

Invariant Mixed Forms of Modular Reflection Groups

Dillon Hanson

University of North Texas

June 21, 2022

Let $V = \mathbb{F}^n$. Recall a **reflection** $s \in \mathrm{GL}(V)$ fixes a hyperplane H pointwise.

Let $V = \mathbb{F}^n$. Recall a **reflection** $s \in \mathrm{GL}(V)$ fixes a hyperplane H pointwise. With $H = \ker \ell_H$ for some $\ell_H \in V^*$, s is determined by its **root vector** α_s :

$$s(v) = v + \ell_H(v) \alpha_s \quad \text{for all } v \in V.$$

Let $V = \mathbb{F}^n$. Recall a **reflection** $s \in \mathrm{GL}(V)$ fixes a hyperplane H pointwise. With $H = \ker \ell_H$ for some $\ell_H \in V^*$, s is determined by its **root vector** α_s :

$$s(v) = v + \ell_H(v) \alpha_s \quad \text{for all } v \in V.$$

Watch out! The root vector α_s can lie inside the reflecting hyperplane!

Let $V = \mathbb{F}^n$. Recall a **reflection** $s \in \mathrm{GL}(V)$ fixes a hyperplane H pointwise. With $H = \ker \ell_H$ for some $\ell_H \in V^*$, s is determined by its **root vector** α_s :

$$s(v) = v + \ell_H(v) \alpha_s \quad \text{for all } v \in V.$$

Watch out! The root vector α_s can lie inside the reflecting hyperplane!

Nondiagonalizable reflections are called **transvections**.

$$\alpha_s \in H \iff s \text{ is a transvection} \iff \mathrm{order}(s) = \mathrm{char} \mathbb{F} > 0$$

$$\left(\begin{array}{cc|c} 1 & 1 \\ 0 & 1 & \hline & & I_{n-2} \end{array} \right)$$

Let $V = \mathbb{F}^n$. Recall a **reflection** $s \in \mathrm{GL}(V)$ fixes a hyperplane H pointwise. With $H = \ker \ell_H$ for some $\ell_H \in V^*$, s is determined by its **root vector** α_s :

$$s(v) = v + \ell_H(v) \alpha_s \quad \text{for all } v \in V.$$

Watch out! The root vector α_s can lie inside the reflecting hyperplane!

Nondiagonalizable reflections are called **transvections**.

$$\alpha_s \in H \iff s \text{ is a transvection} \iff \mathrm{order}(s) = \mathrm{char} \mathbb{F} > 0$$

$$\left(\begin{array}{cc|c} 1 & 1 \\ 0 & 1 \\ \hline & & I_{n-2} \end{array} \right)$$

If $G \subset \mathrm{GL}(V)$ contains transvections, $\mathrm{char} \mathbb{F}$ divides $|G|$, i.e., **modular case**.

Mixed forms are derivations with differential forms as coefficients.

Mixed forms are derivations with differential forms as coefficients.

Let $S := S(V^*) \cong \mathbb{F}[x_1, \dots, x_n]$.

Mixed forms are derivations with differential forms as coefficients.

Let $S := S(V^*) \cong \mathbb{F}[x_1, \dots, x_n]$.

$$\text{Derivations} = S\text{-span} \left\{ \frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n} \right\} \cong S \otimes V$$

Mixed forms are derivations with differential forms as coefficients.

Let $S := S(V^*) \cong \mathbb{F}[x_1, \dots, x_n]$.

$$\text{Derivations} = S\text{-span} \left\{ \frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n} \right\} \cong S \otimes V$$

$$\begin{aligned} \text{Mixed Forms} &= (S \otimes \wedge V^*)\text{-span} \left\{ \frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n} \right\} \\ &= S\text{-span} \left\{ dx_{i_1} \wedge \dots \wedge dx_{i_k} \frac{\partial}{\partial x_j} \right\} \cong S \otimes \wedge V^* \otimes V \end{aligned}$$

Mixed forms are derivations with differential forms as coefficients.

Let $S := S(V^*) \cong \mathbb{F}[x_1, \dots, x_n]$.

$$\text{Derivations} = S\text{-span} \left\{ \frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n} \right\} \cong S \otimes V$$

$$\begin{aligned} \text{Mixed Forms} &= (S \otimes \wedge V^*)\text{-span} \left\{ \frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n} \right\} \\ &= S\text{-span} \left\{ dx_{i_1} \wedge \dots \wedge dx_{i_k} \frac{\partial}{\partial x_j} \right\} \cong S \otimes \wedge V^* \otimes V \end{aligned}$$

The set of invariant mixed forms $(S \otimes \wedge V^* \otimes V)^G$ is a module over S^G .

Mixed forms are derivations with differential forms as coefficients.

Let $S := S(V^*) \cong \mathbb{F}[x_1, \dots, x_n]$.

$$\text{Derivations} = S\text{-span} \left\{ \frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n} \right\} \cong S \otimes V$$

$$\begin{aligned} \text{Mixed Forms} &= (S \otimes \wedge V^*)\text{-span} \left\{ \frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n} \right\} \\ &= S\text{-span} \left\{ dx_{i_1} \wedge \dots \wedge dx_{i_k} \frac{\partial}{\partial x_j} \right\} \cong S \otimes \wedge V^* \otimes V \end{aligned}$$

The set of invariant mixed forms $(S \otimes \wedge V^* \otimes V)^G$ is a module over S^G .

