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Setting

Let R be a ring (unital, usually noncommutative), with R● its
submonoid of cancellative (regular) elements, and R× its group of
units.

If R is a domain or a prime Goldie ring, then R● is divisor-closed:
( a = bc, and a ∈ R●, then b, c ∈ R●. )

We restrict to this setting and study factorizations in R●.

Remark
During this talk, you may suppose that R is a domain and then
R● = R ∖ {0} and you are not going to miss something ...
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Factorizations

Definition

A non-unit u ∈ R● is an atom (irreducible element) if

u = bc ⇒ b ∈ R× or c ∈ R×.

A factorization of a non-unit a ∈ R● is a representation

a = u1u2⋯uk with u1, . . . , uk atoms,
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Lengths and Bounded Factorization (BF)

Definition
For a ∈ R● the set of lengths, L(a), consists of all k ∈ N0 such
that a has a factorization of length k. (L(a) = {0} for units.)

R
has bounded factorizations (BF) if L(a) is non-empty and finite
for all a ∈ R●.
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The commutative world

Theorem
Every commutative noetherian domain has BF.



Noncommutative setting

Question
Do noncommutative noetherian domains/prime rings have BF?



Several Technique for Different Rings:

Theorem (The following rings have BF:)

1 Prime fully bounded noetherian (FBN) rings in which every
nonzero ideal contains a central element (e.g., prime PI rings)

2 Affine noetherian prime algebras of quadratic growth.

3 Filtered rings whose grades are domain.
4 Noetherian skew polynomial ring S[x ;σ, δ] or Laurent

polynomial ring S[x±1;σ].

? Group ring kG, that G is polycyclic-by -finite group.
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j- function ?

Let j be a map from Modf (R) to a set of ordinal numbers.

We say j is finitely partitive on α (α an ordinal) if for every
M ∈Modf (R) with j(M) = α, there is a finite bound on the length
of chains of submodules of M of the form

M0 ⊆M1 ⊆ ⋯ ⊆Mn =M

with j(Mi+1/Mi) = α for all 0 ≤ i < n.
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j- function ?

Let j be a map from Modf (R) to a set of ordinal numbers.

Lemma
Let R be a noetherian ring having a map j so that, for some fixed
ordinal α, the map j is finitely partitive on α and j(R/aR) = α for
all non-units a ∈ R●. Then R has BF.
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Auslander-Gorenstein rings

Definition

1 Let M be a left [right] R-module. The (homological) grade
of M is

j(M) ∶= inf{ i ∶ Exti
R(M,R) ≠ 0} ∈ Z≥0 ∪ {ω}

2 A noetherian ring R is Auslander-Gorenstein if
R has finite (and equal) right and left injective dimension, and
R satisfies the Auslander condition, i.e., for every left [right]
R-module M and all i ≥ 0, j(N) ≥ i for every submodule N of
Exti

R(M,R).

For an Auslander-Gorenstein ring R , the grade j is exact and
finitely partitive (−j is an exact finite partitive dimension function).
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Theorem
Every Auslander-Gorenstein ring is a BF-ring.



Many rings are Auslander-Gorenstein, e.g.:
All known noetherian Hopf algebras (group algebras of
polycyclic-by-finite groups, enveloping algebras of
finite-dimensional Lie algebras, quantised enveloping algebras,
connected Hopf-algebras of finite Gelfand-Kirillov dimension,
quantised coordinate rings of semisimple groups).
Rings with locally finite N-filtration whose associated graded
ring is commutative Gorenstein (e.g., Weyl algebras An(k)).
Local FBN rings of finite global dimension.
Sklyanin algebras.



Auslander-dualizing complexes

Auslander-Gorenstein rings always have finite injective
dimension.
For noetherian algebras over a field there is the more general
notion of an Auslander-dualizing complex, developed by
Yekutieli and Zhang.
Again: define a grade j, with −j being finitely partitive and an
exact dimension function (−j is the canonical dimension
function); extend to non-f.g. modules.
Harder to establish j(R/xR) = j(R) + 1 (uses Gabber’s
maximality principle)

Theorem (Bell, Brown, N., Smertnig )

Let R be a noetherian K -algebra with an Auslander dualizing
complex. If P is a prime ideal of R , then R/P is a BF-ring.



Still Open:

Still open: Does every noetherian prime ring [noetherian domain]
have bounded factorizations?

More specifically, what about the following settings:

FBN rings — does the variant of the principal ideal theorem
hold without the condition that every nonzero ideal contains a
nonzero central element?

Noetherian semigroup algebras of the form K[S] with S a
submonoid of a polycyclic-by-finite group satisfying ACC on
left [right] ideals.

Affine noetherian algebras of finite Gelfand-Kirillov dimension.


