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Puincipal Fiber Bundles Let

be a principal bundle with structure group G, which we shall take to

be a Lie group. Therefore P is a free right G-space:

PXG —7 P

(p,6) —» pro= Rf(p)
with

M2 P/G.
Moreover, T is a submersion and ‘n(pl) ='n(p2) iff '3 o€ G:pl-6'= P,-
Finally, there is an open cover §;Ui} of M such that \/i, P|Ui is

equivariantly diffeomorphic to Ui)(G over Ui:

2

PlU; ——> U,XGC

1
T \_/prl
Yoy,
1

3. = (TP, $,((®)

$.pr6) = $.(P-c .

Definition: A local trivialization is an open set UCM and a

diffeomorphism



() = (MNP, P (P))

Ppra) =P -0 .

Observation: Fix U -- then there is a one-to-one correspondence

between the Eﬁ and the sections s over U.
[Given @ , define s by s(x) =§—l(x,e). Given s, define ¢ by

Rsx)-0) = (x,6).1

LEMMA A principal G-bundle is trivial iff it admits a global
Ny

section.

Rappel: There is an injective morphism of Lie algebras

g —> @l(P)

X —> X
with the property that

1

(R_),X = Ad( 6 )X.

o

Given p€ P, denote by Tg(P) the vertical subspace of Tp(P):

\Y) _ - —
T/ (P) = { TET,(P): AT (T) = o} .



FACT VW X€gq, ;(.pe T;(P) and the arrow

Vv
—_ T (P
g > p()

X —> X
p

is a linear isomorphism.

Suppose that F is a left G-space -- then the prescripticn

1

(p,x)-@ (pr¢ ,0 ~—-x)

defines a right action of G on PXF. Put

P XG F = (P XF)/G.

Then there is a commutative diagram

pry

PXF > P
pro l l“
P X, F > M.
Tp
Here
T, (Ip,x1) = T(p) (Ip,x] = pro(p,x)).
[Note: V p €P, the map
defined by
X‘Q[PIX]
is a diffeomorphism with the property that
~Sp.a- (x) = Sp(y'x)-]



Definition: (P:XG F, M, T[P,F) is the fiber bundle associated

with
G — P
\Lw
M.
Let
mapG(P,F)
be the set of G-equivariant maps
f:p—>F,
so Yo €g,

o l.f(p).

f(p-6)

LFMMA There is a one~-to-one correspondence
NNAAAY :
mapG(P,F)'—9 sec (P Xg F).

[Assign to fEmapG(P,F) the section Se of PXg F defined by

sc(x) = [p, £ (pe M),

In the other direction, assign to s € sec(P XG F) the map fsﬂ?—J>F
defined by

_ -1
fs(p) = ‘sp (s(w(p))),

the claim being that

£ (po) = c‘l-fs<p> Veoea.

First, ¥ Xx€F,  XXXEXXOXEKBKAXERNREKEERX XXX THOEK



= —l — _l .
x=35 ¢ ¢ ‘SP,G (x)) =5 .o (5,(6:%)
==
-1 _ =1
o X = S'pqy (Sljbd).
Now specialize and take x = fs(p) -- then

= —l -

fS(P G ) SP‘G‘ (s(11(p-67)))

‘S—%O_ (s(T(p)))

p.
= 0"_1~X
-1 -

=6 s tsinm))

_ -1

= 0 “-f_(p).]
Example: Take F=G and let the action be Int -- then

GP=PX G

G
is the bundle of Lie groups associated with P.

Example: Take F=g and let the action be A4d ~-- then

——

P _
g =PX5 49

is the bundle of Lie algebras associated with P.

Suppose that E —>M is a vector bundle -- then the sections of



64
k
E Q@ /AN "T*M

are the k-forms on M with values in E.

Notation: Put

/\k(YM;E) = sec ( E@/\kT*M ).

[Note: Conventionally,

ﬁy(M;E) = sec(E).]

So, for k>1, a given @ € /\k(M;E) can be viewed at each x€M
multilinear

as a/\]&w antisymmetric map 3Ty (M) Koo )(TX(M) —_— E-

Structurally,

Arasea Aose) @ AFan,
C (M)

where _ -
(s@W), (X5,...,X) =W (X,...,X)s(x).

Remark: If E is a trivial vector bundle with fiber V, then

f\k(M;E) is the space of k-forms on M with values in V and is denoted

by I\k(M;V).

Let P be a representation of G on a finite dimensional vector
space V == then a k~form
W € A*eiv)
is said to be of type ¢ if
h

(R )*a@ = pleiw Voes



and
W(Ty,.nn ) = 0
whenever one of the Ti is vertical.

Notation: Write

AK (p;V)

¢

for the space of k-forms of type:? and let E be the vector bundle

PXG V.

LEMMA There is a one-to-one correspondence
WAAMAYVY

/\12, ;) —> AR ;E) .

[The element st /\k(M;E) corresponding to W E /\kP (P;V) is
defined by the prescription
— -1
s“’,x (Xyreeer %) = ‘gp(wlp(Tl,...Tk)) (PETT (X)),

= Li &
where the TiG‘Tp(P) are such that dTTp(Ti) X, (1 £1i<k).]



