such behavior? We give some necessary conditions due to Kirkman-Kuzmanovich-Zhang.

Definition

Let G be a finite group and let \mathcal{R} be a generating set of G. For $g \in G$, the length of g with respect to \mathcal{R} is defined to be:

$$\ell_{\mathcal{R}}(g) := \min\{r \mid v_1 \cdots v_r = g \text{ for some } v_i \in \mathcal{R}\}.$$

The *Poincaré polynomial* of G with respect to \mathcal{R} is defined to be

$$\mathfrak{p}_{\mathcal{R}}(t) = \sum_{g \in G} t^{\ell_{\mathcal{R}}(g)}.$$

Definition

Let G be a finite group and let \mathcal{R} be a generating set of G. For $g \in G$, the length of g with respect to \mathcal{R} is defined to be:

$$\ell_{\mathcal{R}}(g) := \min\{r \mid v_1 \cdots v_r = g \text{ for some } v_i \in \mathcal{R}\}.$$

The *Poincaré polynomial* of G with respect to \mathcal{R} is defined to be

$$\mathfrak{p}_{\mathcal{R}}(t) = \sum_{g \in G} t^{\ell_{\mathcal{R}}(g)}.$$

The Poincaré polynomial is the same as the Hilbert series of the associated graded ring of kG with respect to the length filtration defined by \mathcal{R} . This algebra is called the Hasse algebra by [KKZ] and the nilCoxeter algebra by Fomin-Stanley.

Let A be a Noetherian AS-regular domain generated in degree 1. Let G coact on A inner-faithfully as a dual reflection group. Let \mathcal{R} be the set of nonidentity group grades present in the representation A_1 . Then the following hold:

Let A be a Noetherian AS-regular domain generated in degree 1. Let G coact on A inner-faithfully as a dual reflection group. Let $\mathcal R$ be the set of nonidentity group grades present in the representation A_1 . Then the following hold:

① There is a set of homogeneous elements $\{f_g \mid g \in G\} \subseteq A$ with $f_e=1$ such that $A=\bigoplus_{g\in G}A_g$ and $A_g=f_gA_e=A_ef_g$ for all $g\in G$.

Classical Invariant Theory

Let A be a Noetherian AS-regular domain generated in degree 1. Let G coact on A inner-faithfully as a dual reflection group. Let $\mathcal R$ be the set of nonidentity group grades present in the representation A_1 . Then the following hold:

- ① There is a set of homogeneous elements $\{f_g \mid g \in G\} \subseteq A$ with $f_e = 1$ such that $A = \bigoplus_{g \in G} A_g$ and $A_g = f_g A_e = A_e f_g$ for all $g \in G$.

Classical Invariant Theory

Let A be a Noetherian AS-regular domain generated in degree 1. Let G coact on A inner-faithfully as a dual reflection group. Let $\mathcal R$ be the set of nonidentity group grades present in the representation A_1 . Then the following hold:

- ① There is a set of homogeneous elements $\{f_g \mid g \in G\} \subseteq A$ with $f_e = 1$ such that $A = \bigoplus_{g \in G} A_g$ and $A_g = f_g A_e = A_e f_g$ for all $g \in G$.
- The Poincaré polynomial of G with respect to \mathcal{R} is a product of cyclotomic polynomials (and is hence palindromic).

Dual Reflection Groups

Theorem (KKZ)

Let A be a Noetherian AS-regular domain generated in degree 1. Let G coact on A inner-faithfully as a dual reflection group. Let $\mathcal R$ be the set of nonidentity group grades present in the representation A_1 . Then the following hold:

- ① There is a set of homogeneous elements $\{f_g \mid g \in G\} \subseteq A$ with $f_e = 1$ such that $A = \bigoplus_{g \in G} A_g$ and $A_g = f_g A_e = A_e f_g$ for all $g \in G$.
- The Poincaré polynomial of G with respect to R is a product of cyclotomic polynomials (and is hence palindromic).
- ① The unique element m of G of longest length with respect to \mathcal{R} is called the mass element of G with respect to \mathcal{R} . For this element m, the element f_m defined above is normal in A.

