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Setting: finite tensor categories

A monoidal category (C,⊗, 1) is a finite tensor category if it is
an abelian k-linear monoidal category such that

−⊗− is bilinear on spaces of morphisms;

every object has finite length;

Hom(A,B) is finite-dimensional;

1 is simple;

there are enough projectives;

every object is dualizable.

Favorite example: mod(H), H a finite-dimensional Hopf
algebra. (In fact, all finite tensor categories are equivalent to
mod(A) for a finite-dimensional algebra A as abelian
categories.)
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The stable category

Motivated by the theory of support varieties (Quillen, Carlson,
Avrunin-Scott, Alperin-Evens,...) we will consider the stable
category of C, denoted st(C):

Objects are the same as in C;

Homst(C)(A,B) = HomC(A,B)/PHomC(A,B).

Straightforward: objects A and B are isomorphic in st(C) if
and only if there exist projective objects P and Q with
A⊕ P ∼= B ⊕ Q in T.

Lemma

The stable category of a finite tensor category is a monoidal
triangulated category.
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The Balmer spectrum

To understand a monoidal triangulated category, following the
pioneering work of Thomason, Friedlander-Pevtsova, and
others,

we should try to understand the thick ideals of the
category (i.e. kernels of monoidal triangulated functors).
Following Balmer (in the commutative case),
Buan-Krause-Solberg and Nakano-V.-Yakimov developed
noncommutative Balmer spectra to help classify the thick
ideals.

The Balmer spectrum Spc(K) of a monoidal triangulated
cateogry K is defined as the collection of prime ideals of
K: thick ideals P such that if I⊗ J ⊆ P, then I or J is
contained in P, over all thick ideals I and J.
Equivalently, these are thick ideals P such that
A⊗K⊗ B ⊆ P, then A or B ∈ P.
Topology: closed sets generated by
V (A) := {P ∈ SpcK : A ̸∈ P}.
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Drinfeld centers

Given a finite tensor category C, we can also form its
Drinfeld center Z(C).

Idea: categorification of the idea
of the center of a noncommutative algebra.

Construction: objects are pairs (A, γ) where A ∈ C and

γB : B ⊗ A
∼=−→ A⊗ B a natural isomorphism called a

half-braiding, satisfying some natural requirements.
Morphisms consist of morphisms from C which are
compatible with the half-braidings.

C st(C)

Z(C) st(Z(C))

F
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Extending the forgetful functor

Following noncommutative ring theory: for a ring R with
center Z (R), if p is a prime ideal of R, then p ∩ Z (R) is a
prime ideal in Z (R)– this is called prime ideal contraction.

To make sense of this in the categorical setting, we check:

Lemma

There exists a monoidal triangulated functor
F : st(Z(C)) → st(C) extending the forgetful functor:

C st(C)

Z(C) st(Z(C))

F F
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Prime ideal contraction

Important note: Spc is not necessarily functorial for
non-braided categories (reflects noncommutative ring theory),
so F doesn’t “automatically” give us a continuous map
between spectra.

But we have a guess for prime ideal contraction:

Spc st(C)
f−→ Spc st(Z(C))

P 7→ {X ∈ st(Z(C)) : F (X ) ∈ P}.

Lemma (V.)

f (P) is a prime ideal for any prime ideal P, and f is continuous.
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Benson-Witherspoon smash coproducts

Let G and L be finite groups with L acting on G by group
automorphisms, and k be a field of characteristic dividing
the order of G and not dividing the order of L.

We define the Benson-Witherspoon smash coproduct Hopf
algebra HG ,L to be the Hopf algebra dual to k[G ]#kL.
This is a non-quasitriangular Hopf algebra.

Formula for tensor product:

(Mx ⊗ kx)⊗ (Ny ⊗ ky ) = (Mx ⊗x Ny )⊗ kxy .
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Formula for tensor product:

(Mx ⊗ kx)⊗ (Ny ⊗ ky ) = (Mx ⊗x Ny )⊗ kxy .
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Benson-Witherspoon smash coproducts

Facts:

HG ,L is cosemisimple (the dual is the smash product of
two semisimple algebras) and not semisimple.

HG ,L is unimodular (left and right integrals coincide).

Given a module M, there is a module M̃ which admits a
lift to the Drinfeld center of mod(HG ,L) such that for any

thick ideal I of stmod(HG ,L), M is in I if and only if M̃ ∈ I.

Theorem (V.)

The map f : Spc stmod(HG ,L) → Spc stmod(D(HG ,L)) is a
homeomorphism, and the thick ideals of the two categories are
in bijection.
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Benson-Witherspoon smash coproducts

Recall that D(H) ∼= D((Hop)∗).

Hence we get

Spc(stmod(HG ,L)) Spc(stmod((Hop
G ,L)

∗)) = ∅

Spc(stmod(D(H)))

∼=

By a result of Nakano-V.-Yakimov, the left hand side is
Proj(H•(G , k)L).
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Conclusion

Thanks for your time!


