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Let V=TF". Recall a reflection s € GL(V) fixes a hyperplane H pointwise.
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Let V=TF". Recall a reflection s € GL(V) fixes a hyperplane H pointwise.
With H = ker ¢y for some £y € V*, s is determined by its root vector as:

s(v) =v+Llu(v)as forallve V.
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Let V=TF". Recall a reflection s € GL(V) fixes a hyperplane H pointwise.
With H = ker ¢y for some £y € V*, s is determined by its root vector as:

s(v) =v+Llu(v)as forallve V.

Watch out! The root vector as can lie inside the reflecting hyperplane!
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Let V=TF". Recall a reflection s € GL(V) fixes a hyperplane H pointwise.
With H = ker ¢y for some £y € V*, s is determined by its root vector as:

s(v) =v+Llu(v)as forallve V.

Watch out! The root vector as can lie inside the reflecting hyperplane!
Nondiagonalizable reflections are called transvections.

as € H <= sis a transvection <= order(s) = charF >0

4
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Let V=TF". Recall a reflection s € GL(V) fixes a hyperplane H pointwise.
With H = ker ¢y for some £y € V*, s is determined by its root vector as:

s(v) =v+Llu(v)as forallve V.

Watch out! The root vector as can lie inside the reflecting hyperplane!
Nondiagonalizable reflections are called transvections.

as € H <= sis a transvection <= order(s) = charF >0

4

If G C GL(V) contains transvections, charF divides |G|, i.e., modular case.
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Mixed forms are derivations with differential forms as coefficients.

Dillon Hanson (University of North Texas) Invariant Mixed Forms of Modular Reflection Groups



Mixed forms are derivations with differential forms as coefficients.

Let S:= S(V*) = F[xq, ..., Xal.
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Mixed forms are derivations with differential forms as coefficients.
Let S:= S(V*) = F[xq, ..., Xal.

Derivations = S—span{a’a, e 86)} XSV
X1 Xn
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Mixed forms are derivations with differential forms as coefficients.

Let S:= S(V*) = F[xq, ..., Xal.

. 0 0 ~
Derivations = S—span{a—Xl, e 8—)({7} XSV
. 0 0
Mixed Forms = (S® /\\/*)—span{a—Xl, ey 87)(,7}

:S—span{dx,-l/\--‘/\dx,-k(‘i} =SRQAV RV
Y
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Mixed forms are derivations with differential forms as coefficients.

Let S:= S(V*) = F[xq, ..., Xal.

. 0 0 ~
Derivations = S—span{a—Xl, e 8—)({7} 2SRV
. 0 0
Mixed Forms = (S® /\\/*)—span{a—Xl, ey 87)(,7}

:S—span{dx,-l/\--‘/\dx,-k(‘i} =SRQAV RV
Y

The set of invariant mixed forms (S® AV* ® V)¢ is a module over SC.
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Mixed forms are derivations with differential forms as coefficients.

Let S:= S(V*) = F[xq, ..., Xal.
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The set of invariant mixed forms (S® AV* ® V)¢ is a module over SC.

Q: Free??
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Mixed forms are derivations with differential forms as coefficients.

Let S:= S(V*) = F[xq, ..., Xal.

. 0 0 ~
Derivations = S—span{a—Xl, e 8—)({7} 2SRV
. 0 0
Mixed Forms = (S® /\\/*)—span{a—Xl, ey 87)(,7}

:S—span{dx,-l/\--‘/\dx,-k(‘i} =SRQAV RV
Y

The set of invariant mixed forms (S® AV* ® V)¢ is a module over SC.

Q: Free??

When F = C and S = F[f1, ..., f,], yes. (Hochster, Eagon 1971).
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Let G be a finite group acting linearly on V. =TF". If G fixes a single
hyperplane H C V, then (S® AV* ® V)€ is a free S®-module.
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e
Lemma

Let G be a finite group acting linearly on V. =TF". If G fixes a single
hyperplane H C V, then (S® AV* ® V)€ is a free S®-module.

A\

Theorem (D.H.)

Let G be a finite group acting linearly on V.= F". Any homogeneous
subset B of n(}) elements in (S® NKV* ® V)€ is an S¢-basis if and only if

det Coef(B) # 0 and » degn = Ay,
neB

where Ay = ZHEA (n;l) + (ey—1)(n— 1)(2:%) + eHaH k,
and ey, ap i describe the pointwise stabilizers Gp.
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e
Lemma

Let G be a finite group acting linearly on V. =TF". If G fixes a single
hyperplane H C V, then (S® AV* ® V)€ is a free S®-module.