Classification Suppose given
G —>» P
\LTT
M.
THEOREM Assume that M is contractible -- then P is trivial:
WA A AN,
P, MXG.

In particular: Principal G-bundles over\ES, [O,l]n, B" and D"

are trivial.

THEOREM Take M=S" and G path connected ~-- then the set of iso-
WAAAAAYW Ay

morphism classes of principal G-bundles over M is in a one-to-one

correspondence with the elements of T __, (G).

In particular: If G is path connected, then every principal

G-bundle over Sl is trivial.

THEOREM Suppose that G and M are path connected. Assume:
WANAAANAAANN

T,(G) =0 (qg<dim M),

Then every principal G-bundle over M is trivial.

more
[Note: This is ordinarily proved in a m&r general context, viz.
when M is a CW complex. In our situation, M is a C«Dmanifold, thus M

can be triangulated, hence carries a CW structure.]



Example: Let G;gE(Z) and assume that M is path connected with
dim M=3 -- then every principal G-bundle over M is trivial.

[This is because TTq(éEjZ)) =0 (g=0, 1, 2).]



Connections Suppose given

Then a connection ['is a G-invariant distribution on P which projects

isomorphically onto TM. In other words, I" consists in the smooth

assignment

h
Pp— Tp.(‘P) C ’I‘p (p)

of subspaces, said to be’horizontal, satisfying:

_ mVv h .
(1) TP(P) = TP<P)@TP(P),
(2) ar _(thm@)) = ™ _ (p).
6 D .

Remark: There is a short exact sequence

_— mV = - —
0 7Tp(P) va(P) )(M) 0,

Tnep

hence

h ~
Tp(P) ~ T M) .

7 (p)

1 : .
LEMMA If X€g and T€ of)” (P) is horizontal, then

[X,T]

is horizontal.

A connection [ gives rise to a l-form



Wn € AR,

viz.:

— 7 h
Xy Pve T, (P) @ T, (P)

—7 XE€gq.

Therefore Gorq(T)=0 iff T is horizontal. And:

3(- =X3
(1) COlq( )

-1
2 R _)* = aAd .
(2) | 6,.) oor, Ad(o )aJr

[Note: Conversely, if
w :Dter— COO(P;g)
satisfies these two conditions, then Ei! F such that
@ ==G)F .
Indeed, the assignment
p-—?Tg(P) ={rer,(®: o (m=0}

defines the connection r'.]
unique

FACT Every X € o@l(M) admits a/\lifting Xh to a horizontal
vector field on P such that T!*XII=X.
h 1 . . . .
[Note: X" € o) T (P) is invariant under the action of G and

every horizontal vector field on P with this property is the 1lift of
some vector field on M.]
Remark: Let ¢ be a representation of G on a finite dimensional

vector space V -- then in the presence of the connection rT, the



correspondence

/\}; (P;V) —7 /\k(M;E)

which sends a) to s is defined by the prescription

W

_ : h -1
swlx(xl,...,xk) = [p,(op( Xy reeer Xy )1 (pemm " (x)).

If [ﬂl,[ﬂz are connections, then
D ~WpE €N Lo(Rig)
r r S
1 2
Conversely, if [’ is a connection and if CdE/\id(P;g) , then
w +
I
determines a connection.

Notation: Q1 (P) is the set of connections.
Agreeing to identify [ with CQY,, it follows that O((P) is an

affine space with translation group ﬁ\id(P;g). Indeed, the action

— l -
wr-w-wr + W (wG/\Ad(P.g_))

is free and transitive. Since

A id(P;g_) ~ /\l(M;gP) ,

one can also say that 0U(P) is an affine space with translation group

Example: Consider P = MXG -- then the assignment

h

(x,6 )7 T(y &)

(MXG) = T (M)



is a connection |[°. Let () be the canonical l-form on G, i.e., ® is

the left invariant g-valued l-form on G characterized by the condition

(dL (X).

®¢(X)

6"1)0"

Then

Il

oor prg(C))r

where

prZ:MXG —>G.

[Note: This particular connection on MXG is called the standard
connection. If P is arbitrary and if '€ GU(p), then " is said to be

flat if every x€M admits a trivializing neighborhood U such that

P :T!_l(U)--—V UX G sends the induced connection on Tr_l(U) to the
standard connection on U XG.] |
insert 4.5
egg%& CRITERION Let {Ui} be a trivializing open cover of M.

Suppose that V3, Otj is a g-valued l-form on Uj such that whenever
UyN U8,

-1
G'LJ = Ad(gij) o Oli + @13

on Uj()Ui, where gij:Ujr1Ui-—> G is the transition function and

&) i = g{j@ -- then J a unique connection " such that V j,
. = s¥*
014 Y

sj:Uj—¢>‘n _l(Uj) the section associated with the trivialization

(Uj,éj).



Let {t{i} be a trivializing open cover of M -- then \fi, we have
plu 2 > U G
i r4 i_X
b1 pry
U.
i

®,(p) = (T(p), $,(P))

and
si:Ui————>P|Ui
-1
s;(x) =P (x,e).
Suppose that Ui()Uj % # -- then the function

gji:Ui(\Uj-J>G

defined by the rule

951 = 5@ (g eN™H eT )

is called a transition function.