Q: Free??

Mixed forms are derivations with differential forms as coefficients.

Let $S := S(V^*) \cong \mathbb{F}[x_1, \dots, x_n]$.

$$\text{Derivations} = S\text{-span} \left\{ \frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n} \right\} \cong S \otimes V$$

$$\begin{aligned} \text{Mixed Forms} &= (S \otimes \wedge V^*)\text{-span} \left\{ \frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n} \right\} \\ &= S\text{-span} \left\{ dx_{i_1} \wedge \dots \wedge dx_{i_k} \frac{\partial}{\partial x_j} \right\} \cong S \otimes \wedge V^* \otimes V \end{aligned}$$

The set of invariant mixed forms $(S \otimes \wedge V^* \otimes V)^G$ is a module over S^G .

Q: Free??

When $\mathbb{F} = \mathbb{C}$ and $S^G = \mathbb{F}[f_1, \dots, f_n]$, yes. (Hochster, Eagon 1971).

Lemma

Let G be a finite group acting linearly on $V = \mathbb{F}^n$. If G fixes a single hyperplane $H \subset V$, then $(S \otimes \wedge V^* \otimes V)^G$ is a free S^G -module.

Lemma

Let G be a finite group acting linearly on $V = \mathbb{F}^n$. If G fixes a single hyperplane $H \subset V$, then $(S \otimes \wedge^k V^* \otimes V)^G$ is a free S^G -module.

Theorem (D.H.)

Let G be a finite group acting linearly on $V = \mathbb{F}^n$. Any homogeneous subset \mathcal{B} of $n \binom{n}{k}$ elements in $(S \otimes \wedge^k V^* \otimes V)^G$ is an S^G -basis if and only if

$$\det \text{Coef}(\mathcal{B}) \neq 0 \text{ and } \sum_{\eta \in \mathcal{B}} \deg \eta = \Delta_k,$$

where $\Delta_k = \sum_{H \in \mathcal{A}} \binom{n-1}{k} + (e_H - 1)(n-1) \binom{n-1}{k-1} + e_H a_{H,k}$,
and $e_H, a_{H,k}$ describe the pointwise stabilizers G_H .

Lemma

Let G be a finite group acting linearly on $V = \mathbb{F}^n$. If G fixes a single hyperplane $H \subset V$, then $(S \otimes \wedge^k V^* \otimes V)^G$ is a free S^G -module.

Theorem (D.H.)

Let G be a finite group acting linearly on $V = \mathbb{F}^n$. Any homogeneous subset \mathcal{B} of $n \binom{n}{k}$ elements in $(S \otimes \wedge^k V^* \otimes V)^G$ is an S^G -basis if and only if

$$\det \text{Coef}(\mathcal{B}) \neq 0 \text{ and } \sum_{\eta \in \mathcal{B}} \deg \eta = \Delta_k,$$

where $\Delta_k = \sum_{H \in \mathcal{A}} \binom{n-1}{k} + (e_H - 1)(n-1) \binom{n-1}{k-1} + e_H a_{H,k}$,
and $e_H, a_{H,k}$ describe the pointwise stabilizers G_H .

If G has no transvections, $a_{H,k} = 0$; coincides with Reiner, Shepler 2019.

The **transvection root space** of a reflecting hyperplane H of G is the \mathbb{F} -span of the root vectors for the transvections in G about H ; call its dimension b_H .

The **transvection root space** of a reflecting hyperplane H of G is the \mathbb{F} -span of the root vectors for the transvections in G about H ; call its dimension b_H .

$$b_H = 0 \quad \Rightarrow \text{no transvections about } H$$

The **transvection root space** of a reflecting hyperplane H of G is the \mathbb{F} -span of the root vectors for the transvections in G about H ; call its dimension b_H .

$b_H = 0$ \Rightarrow no transvections about H

$b_H = n - 1$ \Rightarrow maximal transvection root space

The **transvection root space** of a reflecting hyperplane H of G is the \mathbb{F} -span of the root vectors for the transvections in G about H ; call its dimension b_H .

$b_H = 0$ \Rightarrow no transvections about H

$b_H = n - 1$ \Rightarrow **maximal transvection root space**

Let G have transvection root spaces all maximal, e.g., $\mathrm{SL}_n(\mathbb{F}_q)$, $\mathrm{GL}_n(\mathbb{F}_q)$.

The **transvection root space** of a reflecting hyperplane H of G is the \mathbb{F} -span of the root vectors for the transvections in G about H ; call its dimension b_H .

$b_H = 0$ \Rightarrow no transvections about H

$b_H = n - 1$ \Rightarrow **maximal transvection root space**

Let G have transvection root spaces all maximal, e.g., $\mathrm{SL}_n(\mathbb{F}_q)$, $\mathrm{GL}_n(\mathbb{F}_q)$.

