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Let V = Fn. Recall a reflection s ∈ GL(V) fixes a hyperplane H pointwise.

With H = ker ℓH for some ℓH ∈ V∗, s is determined by its root vector αs :

s(v) = v + ℓH(v)αs for all v ∈ V .

Watch out! The root vector αs can lie inside the reflecting hyperplane!

Nondiagonalizable reflections are called transvections.

αs ∈ H ⇐⇒ s is a transvection ⇐⇒ order(s) = charF > 0

 1 1
0 1

In−2


If G ⊂ GL(V) contains transvections, charF divides |G|, i.e., modular case.
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.

Mixed forms are derivations with differential forms as coefficients.

Let S := S(V∗) ∼= F[x1, . . . , xn].

Derivations = S-span
{ ∂

∂x1
, . . . ,

∂

∂xn

}
∼= S ⊗ V

Mixed Forms = (S ⊗ ∧V∗)-span
{ ∂

∂x1
, . . . ,

∂

∂xn

}
= S-span

{
dxi1 ∧ · · · ∧ dxik

∂

∂xj

}
∼= S ⊗ ∧V∗ ⊗ V

The set of invariant mixed forms (S ⊗ ∧V∗ ⊗ V)G is a module over SG.

Q: Free??

When F = C and SG = F[f1, . . . , fn], yes. (Hochster, Eagon 1971).
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Lemma
Let G be a finite group acting linearly on V = Fn. If G fixes a single
hyperplane H ⊂ V, then (S ⊗ ∧V∗ ⊗ V)G is a free SG-module.

Theorem (D.H.)
Let G be a finite group acting linearly on V = Fn. Any homogeneous
subset B of n

(n
k
)

elements in (S ⊗ ∧kV∗ ⊗ V)G is an SG-basis if and only if

detCoef(B) ̸= 0 and
∑
η∈B

deg η = ∆k ,

where ∆k =
∑

H∈A
(n−1

k
)
+ (eH − 1)(n − 1)

(n−1
k−1

)
+ eHaH,k,

and eH, aH,k describe the pointwise stabilizers GH.

If G has no transvections, aH,k = 0; coincides with Reiner, Shepler 2019.
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.

The transvection root space of a reflecting hyperplane H of G is the
F-span of the root vectors for the transvections in G about H; call its
dimension bH.

bH = 0 ⇒ no transvections about H
bH = n − 1 ⇒ maximal transvection root space

Let G have transvection root spaces all maximal, e.g., SLn(Fq), GLn(Fq).

Theorem (Hartmann, Shepler 2007)
Let G be a finite group acting linearly on V = Fn with transvection root
spaces all maximal. If ω1, . . . , ωn are basic 1-forms, then

(S ⊗ ∧V∗)G =⋏SG{ω1, . . . , ωn} .

Theorem (D.H)
Let G be a finite group acting linearly on V = Fn with transvection root
spaces all maximal. Then G acts transitively on the set of its reflecting
hyperplanes.
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Theorem (D.H.)
Let G be a finite group acting on V = Fn with transvection root spaces all
maximal. If ω1, . . . , ωn in (S ⊗ V∗ ⊗ 1)G are basic 1-forms, then

• θ1, . . . , θn in (S ⊗ 1⊗ V)G created by a duality θi = ω∗
i

are basic derivations, and

• (S ⊗∧V∗ ⊗ V)G is a free SG-module, and when charF ̸= 2, with basis

{ωi1 ⋏ · · ·ωik θj} \ {ωnθn} ∪ {dθE} .

Corollary
With R =⋏SG {ω1, . . . , ωn−1}, we have a direct sum of R-submodules:

(S ⊗ ∧V∗ ⊗ V)G =
n⊕

j=1

R θj ⊕
n−1⊕
j=1

R ⋏ ωn θj ⊕ R dθE .
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Example
Let G = SL2(F3). Given these basic 1-forms and their dual derivations:

ω1 = x32 ⊗ x1 ⊗ 1− x31 ⊗ x2 ⊗ 1 θ1 = x1 ⊗ 1⊗ v1 + x2 ⊗ 1⊗ v2
ω2 = x2 ⊗ x1 ⊗ 1− x1 ⊗ x2 ⊗ 1 θ2 = x31 ⊗ 1⊗ v1 + x32 ⊗ 1⊗ v2

with (ω1 ⋏ ω2) = 1⊗ x1 ∧ x2 ⊗ 1 and dθE = 1⊗ x1 ⊗ v1 + 1⊗ x2 ⊗ v2 ,
the following is a basis of (S ⊗ ∧V∗ ⊗ V)G as a free SG-module:

θ1, θ2 ω1θ1 ω1θ2 ω2θ1 dθE, (ω1 ⋏ ω2)θ1, (ω1 ⋏ ω2)θ2
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Thank you!
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