[Note: It follows from the definitions that

si(x) = sj(x)'gji(x)-]

Properties:

- = -1 -
9;1 T & gij = (gji) ’ gkjgji = ki



[By definition,
F$.: T U, —>U, xG.
J J J
Put
wj = (pr; o §j)* mj + (pr, o§j)* ®.
Then the element W € /\l(P;g) for which
-1
U.) = W.
W | 7777y 5

determines the connection [ .]

Application: Take P = MXG -- then for every g-valued 1l-form

Ol on M, there is a unique connection I’ such that

01.=s*wr,,

where s(x) = (x,e) (x€M).



Exterior Differentiation Suppose given

G —8» P

\L‘n

M

and let @ be a representation of G on a finite dimensional vector

space V. Fix an element e ole).

Definition:  Put

F
d W =dwoh (WEN*XP;V)).

It is easy to show that

w € /\k? (P;V) = dr'w € N ;H‘(P;V).

Define now a bilinear map

gxRV —=>V
(A, v)—> A-v,
where
A-v = & (p (exp(tA)) (v)) ‘
dt P t=0.
Given
o € /\k(P;g)
pG /\X(P;V)l
let

KA, (€ AL e



be defined at each point of P by

(RN (T Ty )

L 2
= (sgng ) X (T yese,T )
@ (T ckil) T gy
E.g.: Take V=g, ¢ =Ad -- then
(X /\Adp) (Tl""’Tkﬂg)
1 2
= (Sgno“) [ X(T reessT ),
k! ! G ES,, G (1) (k)

Q(T o (k+1) """

Specialized to the case when

i

(w Apg @) (X,¥) = TQ(X),w()]

it

2 [WX),W((Y)].

Rappel: A graded Lie

is a graded R-module L = 6}9

n>0
[ ,1: Ln><Lm-—> L 4q Such that

x| [y[+1
[x,y] = (-1) [v,x]
and
Ix\}z] fyllx]

(-1) [[x,y]1,2] + (-1)

[ly,zl,x] + (-1)

'To ke )]

X =3 =& and k=4 =1, we get

- [W(¥Y), W(X)]

algebra over a commutative ring R with unit

L together with bilinear pairings

izl Iy}
[[z,x],y]=0.



E.g.: Let L =/\*(P;_g_) and [ , 1 = A aAq —- then L is a graded Lie
algebra.
FACT If o(€/\k(P;g), B G/\'Q‘(P;g_), then

_ k
Returning to the general case, one has the following fundamental

result.

THEOREM Let @ € /\k (P;V) -~ then
NANAA A AN P

r -
AW =dw WL AW

[Note: Written out, this says that for each pg€ P and all

Tl,...,Tk+l (= Tp(P) '

(dw)p (th,...,th+l) = (da))p (Tl,...,Tk+l)

1
4 o— (sgno‘)(oorl)p(To.(l))'Q)p(To-(z)'“"T 0‘(k+1))']

=
kt ¢ € Sk+1

Definition: A matter field is an equivariant map q):P~—>'V.

[Note: This means that

$6) = PTTHPE= 67" $®).]

E.g.: When V=g and @ =Ad, ¢ is called a Higgs field.

Remark: Since

mapG(P,V) <> sec (P XG V),



a matter field can also be viewed as a global section of the vector
bundle P XG V.

Let c‘):P—;) V be a

matter field -- then 4’ € /\0P (P;V), hence
by the theorem,

drcb =d$é + Wp AP .

Tab+ wp-d.

Here
= @ . .
(Qp A, $) (1) (M- b ()
Suppose that s:U —> T[_l(U) is a section -- then it is clear that

s*@'d ) =d(dos) +stwp-(dos).

Suppose in addition that £ :U—7 éf is a chart with coordinates

X ,...,xn -- then still

(s o‘qfl)*(dr'cb ) = d(47 os O ug‘l)+(s o @ Ly wr.q:o sow™).
To simplify, write 4)(xl,...,xn) in place of ¢0s o c(’_l(xl

,...,xn).
Put 01 = g¥% Q)P and let

(@ H=0l = Z 00, ax™,
M
where each O(AAis g-valued.

Specialize now to the case when G=§E(2) and take for P the funda-

mental representation of SU(2) on C2:
LV v
zq a b z
>

z, ~b a z,



$1
Let 4? = be an equivariant Cz—valued map on P. Working in
v
2

local coordinates, the exterior derivative is computed componentwise, i.e.,

rz ?4,1 dx# )
A 9xM

dey

L~ 2™
1 ?¢l‘ -
/.A
A OX 4,1
= dXM = Z ? dxM M
A 9 xM 472

¢
Zoor

Since
O'KM- 4’ = MM+ (matrix multiplication),

it follows that the local expression for dp<}> is

$1 2
2% \s,) 0 %l ) e

If P is the trivial representation ( ¢ (o)v=v VY 0€G), then

PXG V¢ MKV and the elements of /\]; (P;V) project uniquely to the



elements of /\k(M;V), i.e., Yaw € /\}({, (P;v),J! w € /\k(M;V):