Theorem (Hartmann, Shepler 2007)

Let G be a finite group acting linearly on $V = \mathbb{F}^n$ with transvection root spaces all maximal. If $\omega_1, \dots, \omega_n$ are basic 1-forms, then

$$(S \otimes \wedge V^*)^G = \bigwedge_{S^G} \{\omega_1, \dots, \omega_n\}.$$

The **transvection root space** of a reflecting hyperplane H of G is the \mathbb{F} -span of the root vectors for the transvections in G about H ; call its dimension b_H .

$b_H = 0$ \Rightarrow no transvections about H

$b_H = n - 1$ \Rightarrow **maximal transvection root space**

Let G have transvection root spaces all maximal, e.g., $\mathrm{SL}_n(\mathbb{F}_q)$, $\mathrm{GL}_n(\mathbb{F}_q)$.

Theorem (Hartmann, Shepler 2007)

Let G be a finite group acting linearly on $V = \mathbb{F}^n$ with transvection root spaces all maximal. If $\omega_1, \dots, \omega_n$ are basic 1-forms, then

$$(S \otimes \wedge V^*)^G = \bigwedge_{S^G} \{\omega_1, \dots, \omega_n\}.$$

Theorem (D.H)

Let G be a finite group acting linearly on $V = \mathbb{F}^n$ with transvection root spaces all maximal. Then G acts transitively on the set of its reflecting hyperplanes.

Theorem (D.H.)

Let G be a finite group acting on $V = \mathbb{F}^n$ with transvection root spaces all maximal. If $\omega_1, \dots, \omega_n$ in $(S \otimes V^* \otimes 1)^G$ are basic 1-forms, then

- $\theta_1, \dots, \theta_n$ in $(S \otimes 1 \otimes V)^G$ created by a duality $\theta_i = \omega_i^*$ are basic derivations, and

Theorem (D.H.)

Let G be a finite group acting on $V = \mathbb{F}^n$ with transvection root spaces all maximal. If $\omega_1, \dots, \omega_n$ in $(S \otimes V^* \otimes 1)^G$ are basic 1-forms, then

- $\theta_1, \dots, \theta_n$ in $(S \otimes 1 \otimes V)^G$ created by a duality $\theta_i = \omega_i^*$ are basic derivations, and
- $(S \otimes \wedge V^* \otimes V)^G$ is a free S^G -module, and when $\text{char } \mathbb{F} \neq 2$, with basis

$$\{\omega_{i_1} \wedge \cdots \wedge \omega_{i_k} \theta_j\} \setminus \{\omega_n \theta_n\} \cup \{d\theta_E\}.$$

Theorem (D.H.)

Let G be a finite group acting on $V = \mathbb{F}^n$ with transvection root spaces all maximal. If $\omega_1, \dots, \omega_n$ in $(S \otimes V^* \otimes 1)^G$ are basic 1-forms, then

- $\theta_1, \dots, \theta_n$ in $(S \otimes 1 \otimes V)^G$ created by a duality $\theta_i = \omega_i^*$ are basic derivations, and
- $(S \otimes \wedge V^* \otimes V)^G$ is a free S^G -module, and when $\text{char } \mathbb{F} \neq 2$, with basis

$$\{\omega_{i_1} \wedge \dots \wedge \omega_{i_k} \theta_j\} \setminus \{\omega_n \theta_n\} \cup \{d\theta_E\}.$$

Corollary

With $R = \bigwedge_{S^G} \{\omega_1, \dots, \omega_{n-1}\}$, we have a direct sum of R -submodules:

$$(S \otimes \wedge V^* \otimes V)^G = \bigoplus_{j=1}^n R\theta_j \oplus \bigoplus_{j=1}^{n-1} R \wedge \omega_n \theta_j \oplus R d\theta_E.$$

Example

Let $G = \mathrm{SL}_2(\mathbb{F}_3)$. Given these basic 1-forms and their dual derivations:

$$\begin{array}{ll} \omega_1 = x_2^3 \otimes x_1 \otimes 1 - x_1^3 \otimes x_2 \otimes 1 & \theta_1 = x_1 \otimes 1 \otimes v_1 + x_2 \otimes 1 \otimes v_2 \\ \omega_2 = x_2 \otimes x_1 \otimes 1 - x_1 \otimes x_2 \otimes 1 & \theta_2 = x_1^3 \otimes 1 \otimes v_1 + x_2^3 \otimes 1 \otimes v_2 \end{array}$$

with $(\omega_1 \wedge \omega_2) = 1 \otimes x_1 \wedge x_2 \otimes 1$ and $d\theta_E = 1 \otimes x_1 \otimes v_1 + 1 \otimes x_2 \otimes v_2$,
the following is a basis of $(S \otimes \wedge V^* \otimes V)^G$ as a free S^G -module:

$$\theta_1, \theta_2, \omega_1 \theta_1, \omega_1 \theta_2, \omega_2 \theta_1, d\theta_E, (\omega_1 \wedge \omega_2) \theta_1, (\omega_1 \wedge \omega_2) \theta_2$$

Thank you!