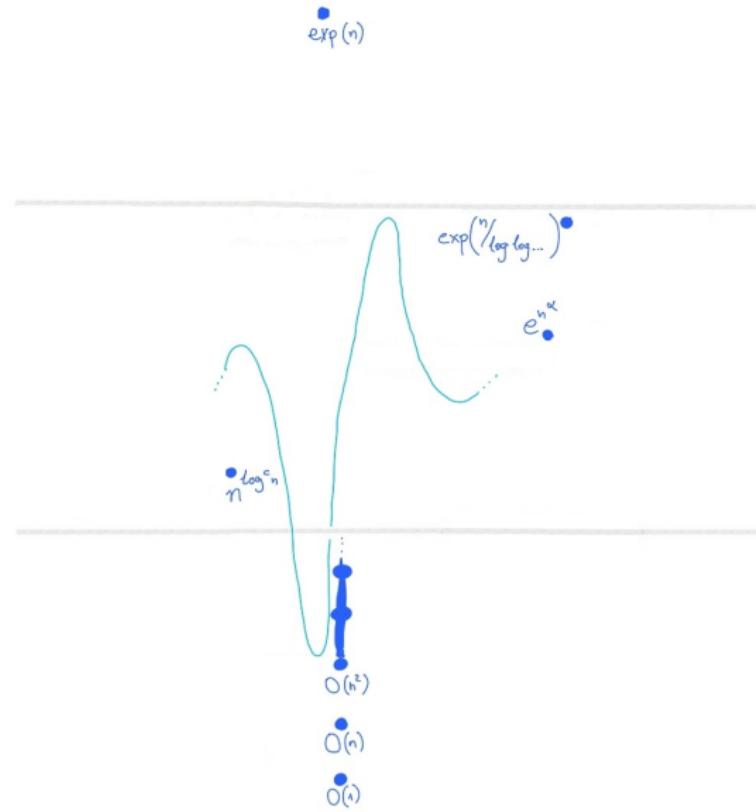
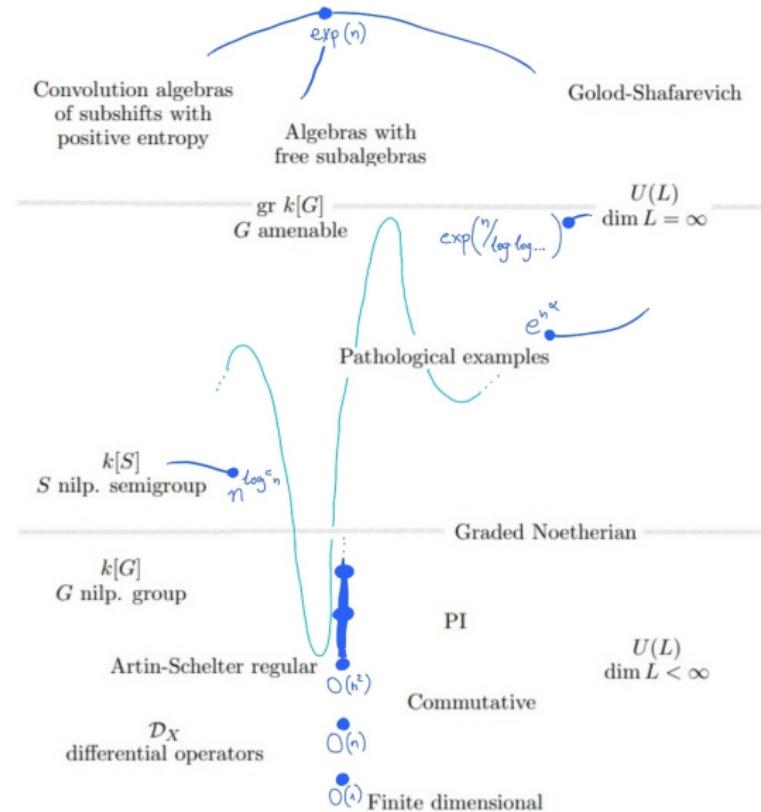


Gaps and approximations in the space of growth functions


From pathological examples to natural constructions

Be'eri Greenfeld
University of California San Diego


Seattle, June 2022

Recent Advances and New Directions in the Interplay of
Noncommutative Algebra and Geometry
In Honor of S. Paul Smith on the occasion of his 65th Birthday

The space of growth functions

The space of growth functions

Which functions are growth functions of algebras?

Growth functions of algebras are *increasing* ($f(n) < f(n + 1)$) and *submultiplicative* ($f(n + m) \leq f(n)f(m)$)

Are these necessary conditions also sufficient?

Which functions are growth functions of algebras?