Ti*ay=Q . Here

R _ -1 _
W (Xyreeo /X)) = cup(Tl,...,Tk) (peT (x), dT\'p(Ti) = Xi),

a definition which does not depend on the choices. So, if s:U—J>TI-l(U)

(X,) =

is a section, then one can take T, = s__(X.) (since X. = (id.))
i i i — U *x 71

*¥X

(TT o s)*x(xi) = 1T*s(x) (s*x(xi))). Therefore

= W () g (K)o e e 18, (1))

= (s*o))X (Xl,...,xk)
-
(—J = s*W
on U.
LEMMA We have
A s Y
r

[In fact,

(@@), (TyreerTyyy) = (AOM*@)), (Tyrene s Tyyy)

(M*@@)), (TyeensTyy)

= (@®) oy (Map (T eeerm, g (7))

= (d@) g (p) (Myp (T ,eee, m,, (AT )



*
(m (doo))p (hT
a(T11*
(d( w))p (hT

(dco)p (th,...

r

(d’ w )p (Tl"'

P o}

1’ Tyt1)

.. ,th+l)

17
PDTy )

crTypy) -]



Curvature Suppose given

7 P
\Ln
M

and let I" be a connection.

The curvature form ) _ is

Definition:
I
d,"Q) (=d@w, oh)
K r )
I.e.:
Cpx,v) = de p (hX,hy).
STRUCTURAL EQUATION We have
‘QF(X'Y) =dwp XY + lep X, wp ],
[Note: The theorem in the previous section does not apply
. 1 . X
(since Gor ﬁ{/\Ad (P;g)). It would lead in any event to an incorrect

result as we'd be off by a factor of 1/2:

[mr,mr]=%®r/\Adwr.]

FACT ' is flat iff ﬂ[’:O'
Example: The standard connection on MXG is flat.

[In this situation, Q)r B pr§(@3 ). And:

d@® + [ ®,® ] =0 (Maurer-Cartan)



=
de = dprj (@)
= pr} (A @)
=pr3 (- [@.01)

[pri (@), pri (@)]

[ F r (A)I"' .

Qr=dwr+[wr,w ]I

r

hence (TLF= 0.1

Example: Take M=R -- then every ™€ Ol(p) is flat.

[The horizontal subspaces are one dimensional, hence

Q

(X,Y)

d o r (hX,hY)

P

d , '
=7\,udm[1( 1, 1)

= 0.]



2.5

LEMMA Let @ € /\k (P;V) -~ then
WAAA AN P

Pl = C
@ ad w = E)_F /\rco.

[We have

dr’dr'a.! =ddrcd + C\Jrv /\Pdr.w

d(dw + wl"APw)+ G)r/\(,(dw+ wr,/\(,w)

dor /\‘,w - wr. /\f, dws + c,or,/\Pdw + wr./\(,(wr/\(,oo)

1

(dcorl +[(*’P’<"P])Ar’w

ﬂr/\?w.]

So, if [" is flat, then

@hly?=o.



3.

Observation: ) € /\id(P;g) .

r

[In fact,
* = *
(Rd’) er (Ro.) (dwrn"' [wr,c..)r.])

=d((Ra_)*wr) + [(Ro.)*(&)rlr (RU)*Q"I]

d(ad (e 1) wp) + (Ad( ¢ 1) o ,Ad(«‘l)wr.l

r

ad(g ™ h Qep + [ W rwp 1)

rl

Ad(o—"l)ﬂr .1

Therefore

r‘l
d .(lr, =er,+cu /\Adnr.

rl

Claim (Bianchi Identity): We have

dr,ﬂ

r = 0.

[To begin with,

dﬂr +Q)r Nag Qr

1
d(dmr, + —Z-Q)r. "\Adwr')

D

+wr,/\Ad(dQ)r + wl"/\AdwF)

1
=7 d@p Apgwp)
1
But

«2+1

N 1
Wphg dwp = (1) A6 Ny Wp -



Therefore
dF§2_ =dwa N W
raa “p

1

tORAng dOp F g OpApgl@p Apg wp)

1
= 7 COP/\Ad(m‘-. /\Ad Od‘—. )~

And, thanks to the graded Jacobi identity,

from which the claim.]

Definition: The field strength %ﬁq is that element of /\Z(M;gP)

which corresponds to ) _, under the identification

r

2
A2y APangh).
Given a section s:U— T -l(U), write

ot

s*oor (the local gauge potential)

and

Ef = g* flr, (the local field strength).

Then
F =abt + [0C,0C1.

n

Assuming that U is a chart with coordinates xl,...,x , we have

01.=ZO‘(deMand u;}=-:2L— Z ‘8:/421 dx’“/\dx)’ y
/A ’ :

where the OT}Aand the ?F

”Allare.g-valued functions on U. Consequently,

Foom 0.0, -,00, o+ 0L, 00,1,

AN




the derivatives being computed componentwise in g.

