

Balmer Spectra and Drinfeld Centers

Kent Vashaw

MIT

kentv@mit.edu

June 21, 2022: Recent advances and new directions in the
interplay of noncommutative algebra and geometry

Setting: finite tensor categories

A monoidal category $(\mathbf{C}, \otimes, \mathbf{1})$ is a finite tensor category if it is an abelian \mathbb{k} -linear monoidal category such that

Setting: finite tensor categories

A monoidal category $(\mathbf{C}, \otimes, \mathbf{1})$ is a finite tensor category if it is an abelian \mathbb{k} -linear monoidal category such that

- $- \otimes -$ is bilinear on spaces of morphisms;

Setting: finite tensor categories

A monoidal category $(\mathbf{C}, \otimes, \mathbf{1})$ is a finite tensor category if it is an abelian \mathbb{k} -linear monoidal category such that

- $-\otimes-$ is bilinear on spaces of morphisms;
- every object has finite length;

Setting: finite tensor categories

A monoidal category $(\mathbf{C}, \otimes, \mathbf{1})$ is a finite tensor category if it is an abelian \mathbb{k} -linear monoidal category such that

- $-\otimes-$ is bilinear on spaces of morphisms;
- every object has finite length;
- $\text{Hom}(A, B)$ is finite-dimensional;

Setting: finite tensor categories

A monoidal category $(\mathbf{C}, \otimes, \mathbf{1})$ is a finite tensor category if it is an abelian \mathbb{k} -linear monoidal category such that

- $-\otimes-$ is bilinear on spaces of morphisms;
- every object has finite length;
- $\text{Hom}(A, B)$ is finite-dimensional;
- $\mathbf{1}$ is simple;

Setting: finite tensor categories

A monoidal category $(\mathbf{C}, \otimes, \mathbf{1})$ is a finite tensor category if it is an abelian \mathbb{k} -linear monoidal category such that

- $-\otimes-$ is bilinear on spaces of morphisms;
- every object has finite length;
- $\text{Hom}(A, B)$ is finite-dimensional;
- $\mathbf{1}$ is simple;
- there are enough projectives;

Setting: finite tensor categories

A monoidal category $(\mathbf{C}, \otimes, \mathbf{1})$ is a finite tensor category if it is an abelian \mathbb{k} -linear monoidal category such that

- $-\otimes-$ is bilinear on spaces of morphisms;
- every object has finite length;
- $\text{Hom}(A, B)$ is finite-dimensional;
- $\mathbf{1}$ is simple;
- there are enough projectives;
- every object is dualizable.

Setting: finite tensor categories

A monoidal category $(\mathbf{C}, \otimes, \mathbf{1})$ is a finite tensor category if it is an abelian \mathbb{k} -linear monoidal category such that

- $-\otimes-$ is bilinear on spaces of morphisms;
- every object has finite length;
- $\text{Hom}(A, B)$ is finite-dimensional;
- $\mathbf{1}$ is simple;
- there are enough projectives;
- every object is dualizable.

Favorite example: $\text{mod}(H)$, H a finite-dimensional Hopf algebra.

Setting: finite tensor categories

A monoidal category $(\mathbf{C}, \otimes, \mathbf{1})$ is a finite tensor category if it is an abelian \mathbb{k} -linear monoidal category such that

- $-\otimes-$ is bilinear on spaces of morphisms;
- every object has finite length;
- $\text{Hom}(A, B)$ is finite-dimensional;
- $\mathbf{1}$ is simple;
- there are enough projectives;
- every object is dualizable.

Favorite example: $\text{mod}(H)$, H a finite-dimensional Hopf algebra. (In fact, all finite tensor categories are equivalent to $\text{mod}(A)$ for a finite-dimensional algebra A as abelian categories.)