Growth functions of algebras are *increasing* ($f(n) < f(n + 1)$) and *submultiplicative* ($f(n + m) \leq f(n)f(m)$)

Are these necessary conditions also sufficient? No: Bergman's Gap

Question (Zelmanov, '17; Alahmadi-Alsulami-Jain-Zelmanov, '17)

Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be an increasing and submultiplicative function s.t. $f(n) \succeq n^2$ (or: sufficiently rapid). Is $f \sim$ growth function of an algebra?

Which functions are growth functions of algebras?

Growth functions of algebras are *increasing* ($f(n) < f(n + 1)$) and *submultiplicative* ($f(n + m) \leq f(n)f(m)$)

Are these necessary conditions also sufficient? No: Bergman's Gap

Question (Zelmanov, '17; Alahmadi-Alsulami-Jain-Zelmanov, '17)

Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be an increasing and submultiplicative function s.t. $f(n) \succeq n^2$ (or: sufficiently rapid). Is $f \sim$ growth function of an algebra?

Theorem (G., '21)

There exist arbitrarily rapid, increasing submultiplicative functions which are **not equivalent to the growth of any finitely generated algebra**.

Which functions are growth functions of algebras?

Growth functions of algebras are *increasing* ($f(n) < f(n+1)$) and *submultiplicative* ($f(n+m) \leq f(n)f(m)$)

Are these necessary conditions also sufficient? No: Bergman's Gap

Question (Zelmanov, '17; Alahmadi-Alsulami-Jain-Zelmanov, '17)

Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be an increasing and submultiplicative function s.t. $f(n) \succeq n^2$ (or: sufficiently rapid). Is $f \sim$ growth function of an algebra?

Theorem (G., '21)

There exist arbitrarily rapid, increasing submultiplicative functions which are **not equivalent to the growth of any finitely generated algebra**.

But partial affirmative answers...

- \exists algebra A : $f(n) \preceq \gamma_A(n) \preceq n^3 f(n)$ (Smoktunowicz-Bartholdi, '14)
- $f(n) \preceq \gamma_A(n) \preceq nf(n)$ (follows from Bell-Zelmanov '20)

Pathological examples vs. Algebras 'from nature'

Examples are generically pathological (nilpotent radicals, non-prolongable)

Monomial algebras: Prolongable algebras \leftrightarrow Subshifts; Prime \leftrightarrow Transitive w/o isolated pts.; Just-infinite \leftrightarrow Minimal subshifts

Pathological examples vs. Algebras 'from nature'

Examples are generically pathological (nilpotent radicals, non-prolongable)

Monomial algebras: Prolongable algebras \leftrightarrow Subshifts; Prime \leftrightarrow Transitive w/o isolated pts.; Just-infinite \leftrightarrow Minimal subshifts

Conjecture I (Zelmanov, '17; Alahmadi-Alsulami-Jain-Zelmanov, '17)

$$\left\{ \begin{array}{l} \text{Growth functions*} \\ \text{of algebras} \end{array} \right\} = \left\{ \begin{array}{l} \text{Growth functions} \\ \text{of primitive algebras} \end{array} \right\}$$

*Except for algebras of linear growth

Pathological examples vs. Algebras 'from nature'

Examples are generically pathological (nilpotent radicals, non-prolongable)

Monomial algebras: Prolongable algebras \leftrightarrow Subshifts; Prime \leftrightarrow Transitive w/o isolated pts.; Just-infinite \leftrightarrow Minimal subshifts

Conjecture I (Zelmanov, '17; Alahmadi-Alsulami-Jain-Zelmanov, '17)

$$\left\{ \begin{array}{l} \text{Growth functions*} \\ \text{of algebras} \end{array} \right\} = \left\{ \begin{array}{l} \text{Growth functions} \\ \text{of primitive algebras} \end{array} \right\}$$

*Except for algebras of linear growth

Theorem (G., '22)

- For any growth function f there exists a primitive algebra s.t. $f(n) \preceq \gamma_A(n) \preceq n^2 f(n)$
- There exist graded algebras whose growth functions encode graded nilpotent ideals, i.e. the 'Graded Conjecture I' is false

(Convolution algebras of étale groupoids of Cantor systems)

Growth of nil algebras: the quantitative Kurosh problem

Growth of nil algebras: the quantitative Kurosh problem

Kurosh problem, periodic groups, nil Lie algebras, residually- p groups

Growth of nil algebras: the quantitative Kurosh problem

Kurosh problem, periodic groups, nil Lie algebras, residually- p groups

- There exist nil algebras with $\text{GK} < \infty$ (Lenagan-Smoktunowicz, '06)
- There exist nil algebras of intermediate growth (Smoktunowicz, '14)