Remark: If s.:U.-—4>11_l(U.) and s.:U., —> TT—l(U.) are sections
11 1 1] J
and if.gij:Uj(\Ui—;§ G is the associated transition function, then on
anUi,
_ -1
oL, = Ad(g;3) © ot +@ij

and

EE

Ad(g7) o F -

So, when g is abelian, EFj = ?Fi on Uj(\Ui, and the local field strengths
- g-valued

can be pieced together to give a globally defineﬁhg—formlagon M, namely

F-7F, .



Gauge Transformations Suppose given

G — P

\Ln'

morphism

P —>» P

over M. So:
(1) f(p+e) = £(p)+5 ;
(2) TTof =717 .

Notation: Ab(P) is the group of gauge transformations.
Let

Int(P,G)
be the set of Coo functions Aar :P —% G such that
-1
A (p-6) = T “am(plo.

Then on general grounds,

Int(P,G)&e—> sec(GP).

LEMMA There is a one-~to-one correspondence
NANAANAA

A e)—>mt(p,0).

[Assign to £ G@QH(P) the element A4fe;Int(P,G) defined as follows:

,Aaf(p) is the unique element of G such that f(p) = p-AJf(p).]



[Note: 1In the special case when P = MX G, we have

Mf(x,o’) Mf((x.e)'o')

cr"l,uf(x,e)o’ '

thus AN e is completely determined by

M — G

X —7 A4z (x,e) .
Conversely, if g:M—> G, then the prescription

gix,67) = ¢ tgx)e

extends g to an element of Int(P,G).]

Remark: The preceding identifications respect the underlying

group structures.
insert 2.5

suppose that [ € 0l(p) -- then I é—?Corand WV EEYP®), Mf &

f*a) . Here

"1
-1
* = *
der Ad(,qf)oor +/o\f®.
The prescription

r°f<-9f*cur

defines a right action of A (P) on OL(P):
OL(P) % Y (p) — OUP).

Definition: Two connections r'l,{"z € 0((P) are said to be gauge

equivalent if 3 f €Y (P):

QO = f*x¢y .
Fz rl



Informally, Int(P,G) is a Lie group with Lie algebra /\gd(P;g).
[Note: The exponential map
exp: /\gd(P;g)——é'Int(P,G)

is defined by

(expeX ) (p) = exp(X(p)).]

Therefore each o(éff\gd(P;g) induces a one parameter family of

gauge transformations:

fd',}\e 9‘6@),

where

fo(’%(p) = p-exp( "\ o (p)) (9\6“1}"),-

And

rl

d x*

= f @y = deX + W =d & .
an XA T =0 PAAdO(



The orbit space

ol /Y ()

Definition: An automorphism of (P,M;G) is a pair (f,fM), where

f:P—> P is an equivariant diffeomorphism, £ :M—> M is a diffeomorphism,

M:
and the diagram

LN

P P
Tll Ll
M M

>

commutes.

[Note: If f:P—> P is equivariant, fM:M——#'M is a diffeomorphism,
and fM OM =TlMof, then f is necessarily a diffeomorphism.]
There is an evident exact sequence
1—> Y (p)—> Aut P —> Diff M,

but the map on the right need not be onto. For example, consider the

Hopf bundle

Sl —_— 83
-0
2.

Then the antipodal map\g?-J?vg? does not ‘1lift to an automorphism of

(S3,Sz;Sl). However, when P=M X G, the arrow Aut P—> Diff M is obviously

VWA VA v

surjective.
fM n
Let M > M £ P be a 2-sink, where f4€ Diff M, and form the




pullback square

f*p :)——% P
M
7| I
M 7 M .
£y

n
Let M &— P -—f-> P be a 2-source with fMOH' = T o f -- then there is

an arrow P —7 f§f and a commutative diagram

P —i—} f*P-—2—> P

M
N 3 m (£=mo0 ¢ ).
AN v
M > M
fM

Rewriting the triangle as a commutative square

$

*
P > fMP
nl k3
>
M idM M,

it follows that #»is an equivariant diffeomorphism. Conversely, if we

are given a commutative diagram

p —‘t—> £4P
nl l‘f

\

M idM’ M

where‘# is an equivariant diffeomorphism, then it is clear that the

lifting problem admits a solution.



Rappel: 1If fM:M-—%>M is smoothly homotopic to idM, then there

is an equivariant diffeomorphism <t:P-—9 fﬁP and a commutative diagram

$

T £*
P > fMP
l ‘
\Vg
~
M i dM M .

So, when fC:idM, the lifting problem admits a solution.
Notation: DiffOM is the subgroup of Diff M consisting of those
diffeomorphisms fM which are diffeotopic to the identity, i.e., for

H, = £

which 3 a smooth one parameter family Hte‘Diff M: H0 = idM, 1 M*

LEMMA \ffMGElefoM,'H an equivariant diffeomorphism f:P —> P such

that fMOTT = TTo £,

Let p be a representation of G on a finite dimensional vector

space V -- then V f € )8 (P), £* defines an isomorphism
£x: A° (e — AK (251
4 P
and
* = -1 k
fo(—/b\f-o( (X€e AN, (P;V)).

