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Which functions are growth functions of algebras?

Growth functions of algebras are increasing (f (n) < f (n + 1)) and
submultiplicative (f (n + m) ≤ f (n)f (m))
Are these necessary conditions also sufficient?

No: Bergman’s Gap

Question (Zelmanov, ’17; Alahmadi-Alsulami-Jain-Zelmanov, ’17)
Let f : N → N be an increasing and submultiplicative function s.t.
f (n) ⪰ n2 (or: sufficiently rapid). Is f ∼ growth function of an algebra?

Theorem (G., ’21)
There exist arbitrarily rapid, increasing submultiplicative functions which
are not equivalent to the growth of any finitely generated algebra.

But partial affirmative answers...
∃ algebra A: f (n) ⪯ γA(n) ⪯ n3f (n) (Smoktunowicz-Bartholdi, ’14)
f (n) ⪯ γA(n) ⪯ nf (n) (follows from Bell-Zelmanov ’20)
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Pathological examples vs. Algebras ‘from nature’
Examples are generically pathological (nilpotent radicals, non-prolongable)

Monomial algebras: Prolongable algebras ↔ Subshifts; Prime ↔
Transitive w/o isolated pts.; Just-infinite ↔ Minimal subshifts

Conjecture I (Zelmanov, ’17; Alahmadi-Alsulami-Jain-Zelmanov, ’17){
Growth functions*

of algebras

}
=

{
Growth functions

of primitive algebras

}
*Except for algebras of linear growth

Theorem (G., ’22)
For any growth function f there exists a primitive algebra s.t.
f (n) ⪯ γA(n) ⪯ n2f (n)
There exist graded algebras whose growth functions encode graded
nilpotent ideals, i.e. the ‘Graded Conjecture I’ is false

(Convolution algebras of étale groupoids of Cantor systems)
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Growth of nil algebras: the quantitative Kurosh problem

Kurosh problem, periodic groups, nil Lie algebras, residually-p groups
There exist nil algebras with GK < ∞ (Lenagan-Smoktunowicz, ’06)
There exist nil algebras of intermediate growth (Smoktunowicz, ’14)

A strong quantitative Kurosh problem:

Conjecture II (Zelmanov, ’17; Alahmadi-Alsulami-Jain-Zelmanov, ’17){
Growth functions*

of algebras

}
=

{
Growth functions

of nil algebras

}
*Except for algebras of linear growth

Theorem (G.-Zelmanov, ’22)
For any increasing, submultiplicative function f and an arbitrarily slow
‘distortion’ ω(n) → ∞ there exists a nil algebra/Lie algebra A such that:

f (n/ω(n)) ⪯ γA(n) ⪯ poly(n) · f (n)
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Growth oscillations, tensor products and Warfield’s
question
dim X × Y = dim X + dim Y (manifolds, varieties)

GKdim(A ⊗F B) vs. GKdim(A) + GKdim(B)?
α := GKdim(A), β := GKdim(B) ≥ 2

min{α, β} + 2 ≤ GKdim(A ⊗F B) ≤ α + β

Warfield (’84): The above is best possible.
Krempa-Okniński (’87): GKdim(A ⊗F B) can be arbitrary within this
interval.
Question (Krempa-Okniński, ’87; Krause-Lenagan, ’00)
Are there such example among semiprime algebras?

Theorem (G.-Zelmanov, ’22)
For any α, β ≥ 2 and γ ∈ [min{α, β} + 2, α + β] there exist primitive
monomial algebras GKdim(A) = α, GKdim(B) = β, GKdim(A ⊗F B) = γ.

(Monomial algebras associated with Toeplitz subshifts)
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Thank you!

Questions?
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