

Noetherian rings with Auslander dualizing complex are bounded factorization

Zahra Nazemian

University of Graz, Austria

joint work with Jason Bell, Ken Brown, and Daniel Smertnig

Dedicated to S. Paul Smith, June 20-24, 2022.

Setting

Let R be a ring (unital, usually noncommutative), with R^\bullet its submonoid of cancellative (regular) elements, and R^\times its group of units.

Setting

Let R be a ring (unital, usually noncommutative), with R^\bullet its submonoid of cancellative (regular) elements, and R^\times its group of units.

If R is a **domain** or a **prime Goldie ring**, then R^\bullet is divisor-closed:

Setting

Let R be a ring (unital, usually noncommutative), with R^\bullet its submonoid of cancellative (regular) elements, and R^\times its group of units.

If R is a **domain** or a **prime Goldie ring**, then R^\bullet is divisor-closed:
($a = bc$, and $a \in R^\bullet$, then $b, c \in R^\bullet$.)

We restrict to this setting and study factorizations in R^\bullet .

Setting

Let R be a ring (unital, usually noncommutative), with R^\bullet its submonoid of cancellative (regular) elements, and R^\times its group of units.

If R is a **domain** or a **prime Goldie ring**, then R^\bullet is divisor-closed:
($a = bc$, and $a \in R^\bullet$, then $b, c \in R^\bullet$.)

We restrict to this setting and study factorizations in R^\bullet .

Remark

During this talk, you may suppose that R is a domain and then $R^\bullet = R \setminus \{0\}$ and you are not going to miss something ...

Factorizations

Definition

- A non-unit $u \in R^\bullet$ is an **atom (irreducible element)** if

$$u = bc \quad \Rightarrow \quad b \in R^\times \text{ or } c \in R^\times.$$

Factorizations

Definition

- A non-unit $u \in R^\bullet$ is an **atom (irreducible element)** if

$$u = bc \quad \Rightarrow \quad b \in R^\times \text{ or } c \in R^\times.$$

- A **factorization** of a non-unit $a \in R^\bullet$ is a representation

$$a = u_1 u_2 \cdots u_k \quad \text{with } u_1, \dots, u_k \text{ atoms,}$$

Lengths and Bounded Factorization (BF)

Definition

For $a \in R^\bullet$ the **set of lengths**, $L(a)$, consists of all $k \in \mathbb{N}_0$ such that a has a factorization of length k . ($L(a) = \{0\}$ for units.)

Lengths and Bounded Factorization (BF)

Definition

For $a \in R^\bullet$ the **set of lengths**, $L(a)$, consists of all $k \in \mathbb{N}_0$ such that a has a factorization of length k . ($L(a) = \{0\}$ for units.) R has **bounded factorizations (BF)** if $L(a)$ is non-empty and **finite** for all $a \in R^\bullet$.

The commutative world

Theorem

Every **commutative** noetherian domain has BF.

Noncommutative setting

Question

Do noncommutative noetherian domains/prime rings have BF?

Several Technique for Different Rings:

Theorem (The following rings have BF:)

- 1 Prime fully bounded noetherian (FBN) rings in which every nonzero ideal contains a central element (e.g., prime PI rings)

Several Technique for Different Rings:

Theorem (The following rings have BF:)

- 1 Prime fully bounded noetherian (FBN) rings in which every nonzero ideal contains a central element (e.g., prime PI rings)
- 2 Affine noetherian prime algebras of quadratic growth.

Several Technique for Different Rings:

Theorem (The following rings have BF:)

- 1 Prime fully bounded noetherian (FBN) rings in which every nonzero ideal contains a central element (e.g., prime PI rings)
- 2 Affine noetherian prime algebras of quadratic growth.
- 3 Filtered rings whose grades are domain.

Several Technique for Different Rings:

Theorem (The following rings have BF:)

- 1 Prime fully bounded noetherian (FBN) rings in which every nonzero ideal contains a central element (e.g., prime PI rings)
- 2 Affine noetherian prime algebras of quadratic growth.
- 3 Filtered rings whose grades are domain.
- 4 Noetherian skew polynomial ring $S[x; \sigma, \delta]$ or Laurent polynomial ring $S[x^{\pm 1}; \sigma]$.

Several Technique for Different Rings:

Theorem (The following rings have BF:)

- 1 Prime fully bounded noetherian (FBN) rings in which every nonzero ideal contains a central element (e.g., prime PI rings)
- 2 Affine noetherian prime algebras of quadratic growth.
- 3 Filtered rings whose grades are domain.
- 4 Noetherian skew polynomial ring $S[x; \sigma, \delta]$ or Laurent polynomial ring $S[x^{\pm 1}; \sigma]$.