P
Example: %V [* € Ol (P), we have

Qo =00, =2au;h O

r e



To have a concrete illustration of the foregoing, consider

G —> P
\[-n
Sl,
\%2ad
where G is path connected -- then P is trivial: .P5¥'SlX(3.
Vow

Agreeing to work with Slx<3, specialize and assume that G is
A d

a compact connected semisimple matrix Lie group.

of DL(P) and jH in place of éy(P).

Write 0l in place

Convention: View the circle Sl as the unit interval [0,1]
wWw,

with boundary points identified, parameterized by T € [0,1].

Ad Ol : We have

01l <—>c®st;q).
VWA T
Ad;%i : We have
Y < c®ista).
WA
The right action of }H on0l is given by the prescription
a—>a9 = g_l Ag + g_l g'.
[Note: The precise meaning of 29 is this:

29(t) = g Y (T)aTHg(T) + g(T) T g (T).

Here

L _1@(T)) = e
g(T)



g(T)"™ g(T)
But
g'(T)E 6 ()
=>
dL -1 ') e g.
g(T)
I.e

4 gty gl +>\)]l
a

()™t g +'>\>I
d A ™ =0

()t g (T) € g.1
Put

H.={geH 900 =ga)=e}.

Then ;z-je is a normal subgroup of )87 .

Observation: The map
H — Y _xo

g —>(g g(0 "%, g(0))

is bijective.



Given @ € G and geeg%]e, let

-1
O 9, = 09,0 -

Then the multiplication per the semidirect product ’eje A G is given

by the rule
(9,0 V(@' a") =lg (6-9)), gg')-
Claim: The canonical bijection

Y —> H X6

is an isomorphism of groups.

[In fact,

(g g(0)"L, g(0)) (h h(0)™L, h(o))

= (g 97T (g(0)-h h(0)"Ly, g(o)n(0))

= (g 9(0) "L g(0)h h(®) L gL, go)yn(0))
-1 -1

= (gh h(0) g(0) , g(0)h(0)).]

LEMMA We have
VAAAAANAA

UV S PEARe
and

ot /¥ 22 G/Int,



the set of conjugacy classes in G.

[This is a simple application of holonomy theory.]

Remark: Let T be a maximal torus in G, W = N(T)/T the

associated Weyl group ~-- then

G/Int G T/W.



Parallel Transport Suppose given

G —» P
\Ln
M,
where G and M are path connected, and let I" be a connection.
continuous and
Convention: Curves arefPiecewise smooth.
THEOREM Let ¥ :[0,1]—> M be a curve. Fix a point
NAAANAAY ’
pOE 'n_l( J (0)) -- then there is a unique curve '31\: [0,1]—P such

T

that (1) ¥T(0) = py, (11) Mo =¥, wii) ¥Tw erl r, @ 02t 1),

Application: There is a diffeomorphism
-1 -1
T3:TT (¥ (0))— 171 (¥(1))

called parallel transport from ¥ (0) to ¥ (1) along ¥ satisfying the

condition
T, ©R_ =R_.oTy Yeea.
[In fact,
_ 1
[Note: If 4) :[0,11 — [a,b] is a homeomorphism with 4>(0) = a

o0 except at a finite number of

& 45(1) = b such that +and 4’_1 are C
points, then the parallel transport per ¥ is the same as the parallel
transport per ¥ © + 1

Remark: The parallel transport along X'q‘is the inverse of the

parallel transport along ¥ .




[Note: As usual,

Y L) = ¥i-t).]

If 4+:[0,11 —> M is a curve from x to y and ¥ :[0,1]—> M is a

curve from y to z, then the composite

AA(28) (04t £1/2)

Il

Yo (t)
Vv (2t-1) (1/2£t4£))

is a curve from x to z and

T = T T .
L O4L Lfo AL

Let f:P—> P be a gauge transformation.

-1
T" =f 0T, o f.
Y J

Put [*' =["-f -- then



Holonomy Suppose given

G —> P

%n

14

where G and M are path connected, and let I be a connection.

Notation: V x€M, {2(x) is the loop space at x, i.e., the set
of all closed curves starting and ending at x.
For each ¥€ (2 (x),

TX c 71 "hx) —> T (x)

is a diffeomorphism, the set of all such being the holonomy group

of TMat x:

Hol (T ,x).

The subgroup of Hol([" ,x) consisting of those T)’ for which ¥ is

nullhcomotopic is the restricted holonomy group of [Mat x:

Holo(l“,x).
Let p € I T(x) -- then V¥ € C2(x), 19, €c:
Tx(p) =p'gy .

Observation:

p-g = T (p)
W O Y oun

T, (T (P))

I
M3

<
)
Q

?



=R 1
qM(p g,,)
= P‘gv'g’ﬁ~
=p-(gng)
-
gvo,u RV
Observation:

T oT 1 (p) = p = pre

Put

Hol([,p) = {gw: ¥E QL)Y .
Then Hol([",p) is a subgroup of G and VY € €G,
Hol([",p-¢ ) = ¢ THOl([,p)6 .

[Note: Holo([’,p) is defined analogously.]

- LEMMA The arrow

NGO\t

is an isomorphism

Hol ([ ,x) —> Hol([",p)

of groups.