Growth of nil algebras: the quantitative Kurosh problem

Kurosh problem, periodic groups, nil Lie algebras, residually- p groups

- There exist nil algebras with $\text{GK} < \infty$ (Lenagan-Smoktunowicz, '06)
- There exist nil algebras of intermediate growth (Smoktunowicz, '14)

A strong quantitative Kurosh problem:

Conjecture II (Zelmanov, '17; Alahmadi-Alsulami-Jain-Zelmanov, '17)

$$\left\{ \begin{array}{c} \text{Growth functions*} \\ \text{of algebras} \end{array} \right\} = \left\{ \begin{array}{c} \text{Growth functions} \\ \text{of nil algebras} \end{array} \right\}$$

*Except for algebras of linear growth

Growth of nil algebras: the quantitative Kurosh problem

Kurosh problem, periodic groups, nil Lie algebras, residually- p groups

- There exist nil algebras with $\text{GK} < \infty$ (Lenagan-Smoktunowicz, '06)
- There exist nil algebras of intermediate growth (Smoktunowicz, '14)

A strong quantitative Kurosh problem:

Conjecture II (Zelmanov, '17; Alahmadi-Alsulami-Jain-Zelmanov, '17)

$$\left\{ \begin{array}{c} \text{Growth functions*} \\ \text{of algebras} \end{array} \right\} = \left\{ \begin{array}{c} \text{Growth functions} \\ \text{of nil algebras} \end{array} \right\}$$

*Except for algebras of linear growth

Theorem (G.-Zelmanov, '22)

For any increasing, submultiplicative function f and an arbitrarily slow 'distortion' $\omega(n) \rightarrow \infty$ there exists a nil algebra/Lie algebra A such that:

$$f(n/\omega(n)) \preceq \gamma_A(n) \preceq \text{poly}(n) \cdot f(n)$$

Growth oscillations, tensor products and Warfield's question

$\dim X \times Y = \dim X + \dim Y$ (manifolds, varieties)

Growth oscillations, tensor products and Warfield's question

$\dim X \times Y = \dim X + \dim Y$ (manifolds, varieties)

$\text{GKdim}(A \otimes_F B)$ vs. $\text{GKdim}(A) + \text{GKdim}(B)$?

Growth oscillations, tensor products and Warfield's question

$\dim X \times Y = \dim X + \dim Y$ (manifolds, varieties)

$\text{GKdim}(A \otimes_F B)$ vs. $\text{GKdim}(A) + \text{GKdim}(B)$?

$\alpha := \text{GKdim}(A), \beta := \text{GKdim}(B) \geq 2$

$$\min\{\alpha, \beta\} + 2 \leq \text{GKdim}(A \otimes_F B) \leq \alpha + \beta$$

Growth oscillations, tensor products and Warfield's question

$\dim X \times Y = \dim X + \dim Y$ (manifolds, varieties)

$\text{GKdim}(A \otimes_F B)$ vs. $\text{GKdim}(A) + \text{GKdim}(B)$?

$\alpha := \text{GKdim}(A), \beta := \text{GKdim}(B) \geq 2$

$$\min\{\alpha, \beta\} + 2 \leq \text{GKdim}(A \otimes_F B) \leq \alpha + \beta$$

Warfield ('84): The above is best possible.

Krempa-Okniński ('87): $\text{GKdim}(A \otimes_F B)$ can be arbitrary within this interval.

Question (Krempa-Okniński, '87; Krause-Lenagan, '00)

Are there such example among semiprime algebras?

Growth oscillations, tensor products and Warfield's question

$\dim X \times Y = \dim X + \dim Y$ (manifolds, varieties)

$\text{GKdim}(A \otimes_F B)$ vs. $\text{GKdim}(A) + \text{GKdim}(B)$?

$\alpha := \text{GKdim}(A), \beta := \text{GKdim}(B) \geq 2$

$$\min\{\alpha, \beta\} + 2 \leq \text{GKdim}(A \otimes_F B) \leq \alpha + \beta$$

Warfield ('84): The above is best possible.

Krempa-Okniński ('87): $\text{GKdim}(A \otimes_F B)$ can be arbitrary within this interval.

Question (Krempa-Okniński, '87; Krause-Lenagan, '00)

Are there such example among semiprime algebras?

Theorem (G.-Zelmanov, '22)

For any $\alpha, \beta \geq 2$ and $\gamma \in [\min\{\alpha, \beta\} + 2, \alpha + \beta]$ there exist primitive monomial algebras $\text{GKdim}(A) = \alpha, \text{GKdim}(B) = \beta, \text{GKdim}(A \otimes_F B) = \gamma$.

Thank you!

Questions?