The stable category

Motivated by the theory of support varieties (Quillen, Carlson, Avrunin-Scott, Alperin-Evens,...) we will consider the *stable category of \mathbf{C}* , denoted $\text{st}(\mathbf{C})$:

The stable category

Motivated by the theory of support varieties (Quillen, Carlson, Avrunin-Scott, Alperin-Evens,...) we will consider the *stable category of \mathbf{C}* , denoted $\text{st}(\mathbf{C})$:

- Objects are the same as in \mathbf{C} ;

The stable category

Motivated by the theory of support varieties (Quillen, Carlson, Avrunin-Scott, Alperin-Evens,...) we will consider the *stable category of \mathbf{C}* , denoted $\text{st}(\mathbf{C})$:

- Objects are the same as in \mathbf{C} ;
- $\text{Hom}_{\text{st}(\mathbf{C})}(A, B) = \text{Hom}_{\mathbf{C}}(A, B) / \text{PHom}_{\mathbf{C}}(A, B)$.

The stable category

Motivated by the theory of support varieties (Quillen, Carlson, Avrunin-Scott, Alperin-Evens,...) we will consider the *stable category of \mathbf{C}* , denoted $\text{st}(\mathbf{C})$:

- Objects are the same as in \mathbf{C} ;
- $\text{Hom}_{\text{st}(\mathbf{C})}(A, B) = \text{Hom}_{\mathbf{C}}(A, B) / \text{PHom}_{\mathbf{C}}(A, B)$.

Straightforward: objects A and B are isomorphic in $\text{st}(\mathbf{C})$ if and only if there exist projective objects P and Q with $A \oplus P \cong B \oplus Q$ in \mathbf{T} .

Lemma

The stable category of a finite tensor category is a monoidal triangulated category.

The Balmer spectrum

To understand a monoidal triangulated category, following the pioneering work of Thomason, Friedlander-Pevtsova, and others,

The Balmer spectrum

To understand a monoidal triangulated category, following the pioneering work of Thomason, Friedlander-Pevtsova, and others, we should try to understand the **thick ideals** of the category

The Balmer spectrum

To understand a monoidal triangulated category, following the pioneering work of Thomason, Friedlander-Pevtsova, and others, we should try to understand the **thick ideals** of the category (i.e. kernels of monoidal triangulated functors).

The Balmer spectrum

To understand a monoidal triangulated category, following the pioneering work of Thomason, Friedlander-Pevtsova, and others, we should try to understand the **thick ideals** of the category (i.e. kernels of monoidal triangulated functors). Following Balmer (in the commutative case), Buan-Krause-Solberg and Nakano-V.-Yakimov developed noncommutative Balmer spectra to help classify the thick ideals.

The Balmer spectrum

To understand a monoidal triangulated category, following the pioneering work of Thomason, Friedlander-Pevtsova, and others, we should try to understand the **thick ideals** of the category (i.e. kernels of monoidal triangulated functors). Following Balmer (in the commutative case), Buan-Krause-Solberg and Nakano-V.-Yakimov developed noncommutative Balmer spectra to help classify the thick ideals.

- *The Balmer spectrum $\mathrm{Spc}(\mathbf{K})$ of a monoidal triangulated category \mathbf{K}*

The Balmer spectrum

To understand a monoidal triangulated category, following the pioneering work of Thomason, Friedlander-Pevtsova, and others, we should try to understand the **thick ideals** of the category (i.e. kernels of monoidal triangulated functors). Following Balmer (in the commutative case), Buan-Krause-Solberg and Nakano-V.-Yakimov developed noncommutative Balmer spectra to help classify the thick ideals.

- *The Balmer spectrum* $\text{Spc}(\mathbf{K})$ of a monoidal triangulated category \mathbf{K} is defined as the collection of prime ideals of \mathbf{K} : thick ideals \mathbf{P} such that if $\mathbf{I} \otimes \mathbf{J} \subseteq \mathbf{P}$, then \mathbf{I} or \mathbf{J} is contained in \mathbf{P} , over all thick ideals \mathbf{I} and \mathbf{J} .

The Balmer spectrum

To understand a monoidal triangulated category, following the pioneering work of Thomason, Friedlander-Pevtsova, and others, we should try to understand the **thick ideals** of the category (i.e. kernels of monoidal triangulated functors). Following Balmer (in the commutative case), Buan-Krause-Solberg and Nakano-V.-Yakimov developed noncommutative Balmer spectra to help classify the thick ideals.