[One has only to check injectivity. Suppose therefore that

Then
T (p) =T (p).
¥ 9,
So, Vo €g,
T (pr¢) =T o R _ (p)
¥ L5}
= RXT oT 3,l(p)
=R _oT (p)
¥
=T320R°_(p)
= T .
zz(po')
=
T =T .1
7‘l 32
Rappel: Holo([",p) is the identity component of Hol([ ,p) and
is a connected Lie subgroup of G. There is a surjective homomorphism

T (M,x) = Hol ([",p) /Ho1® (I ,p)

of groups, hence

Hol(T ,p) = Hol’([,p)

when M is simply connected.



tiagRxxxTRRxHRX £ R RXXAXRX RQRENIRRLX RO XQRLX ARRKRRX X XRXEXE

AMBROSE-SINGER THEORFM Fix a point PoE P —-—~ then the Lie algebra

of Hol(r‘,po) is spanned by the flp(X,Y) (X,Ye=Tg(P)), where p ranges

over the points in P which can be joined to Py by a horizontal curve.

Remark: Let

A (P)r ={reYwm): r-s

Then the image of the arrow

/H(P)P——» G

f——buf(p)

is the centralizer of Hol([" ,p).

=T;.

Write
h D = .
(r.piy) Iy
Then
Tw(p'o’)=T},oR (p)
=R¢°T3’(p)
=p.g'
Zd_
= (prg ) (0
pP-o gya‘)
=94

h(l,pa:y) =¢ Thil,p;¥5) o -



Let f:P—> P be a gauge transformation. Put [' = f-f -- then
h(P',p;Y) = g; .
But
-1

' —

Tw £ oT?of.
And

1

£ (T (£(p)))

-1
= £y (e (@)

R |
f (T,a, o Rﬂf(p) (p))

= f'l(R

an g (p) © Ty (PY)

gL (p‘g.o, ‘£ (p))

£ (p) g sang (p)

= pPan _1(P) g, A (pP)
el ¥ £

Prirg(0) Tog an (D)

¥

l

-1

h(lM',p;y) = Ac(p) h( ' p: ¥ g (P)-

Example: Suppose that G is compact. Let 4 be a representation

of G on a finite dimensional vector space V. Define a function

WP : ey x ) (x)—>C



by
We(r'rb') = tr(?(h(PrP;Y))).

Then WP does not depend on the choice of p e n—l(x) . Furthermore,
W? is gauge invariant, i.e., ¥ f € QL (p),
-f =W (E).
WP (P-£,2) e (r.,f)

Therefore W? (—, ¥) defines a function on OU(P)/. % (P).

[Note: Per ¢ , WP (—, ¥) is the Wilson loop associated with
¥ .1

LEMMA Let rll' r’z be connections. Suppose that V ¥ €L£1(x),

h( r'lrp; 7) = h( F2:P77 ) .

Then rl' l"2 are gauge equivalent, hence
[rl] = [PZ]
in OlL(p)/ Y (p).
[To define f € -,%(P) such that r‘l 7 f'z, take any point poe P,

let ¥ be a curve joining ‘n‘(po) to Ti(p), and put

£(py) = Tz?’_loTl,'lr (Pg) s

1

where T~ is the parallel transport per Fl and T2 is the parallel

transport per FZ’ This makes sense. Thus let “dl, 32 be two curves
joining T (p,) to Ti(p) -- then

1 2

T (by hypothesis)
-1 -1
32 0?!1 2!2031



oo T = 72 o 72
¥, I 7 -1
2 1 2 1
=
Tl = T2 oT 1° Tl
¥ ¥ -
2 2 1 1
=>
T2 o Tl = T2 oT ]
-1 7% -1
2 2 1 1

[Note: By construction, f is the identity in the fiber over x.]

1f do€c: YI€E 2 (x),

Rl p:¥) = ¢ (0 ) e,

then it is still the case that

[Py = [0,
In fact,
¢ T h(l,,pi¥)6 = h([,,peiY).
Choose a gauge transformation f:P —> P such that f(p) = p-6
(=6 =sc(p)) -- then

h( Fz,p°6'73') = h(l"z'f,En ).

So,V?é Q(X)I

h([y,p: ¥) = h([, £, ¥).



The lemma thus implies that

[lﬁl] = [ Fz‘f] = I le.
Remark: If instead one assumes that Y ¥ € Q(x), 1 cy € G:
-1
h(r‘llp77) =6_1 h(PZ,P;V)G‘.X r
then it need not be true that
[ry1 = 1,0.

The preceding considerations can be generalized. Suppose given

G —> P G —>

l;n and
M

Let [T €D0L(p), ?fe O’l(;) and assume that V8 € ) (x),

~
Tv

2 S g

L d

h(lM,p;¥d) = h(,3:%),

for some

1

pen Tx),Te T .

Claim: 3 an equivariant diffeomorphism
£ ~
P ~—m5 P
n\ V4
M

over M such that £,["'=[".

To see this, let



be defined by

(€ G).

Put
T = T~ 3'1- P —>P
P ° p " X x°
Then
S(p) = S~ 0% 1 (p)
P P
( ~
Furthermore,
To R = R;05 .