? Group ring kG , that G is polycyclic-by-finite group.

j- function ?

Let j be a map from $\text{Mod}_f(R)$ to a set of ordinal numbers.

j- function ?

Let j be a map from $\text{Mod}_f(R)$ to a set of ordinal numbers.

We say j is **finitely partitive on α** (α an ordinal) if for every $M \in \text{Mod}_f(R)$ with $j(M) = \alpha$, there is a finite bound on the length of chains of submodules of M of the form

$$M_0 \subseteq M_1 \subseteq \cdots \subseteq M_n = M$$

with $j(M_{i+1}/M_i) = \alpha$ for all $0 \leq i < n$.

j- function ?

Let j be a map from $\text{Mod}_f(R)$ to a set of ordinal numbers.

j- function ?

Let j be a map from $\text{Mod}_f(R)$ to a set of ordinal numbers.

j- function ?

Let j be a map from $\text{Mod}_f(R)$ to a set of ordinal numbers.

Lemma

Let R be a noetherian ring having a map j so that, for some fixed ordinal α , the map j is finitely partitive on α and $j(R/aR) = \alpha$ for all non-units $a \in R^\bullet$. Then R has BF.

Auslander-Gorenstein rings

Definition

Auslander-Gorenstein rings

Definition

- 1 Let M be a left [right] R -module. The **(homological) grade** of M is

$$j(M) := \inf\{ i : \text{Ext}_R^i(M, R) \neq 0 \} \in \mathbb{Z}_{\geq 0} \cup \{\omega\}$$

Auslander-Gorenstein rings

Definition

- 1 Let M be a left [right] R -module. The **(homological) grade** of M is

$$j(M) := \inf\{ i : \text{Ext}_R^i(M, R) \neq 0 \} \in \mathbb{Z}_{\geq 0} \cup \{\omega\}$$

- 2 A noetherian ring R is **Auslander-Gorenstein** if
 - R has finite (and equal) right and left injective dimension, and
 - R satisfies the Auslander condition, i.e., for every left [right] R -module M and all $i \geq 0$, $j(N) \geq i$ for every submodule N of $\text{Ext}_R^i(M, R)$.

Auslander-Gorenstein rings

Definition

- 1 Let M be a left [right] R -module. The **(homological) grade** of M is

$$j(M) := \inf\{ i : \mathrm{Ext}_R^i(M, R) \neq 0 \} \in \mathbb{Z}_{\geq 0} \cup \{\omega\}$$

- 2 A noetherian ring R is **Auslander-Gorenstein** if

- R has finite (and equal) right and left injective dimension, and
- R satisfies the Auslander condition, i.e., for every left [right] R -module M and all $i \geq 0$, $j(N) \geq i$ for every submodule N of $\mathrm{Ext}_R^i(M, R)$.

For an Auslander-Gorenstein ring R , the grade j is exact and finitely partitive ($-j$ is an exact finite partitive dimension function).

Theorem

Every Auslander-Gorenstein ring is a BF-ring.

Many rings are Auslander-Gorenstein, e.g.:

- All known noetherian Hopf algebras (group algebras of polycyclic-by-finite groups, enveloping algebras of finite-dimensional Lie algebras, quantised enveloping algebras, connected Hopf-algebras of finite Gelfand-Kirillov dimension, quantised coordinate rings of semisimple groups).
- Rings with locally finite \mathbb{N} -filtration whose associated graded ring is commutative Gorenstein (e.g., Weyl algebras $A_n(k)$).
- Local FBN rings of finite global dimension.
- Sklyanin algebras.

Auslander-dualizing complexes

- Auslander-Gorenstein rings always have finite injective dimension.
- For noetherian algebras over a field there is the more general notion of an Auslander-dualizing complex, developed by Yekutieli and Zhang.
- Again: define a grade j , with $-j$ being finitely partitive and an exact dimension function ($-j$ is the **canonical dimension function**); extend to non-f.g. modules.
- Harder to establish $j(R/xR) = j(R) + 1$ (uses **Gabber's maximality principle**)

Theorem (Bell, Brown, N., Smertnig)

Let R be a noetherian K -algebra with an Auslander dualizing complex. If P is a prime ideal of R , then R/P is a BF-ring.

Still Open:

Still open: Does every noetherian prime ring [noetherian domain] have bounded factorizations?

More specifically, what about the following settings:

- FBN rings — does the variant of the principal ideal theorem hold without the condition that every nonzero ideal contains a nonzero central element?
- Noetherian semigroup algebras of the form $K[S]$ with S a submonoid of a polycyclic-by-finite group satisfying ACC on left [right] ideals.
- Affine noetherian algebras of finite Gelfand-Kirillov dimension.