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Hopf algebras vs weak Hopf algebras

@ k is an arbitrary field.
@ A group algebra kG is a Hopf algebra.

@ Is kG @ kG still a Hopf algebra?
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Hopf algebras vs weak Hopf algebras

@ k is an arbitrary field.
@ A group algebra kG is a Hopf algebra.

@ Is kG @ kG still a Hopf algebra? No!! But kG & kG is a weak Hopf
algebra.
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What are weak Hopf algebras?

A weak Hopf algebra is a generalization of a Hopf algebra.

O A bialgebra H is an algebra and a coalgebra such that A and ¢ are
multiplicative.

@ A weak bialgebra H is an algebra and a coalgebra such that A and ¢
satisfies some compatibilities (but A(1) 4 1 ® 1 and ¢ is not
multiplicative). If H has an antipode S, then H is a weak Hopf
algebra.
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kG @ kG is a weak Hopf algebra

H = kG & kG is a weak Hopf algebra. The coalgebra structure and the
antipode are given by:

o Alg+h)=gxg+h®h

o (g + h)=c¢e(g)+e(h)

@ 1y =146+ lkc (H has a “"complicated” identity.)
o S(g+h) =g t+hl

Look:
A(ly) =1k ® 1kg + 1k ® 1k # 1 @ 1y = (lke + 1ke) ® (kg + 1kg)

e(gh) = e(glkc)e(lkch) + e(glic)e(lkch) = 2e(g)e(h) # e(g)e(h),

for g, h € G.
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Hopf algebras vs weak Hopf algebras

A(]-H):]-H®1H We:ak>er A(]-H):11®12?A1H®1H

e(ab) = £(a)e(b) "k g(ab) = e(ali)e(1ab)

Write A(1y) = 11 ® 1, using the sumless Sweedler notation.

Hs = {Z 118(/712) | h e H} < H H; = {28(11/7)12 | h e H}

A weak Hopf algebra H is a Hopf algebra iff H; = Hy = k1.
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© Given a quiver Q, the path algebra kQ is a weak bialgebra.

@ Given a groupoid (a small category with every morphism has inverse),
its groupoid algebra is a weak Hopf algebra.
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© If Ais an N-graded ( A = ®;cnA;) and connected (Ap = k) algebra,
then its classical (quantum) symmetries are semigroups (bialgebras).

@ Q: What if A is not connected? i.e., Ag has dimension bigger than 1.
For example, A = kQ the path alegbra.
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Universal quantum semigroupoids

Set up: A= A9 @ A1 @ --- with dim(Ag) > 1 and dim(A;) < o for
i € NU{0}.

Definition

A left universal quantum semigroupoid (UQSGd) of A is a weak bialgebra
O = O'*(A) that left coacts on A lineraly with Ay = O; as left
H-comodule algebras, so that for any weak bialgebra H that left coacts on
A linearly with Ag = H; as left H-comodule algebras, 3! a weak bialgebra
map 7 : O — H that makes the diagram commute

@
A A O®A
® id
\ lﬂ i
H& A
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Universal quantum semigroupoids

If A= kQ for a quiver Q, then surprisingly, we have the following:

Theorem (HWWW)

The universal quantum semigroupoids O (kQ) and O"8"(kQ) are each
isomorphic to $(Q)—the Hayashi face algebra attached to the quiver Q.
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Universal quantum semigroupoids

If A= kQ for a quiver Q, then surprisingly, we have the following:

Theorem (HWWW)

The universal quantum semigroupoids O (kQ) and O"8"(kQ) are each
isomorphic to $(Q)—the Hayashi face algebra attached to the quiver Q.

This is a weak analogue of Manin's work on bialgebra in 1998.
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Universal quantum semigroupoids

If A= kQ for a quiver Q, then surprisingly, we have the following:

Theorem (HWWW)

The universal quantum semigroupoids O (kQ) and O"8"(kQ) are each
isomorphic to $(Q)—the Hayashi face algebra attached to the quiver Q.

This is a weak analogue of Manin's work on bialgebra in 1998.

Proposition (HWWW)

Let kQ be a path algebra and let | C k@ be a graded ideal which is
generated in degree 2 or greater. If O*(kQ/I) exists (where x means ‘left’,
or ‘right’), we have

O (kQ/1) = H(Q)/Z,
for some biideal T of $H(Q).
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Thank You!
Happy Birthday!




Hayashi's face algebra attached to a quiver

For a finite quiver Q@ = (Qo, Q1), H(Q) is a weak bialgebra. As a k-algebra,
k(Xij;Xpq|i,j € Qo, P,q € Q1)

(R) |

for indeterminates x; j and x, o with relations R, given by:

N(Q) =

(
Xij Xk,0 =0i kOj ¢ Xij

7\

Xs(p),s(q) Xp.a =Xp,q = Xp,q Xt(p),t(q)
L Xp.g Xp'.q’ =0t(p),s(p)Ot(q).s(q) X Xp'.q!

for all p,p’,q,q" € Q1, and i,j, k, £ € Qo.

lgQ) = 2ijeqo XiJ-
For a, b € Qy, the coalgebra structure is given by

A(Xa,b) = Z Xa,c & Xc.b and 5(Xa,b) = 5a,b-
ceQy
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