- *The Balmer spectrum* $\text{Spc}(\mathbf{K})$ of a monoidal triangulated category \mathbf{K} is defined as the collection of prime ideals of \mathbf{K} : thick ideals \mathbf{P} such that if $\mathbf{I} \otimes \mathbf{J} \subseteq \mathbf{P}$, then \mathbf{I} or \mathbf{J} is contained in \mathbf{P} , over all thick ideals \mathbf{I} and \mathbf{J} .
- Equivalently, these are thick ideals \mathbf{P} such that $A \otimes \mathbf{K} \otimes B \subseteq \mathbf{P}$, then A or $B \in \mathbf{P}$.

The Balmer spectrum

To understand a monoidal triangulated category, following the pioneering work of Thomason, Friedlander-Pevtsova, and others, we should try to understand the **thick ideals** of the category (i.e. kernels of monoidal triangulated functors). Following Balmer (in the commutative case), Buan-Krause-Solberg and Nakano-V.-Yakimov developed noncommutative Balmer spectra to help classify the thick ideals.

- *The Balmer spectrum* $\text{Spc}(\mathbf{K})$ of a monoidal triangulated category \mathbf{K} is defined as the collection of prime ideals of \mathbf{K} : thick ideals \mathbf{P} such that if $\mathbf{I} \otimes \mathbf{J} \subseteq \mathbf{P}$, then \mathbf{I} or \mathbf{J} is contained in \mathbf{P} , over all thick ideals \mathbf{I} and \mathbf{J} .
- Equivalently, these are thick ideals \mathbf{P} such that $A \otimes \mathbf{K} \otimes B \subseteq \mathbf{P}$, then A or $B \in \mathbf{P}$.
- Topology: closed sets generated by $V(A) := \{\mathbf{P} \in \text{Spc } \mathbf{K} : A \notin \mathbf{P}\}$.

Drinfeld centers

- Given a finite tensor category \mathbf{C} , we can also form its **Drinfeld center $Z(\mathbf{C})$** .

Drinfeld centers

- Given a finite tensor category \mathbf{C} , we can also form its **Drinfeld center $Z(\mathbf{C})$** . Idea: categorification of the idea of the center of a noncommutative algebra.

Drinfeld centers

- Given a finite tensor category \mathbf{C} , we can also form its **Drinfeld center $Z(\mathbf{C})$** . Idea: categorification of the idea of the center of a noncommutative algebra.
- Construction: objects are pairs (A, γ) where $A \in \mathbf{C}$ and $\gamma_B : B \otimes A \xrightarrow{\cong} A \otimes B$ a natural isomorphism called a **half-braiding**, satisfying some natural requirements. Morphisms consist of morphisms from \mathbf{C} which are compatible with the half-braidings.

Drinfeld centers

- Given a finite tensor category \mathbf{C} , we can also form its **Drinfeld center** $Z(\mathbf{C})$. Idea: categorification of the idea of the center of a noncommutative algebra.
- Construction: objects are pairs (A, γ) where $A \in \mathbf{C}$ and $\gamma_B : B \otimes A \xrightarrow{\cong} A \otimes B$ a natural isomorphism called a **half-braiding**, satisfying some natural requirements. Morphisms consist of morphisms from \mathbf{C} which are compatible with the half-braidings.

$$\begin{array}{ccc} \mathbf{C} & \longrightarrow & \text{st}(\mathbf{C}) \\ F \uparrow & & \\ Z(\mathbf{C}) & \longrightarrow & \text{st}(Z(\mathbf{C})) \end{array}$$

Drinfeld centers

- Given a finite tensor category \mathbf{C} , we can also form its **Drinfeld center $Z(\mathbf{C})$** .

Drinfeld centers

- Given a finite tensor category \mathbf{C} , we can also form its **Drinfeld center** $Z(\mathbf{C})$. Idea: categorification of the idea of the center of a noncommutative algebra.