Let A be a Noetherian AS-regular domain generated in degree 1. Let G coact on A inner-faithfully as a dual reflection group. Let \mathcal{R} be the set of nonidentity group grades present in the representation A_1 . Then the following hold:

- **1** There is a set of homogeneous elements $\{f_a \mid g \in G\} \subseteq A$ with $f_e = 1$ such that $A = \bigoplus_{g \in G} A_g$ and $A_g = f_g A_e = A_e f_g$ for all $q \in G$.
- \bigcirc deg $f_q = \ell_{\mathcal{R}}(g)$ for all $g \in G$.
- **1** The Poincaré polynomial of G with respect to \mathcal{R} is a product of cyclotomic polynomials (and is hence palindromic).
- lacktriangledge The unique element m of G of longest length with respect to ${\mathcal R}$ is called the mass element of G with respect to R. For this element m, the element f_m defined above is normal in A.
- The left ideal $J = A(A_e)_{>1}$ is two-sided, and the quotient (called the covariant ring of the action, denoted $A^{cov} := A/J$) is a skew Hasse algebra of G with respect to R and is a Frobenius algebra. Forest

Consider the group that Magma calls M_{16} (SmallGroup (16, 6)), and presents as:

$$G = \langle a, b, c, d \mid a^2 = c, b^2 = d^2 = e, c^2 = d, ba = abd, c, d \text{ central} \rangle.$$

Consider the group that Magma calls M_{16} (SmallGroup (16, 6)), and presents as:

$$G = \langle a, b, c, d \mid a^2 = c, b^2 = d^2 = e, c^2 = d, ba = abd, c, d \text{ central} \rangle.$$

Consider the generating set of G:

$$\mathcal{R} = \{a, acd, ab, abc\}$$

$$G = \langle a, b, c, d \mid a^2 = c, b^2 = d^2 = e, c^2 = d, ba = abd, c, d \text{ central} \rangle.$$

Consider the generating set of G:

$$\mathcal{R} = \{a, acd, ab, abc\}$$

This generating set has Poincaré polynomial

$$(1+t)^4 = 1 + 4t + 6t^2 + 4t^3 + t^4.$$

If we consider $k\langle x_1, x_2, x_3, x_4 \rangle$ with grades coming from \mathcal{R} , we may impose the following quadratic relations to obtain an algebra A:

$$x_1^2 = x_4^2 \; ({\sf grade} \; c) \qquad x_2^2 = x_3^2 \; ({\sf grade} \; cd)$$
 $x_4x_1 = x_2x_3 \; ({\sf grade} \; b) \qquad x_1x_4 = x_3x_2 \; ({\sf grade} \; bd)$ $x_1x_3 = x_2x_4 \; ({\sf grade} \; bc) \qquad x_3x_1 = x_4x_2 \; ({\sf grade} \; bcd)$

If we make the change of variable

$$\begin{array}{rcl} Y_1 & = & x_1 + x_2 + x_3 + x_4 \\ Y_2 & = & -x_1 + x_2 - x_3 + x_4 \\ Z_1 & = & -x_1 + x_2 + x_3 - x_4 \\ Z_2 & = & -x_1 - x_2 + x_3 + x_4 \end{array}$$

we find that the following relations hold:

$$Y_2Y_1 = -Y_1Y_2$$
 $Z_2Z_1 = -Z_1Z_2$
 $Y_1Z_1 = -Z_2Y_2$ $Y_2Z_1 = Z_2Y_1$
 $Y_1Z_2 = Z_1Y_2$ $Y_2Z_2 = -Z_1Y_1$

If we make the change of variable

$$\begin{array}{rcl} Y_1 & = & x_1 + x_2 + x_3 + x_4 \\ Y_2 & = & -x_1 + x_2 - x_3 + x_4 \\ Z_1 & = & -x_1 + x_2 + x_3 - x_4 \\ Z_2 & = & -x_1 - x_2 + x_3 + x_4 \end{array}$$

we find that the following relations hold:

$$Y_2Y_1 = -Y_1Y_2$$
 $Z_2Z_1 = -Z_1Z_2$
 $Y_1Z_1 = -Z_2Y_2$ $Y_2Z_1 = Z_2Y_1$
 $Y_1Z_2 = Z_1Y_2$ $Y_2Z_2 = -Z_1Y_1$

These relations show that A is a (left or right) double Ore extension of $k_{-1}[Y_1,Y_2]$ in the sense of Zhang-Zhang. It is therefore AS-regular of dimension four.

The identity component is:

$$A_e = k[x_1x_2, x_2x_1, x_3x_4, x_4x_3].$$

This is a commutative polynomial ring (but not a central subalgebra) and hence this group is a dual reflection group for A.

The identity component is:

$$A_e = k[x_1x_2, x_2x_1, x_3x_4, x_4x_3].$$

This is a commutative polynomial ring (but not a central subalgebra) and hence this group is a dual reflection group for A.

Pete will talk about a particularly interesting example also found using this method, together with some potential new tools to study such algebras.

Thank you!