A\

Theorem (D.H.)

Let G be a finite group acting linearly on V.= F". Any homogeneous
subset B of n(}) elements in (S® NKV* ® V)€ is an S¢-basis if and only if

det Coef(B) # 0 and » degn = Ay,
neB

where Ay = ZHEA (n;l) + (ey—1)(n— 1)(2:%) + eHaH k,
and ey, ap i describe the pointwise stabilizers Gp.

If G has no transvections, ap = 0; coincides with Reiner, Shepler 2019.
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R R
The transvection root space of a reflecting hyperplane H of G is the
FF-span of the root vectors for the transvections in G about H; call its
dimension by.
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The transvection root space of a reflecting hyperplane H of G is the
FF-span of the root vectors for the transvections in G about H; call its
dimension by.

by=0 = no transvections about H
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The transvection root space of a reflecting hyperplane H of G is the
FF-span of the root vectors for the transvections in G about H; call its
dimension by.

by=0 = no transvections about H

by=n—1 = maximal transvection root space
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The transvection root space of a reflecting hyperplane H of G is the
FF-span of the root vectors for the transvections in G about H; call its
dimension by.

by=0 = no transvections about H
by=n—1 = maximal transvection root space

Let G have transvection root spaces all maximal, e.g., SL,(FFq), GL,(Fq).
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R R
The transvection root space of a reflecting hyperplane H of G is the
FF-span of the root vectors for the transvections in G about H; call its
dimension by.
by=0 = no transvections about H

by=n—1 = maximal transvection root space

Let G have transvection root spaces all maximal, e.g., SL,(FFq), GL,(Fq).

Theorem (Hartmann, Shepler 2007)

Let G be a finite group acting linearly on V= F" with transvection root
spaces all maximal. If wy,...,w, are basic 1-forms, then

(S®AV)C = A so{wr,...,wn}.
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The transvection root space of a reflecting hyperplane H of G is the
FF-span of the root vectors for the transvections in G about H; call its
dimension by.

by=0 = no transvections about H
by=n—1 = maximal transvection root space

Let G have transvection root spaces all maximal, e.g., SL,(FFq), GL,(Fq).

Theorem (Hartmann, Shepler 2007)

Let G be a finite group acting linearly on V= F" with transvection root
spaces all maximal. If wy,...,w, are basic 1-forms, then

(S®AV)C = A so{wr,...,wn}.

Theorem (D.H)

Let G be a finite group acting linearly on V= F" with transvection root
spaces all maximal. Then G acts transitively on the set of its reflecting
hyperplanes.

\

Dillon Hanson (University of North Texas) Invariant Mixed Forms of Modular Reflection Groups



Theorem (D.H.)

Let G be a finite group acting on V= F" with transvection root spaces all
maximal. If wy,...,wp in (S® V¥ ®1)C are basic 1-forms, then
® 01,...,0,in (S®1® V)C created by a duality 6; = w?
are basic derivations, and
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Theorem (D.H.)

Let G be a finite group acting on V= F" with transvection root spaces all
maximal. If wy,...,wp in (S® V¥ ®1)C are basic 1-forms, then
® 01,...,0,in (S®1® V)C created by a duality 6; = w?
are basic derivations, and

* (S®AV*® V) C is a free S°-module, and when charF # 2, with basis

{wip A -~ wi 07} \ {wnbn} U {db} -
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L ____________________________________________
Theorem (D.H.)

Let G be a finite group acting on V= F" with transvection root spaces all
maximal. If wy, ..., w, in (S® V* ®1)€ are basic 1-forms, then
® 01,...,0,in (S®1® V)C created by a duality 6; = w?
are basic derivations, and

* (S®AV*® V) C is a free S°-module, and when charF # 2, with basis

{wip A -~ wi 07} \ {wnbn} U {dbE} -

Corollary

| A\

With R= A s6 {wi,...,wn_1}, we have a direct sum of R-submodules:

n n—1
SV @V = Roe DR Aw6;® RdbE.
j=1 j=1

A\
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Let G = SLy(F3). Given these basic 1-forms and their dual derivations:

W=x%0x01-xXx eIl hi=x1010vi+xQ1Qwn
wW=XRx1801—x31Rx K1 92:)(%®1®V1+X3®1®V2

with (w1 AW2)21®X1/\XQ®1and d()E:L X1 vi+1 X2 Vo,
the following is a basis of (S® AV* ® V)€ as a free S®-module:

01, O w101 w163 webq diE, (wl A w2)91, (w1 A w2)92
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Thank you!
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