Drinfeld centers

- Given a finite tensor category \mathbf{C} , we can also form its **Drinfeld center** $Z(\mathbf{C})$. Idea: categorification of the idea of the center of a noncommutative algebra.
- Construction: objects are pairs (A, γ) where $A \in \mathbf{C}$ and $\gamma_B : B \otimes A \xrightarrow{\cong} A \otimes B$ a natural isomorphism called a **half-braiding**, satisfying some natural requirements.

Drinfeld centers

- Given a finite tensor category \mathbf{C} , we can also form its **Drinfeld center** $Z(\mathbf{C})$. Idea: categorification of the idea of the center of a noncommutative algebra.
- Construction: objects are pairs (A, γ) where $A \in \mathbf{C}$ and $\gamma_B : B \otimes A \xrightarrow{\cong} A \otimes B$ a natural isomorphism called a **half-braiding**, satisfying some natural requirements. Morphisms are those from \mathbf{C} which are compatible with the half-braidings.

Drinfeld centers

- Given a finite tensor category \mathbf{C} , we can also form its **Drinfeld center** $Z(\mathbf{C})$. Idea: categorification of the idea of the center of a noncommutative algebra.
- Construction: objects are pairs (A, γ) where $A \in \mathbf{C}$ and $\gamma_B : B \otimes A \xrightarrow{\cong} A \otimes B$ a natural isomorphism called a **half-braiding**, satisfying some natural requirements. Morphisms are those from \mathbf{C} which are compatible with the half-braidings.
- If $\mathbf{C} = \text{mod}(H)$, then $Z(\mathbf{C}) \cong \text{mod}(D(H))$.

Drinfeld centers

- Given a finite tensor category \mathbf{C} , we can also form its **Drinfeld center** $Z(\mathbf{C})$. Idea: categorification of the idea of the center of a noncommutative algebra.
- Construction: objects are pairs (A, γ) where $A \in \mathbf{C}$ and $\gamma_B : B \otimes A \xrightarrow{\cong} A \otimes B$ a natural isomorphism called a **half-braiding**, satisfying some natural requirements. Morphisms are those from \mathbf{C} which are compatible with the half-braidings.
- If $\mathbf{C} = \text{mod}(H)$, then $Z(\mathbf{C}) \cong \text{mod}(D(H))$.

$$\begin{array}{ccc} \mathbf{C} & \longrightarrow & \text{st}(\mathbf{C}) \\ F \uparrow & & \downarrow ? \\ Z(\mathbf{C}) & \longrightarrow & \text{st}(Z(\mathbf{C})) \end{array} \qquad \begin{array}{ccc} & & \text{Spc st}(\mathbf{C}) \\ & & \downarrow ? \\ & & \text{Spc st}(Z(\mathbf{C})) \end{array}$$

Extending the forgetful functor

- Following noncommutative ring theory: for a ring R with center $Z(R)$, if \mathfrak{p} is a prime ideal of R , then $\mathfrak{p} \cap Z(R)$ is a prime ideal in $Z(R)$ —this is called prime ideal contraction.

Extending the forgetful functor

- Following noncommutative ring theory: for a ring R with center $Z(R)$, if \mathfrak{p} is a prime ideal of R , then $\mathfrak{p} \cap Z(R)$ is a prime ideal in $Z(R)$ —this is called prime ideal contraction.
- To make sense of this in the categorical setting, we check:

Extending the forgetful functor

- Following noncommutative ring theory: for a ring R with center $Z(R)$, if \mathfrak{p} is a prime ideal of R , then $\mathfrak{p} \cap Z(R)$ is a prime ideal in $Z(R)$ —this is called prime ideal contraction.
- To make sense of this in the categorical setting, we check:

Lemma

There exists a monoidal triangulated functor

$\overline{F} : \text{st}(Z(\mathbf{C})) \rightarrow \text{st}(\mathbf{C})$ *extending the forgetful functor:*

Extending the forgetful functor

- Following noncommutative ring theory: for a ring R with center $Z(R)$, if \mathfrak{p} is a prime ideal of R , then $\mathfrak{p} \cap Z(R)$ is a prime ideal in $Z(R)$ —this is called prime ideal contraction.
- To make sense of this in the categorical setting, we check:

Lemma

There exists a monoidal triangulated functor

$\overline{F} : \text{st}(Z(\mathbf{C})) \rightarrow \text{st}(\mathbf{C})$ *extending the forgetful functor:*

$$\begin{array}{ccc} \mathbf{C} & \longrightarrow & \text{st}(\mathbf{C}) \\ F \uparrow & & \overline{F} \uparrow \\ Z(\mathbf{C}) & \longrightarrow & \text{st}(Z(\mathbf{C})) \end{array}$$

Prime ideal contraction

Important note: Spc is not necessarily functorial for non-braided categories (reflects noncommutative ring theory), so \overline{F} doesn't "automatically" give us a continuous map between spectra.

Prime ideal contraction

Important note: Spc is not necessarily functorial for non-braided categories (reflects noncommutative ring theory), so \overline{F} doesn't "automatically" give us a continuous map between spectra.

But we have a guess for prime ideal contraction:

Prime ideal contraction

Important note: Spc is not necessarily functorial for non-braided categories (reflects noncommutative ring theory), so \overline{F} doesn't "automatically" give us a continuous map between spectra.

But we have a guess for prime ideal contraction:

$$\text{Spc st}(\mathbf{C}) \xrightarrow{f} \text{Spc st}(\mathbf{Z}(\mathbf{C}))$$

Prime ideal contraction

Important note: Spc is not necessarily functorial for non-braided categories (reflects noncommutative ring theory), so \overline{F} doesn't "automatically" give us a continuous map between spectra.

But we have a guess for prime ideal contraction:

$$\text{Spc st}(\mathbf{C}) \xrightarrow{f} \text{Spc st}(\mathbf{Z}(\mathbf{C}))$$

$$\mathbf{P} \mapsto \{X \in \text{st}(\mathbf{Z}(\mathbf{C})) : \overline{F}(X) \in \mathbf{P}\}.$$

Prime ideal contraction

Important note: Spc is not necessarily functorial for non-braided categories (reflects noncommutative ring theory), so \overline{F} doesn't "automatically" give us a continuous map between spectra.

But we have a guess for prime ideal contraction:

$$\text{Spc st}(\mathbf{C}) \xrightarrow{f} \text{Spc st}(Z(\mathbf{C}))$$

$$\mathbf{P} \mapsto \{X \in \text{st}(Z(\mathbf{C})) : \overline{F}(X) \in \mathbf{P}\}.$$

Lemma (V.)

$f(\mathbf{P})$ is a prime ideal for any prime ideal \mathbf{P} , and f is continuous.

Benson-Witherspoon smash coproducts

- Let G and L be finite groups with L acting on G by group automorphisms, and \mathbb{k} be a field of characteristic dividing the order of G and not dividing the order of L .

Benson-Witherspoon smash coproducts

- Let G and L be finite groups with L acting on G by group automorphisms, and \mathbb{k} be a field of characteristic dividing the order of G and not dividing the order of L .
- We define the Benson-Witherspoon smash coproduct Hopf algebra $H_{G,L}$ to be the Hopf algebra dual to $\mathbb{k}[G]\#\mathbb{k}L$.
This is a non-quasitriangular Hopf algebra.

Benson-Witherspoon smash coproducts

- Let G and L be finite groups with L acting on G by group automorphisms, and \mathbb{k} be a field of characteristic dividing the order of G and not dividing the order of L .
- We define the Benson-Witherspoon smash coproduct Hopf algebra $H_{G,L}$ to be the Hopf algebra dual to $\mathbb{k}[G] \# \mathbb{k}L$. This is a non-quasitriangular Hopf algebra.
- Formula for tensor product:

Benson-Witherspoon smash coproducts

- Let G and L be finite groups with L acting on G by group automorphisms, and \mathbb{k} be a field of characteristic dividing the order of G and not dividing the order of L .
- We define the Benson-Witherspoon smash coproduct Hopf algebra $H_{G,L}$ to be the Hopf algebra dual to $\mathbb{k}[G] \# \mathbb{k}L$. This is a non-quasitriangular Hopf algebra.
- Formula for tensor product:

$$(M_x \otimes \mathbb{k}_x) \otimes (N_y \otimes \mathbb{k}_y) = (M_x \otimes^x N_y) \otimes \mathbb{k}_{xy}.$$

Benson-Witherspoon smash coproducts

Balmer
spectra and
Drinfeld
centers

Kent Vashaw

Facts:

Benson-Witherspoon smash coproducts

Facts:

- $H_{G,L}$ is cosemisimple (the dual is the smash product of two semisimple algebras) and not semisimple.

Benson-Witherspoon smash coproducts

Facts:

- $H_{G,L}$ is cosemisimple (the dual is the smash product of two semisimple algebras) and not semisimple.
- $H_{G,L}$ is unimodular (left and right integrals coincide).

Benson-Witherspoon smash coproducts

Facts:

- $H_{G,L}$ is cosemisimple (the dual is the smash product of two semisimple algebras) and not semisimple.
- $H_{G,L}$ is unimodular (left and right integrals coincide).
- Given a module M , there is a module \tilde{M} which admits a lift to the Drinfeld center of $\text{mod}(H_{G,L})$

Benson-Witherspoon smash coproducts

Facts:

- $H_{G,L}$ is cosemisimple (the dual is the smash product of two semisimple algebras) and not semisimple.
- $H_{G,L}$ is unimodular (left and right integrals coincide).
- Given a module M , there is a module \tilde{M} which admits a lift to the Drinfeld center of $\text{mod}(H_{G,L})$ such that for any thick ideal \mathbf{I} of $\text{stmod}(H_{G,L})$, M is in \mathbf{I} if and only if $\tilde{M} \in \mathbf{I}$.

Benson-Witherspoon smash coproducts

Facts:

- $H_{G,L}$ is cosemisimple (the dual is the smash product of two semisimple algebras) and not semisimple.
- $H_{G,L}$ is unimodular (left and right integrals coincide).
- Given a module M , there is a module \tilde{M} which admits a lift to the Drinfeld center of $\text{mod}(H_{G,L})$ such that for any thick ideal \mathbf{I} of $\text{stmod}(H_{G,L})$, M is in \mathbf{I} if and only if $\tilde{M} \in \mathbf{I}$.

Theorem (V.)

The map $f : \text{Spc } \text{stmod}(H_{G,L}) \rightarrow \text{Spc } \text{stmod}(D(H_{G,L}))$ is a homeomorphism, and the thick ideals of the two categories are in bijection.

Benson-Witherspoon smash coproducts

Balmer
spectra and
Drinfeld
centers

Kent Vashaw

Recall that $D(H) \cong D((H^{\text{op}})^*)$.

Benson-Witherspoon smash coproducts

Recall that $D(H) \cong D((H^{\text{op}})^*)$. Hence we get

$$\begin{array}{ccc} \text{Spc}(\text{stmod}(H_{G,L})) & & \text{Spc}(\text{stmod}((H_{G,L}^{\text{op}})^*)) = \emptyset \\ & \searrow \cong & \downarrow \\ & & \text{Spc}(\text{stmod}(D(H))) \end{array}$$

Benson-Witherspoon smash coproducts

Recall that $D(H) \cong D((H^{\text{op}})^*)$. Hence we get

$$\begin{array}{ccc} \text{Spc}(\text{stmod}(H_{G,L})) & & \text{Spc}(\text{stmod}((H_{G,L}^{\text{op}})^*)) = \emptyset \\ & \searrow \cong & \downarrow \\ & & \text{Spc}(\text{stmod}(D(H))) \end{array}$$

By a result of Nakano-V.-Yakimov, the left hand side is $\text{Proj}(H^\bullet(G, \mathbb{k})^L)$.

Conclusion

Balmer
spectra and
Drinfeld
centers

Kent Vashaw

Thanks for your time!