Now define f:P —¥ P fiberwise by the rule

-1

£ lm ™ty =Ty 1930 Ty .

Here y is any point in M and ¥ is any curve joining y to x. This
makes sense. Thus let ¥ ,§ be two curves joining y to x -- then we

have to show that

-~
T

Tz'lOSOTZ= SlOSOTé
or still, that
S«:ﬂﬂxc,é_l = Twc,s_l g .
By hypothesis,
_ §hH = n(P, 5 ¥o&™hH =73
.1 = h(lMp; Yo ) = h(f",p; Yo ) =g

Yodl



10.

and

T (p) = p-g

Yob-1
T, s1® =BT
Therefore
T o T'}oé—l(p.s‘)
= SOTX°6_10RG(p)

= SOR_ O

e °T % os_l(p)

S (p-g yo085-19)

But

=T oS o Ro,(p)

F¢

_1oR, ° (P



11.

Specialize and assume that

k k k k
_ 1 2 3 4
G—Gl XG2 XG3 XG4 ’

where G, = U(n), G, = SU(n), G, = O0(n), G, = SO(2n+l).
1w 2 ww 3 Vew 4 wy

[Note: This covers the case of U(1)X SU(2) X SU(3), which is
Vay vvn, Vany
the group involved in the standard model. One can also include

X
G.> with G. = SO(2) or SO(4).]
5 5 YwvV VWA

LEMMA Suppose that { 5i:1‘€ I } and {Tizle Ik are collections

of elements of G such that \/il,...,ikel, o,

i.o o"i 1s conjugate

1 k

to Ti see T

i ~” then Bgé G:
1 k

6. =g T.g VYi€I1.
Let r'l’ r'2 € 01(P). Assume: V irreducible character X of

X (h(,p; ¥)) = X(h([,,p ¥)) V¥e (LUx).
Then
[Fl] = [le.
In fact, since the X separate conjugacy classes, V ¥ € Clix) ’

h( [’l,p;a() is conjugate to h( Pz,p; Y¥). But this persists to products,



12.

so it follows from the lemma that 3 o € G:
h(P,ps¥) = ¢ " h(l,py)e V¥EQ),

which, as has been seen earlier, implies that

Remark: Let

Wy ([71,¥) = X(h([",p; ¥)).
Then
Wy (—, ¥): OUERY) /A (B) —>

and the above discussion shows that the W:t(——q'X) separate the points

of OU(R)/ H(P), i.e.,
Wy (L1, %) =W (L0, %) YVXe VY
=
[ Fll = [ FZ].
Let K be a positive integer -- then G operates on GK:
3 -1 -1
(6-11"01 S-K)’G‘— (o 0'.10'-1---'0' U"KO")
and the functions
(O'l,---, G'K)-% ‘X’(fll...flk) (ilr-o-like ilr‘-'orK})

associated with the irreducible characters X of e are invariant

under the action of G.



13.

Claim: The algebra A generated by these functions is dense in

C(GK/G).

[Since A is closed under conjugation and contains the constants,

it need only be shown that A separates points. Assume therefore that
(6 reenr og)
(Tyreeer Tg)

have the property that VX and all iyreeerdy €1 1,...,K} ,

7C(<3"i cer 0 ) =7C(Ti e T )

1

1 k 1 k
An application of the lemma then gives a g€ G:
-1 .
6. =g T. g (i=1,...,X),

from which the claim.]



Reconstruction Theory Let P run through a set of representatives

for the isomorphism classes of principal G-bundles over M.

Problem: Identify
Houm /& @
P

in terms of M and G alone.
*€ M —-- then n
Fix a point,\a smooth family of loops is a map '\}I:UC\B" —>Xx),

where U is open, such that the function ¥ :UX[0,1]1—> M defined by
the rule
T(x,t) = Y(x)(t)

is smooth.

LEMMA For every smooth family of loops ¥, the function
NAAAKAN

U—>G

x —> h(]",p; P(x))

is smooth.

AggnmgxngmxghnxxMxixxpxxhxxmnngzxnﬂxanﬂxfixxaxpgin2xxx%Mx
Definition: Two loops ¥ , & € £)(*) are said to be thinly
homotopic if they are homotopic via a homotopy H:[0,1] X [0,1]— M
such that
H([0,1] % [0,1]) C ¥ ([0,11)v &(l0,11),
where H is piecewise smooth for some paving of [0,11X [0,1] by
polygons.

[Note: Accordingly,



(0&£t 4£l)
H(t,1) = § (¢v)
and, since H is rel 9[0,11,
H(O,t) = %
(04t <1).1
H(lL,t) = =

Remark: The image of a smooth curve cannot fill a two dimensional
submanifold.

Two loops X’,S € f)(*) are thinly equivalent, written 7% s,

o+l

if 4 a finite sequence ")1,...,")n€ £ X*) such that "’)l =b’,...,’)n =8

with ﬁ7i thinly homotopic to 7) 14l

FACT Composition and inversion of loops gives rise to a group

structure on

Qe ¢ =,

the thin fundamental group of M.

[Note: The homotopies used in the proof that I?(*)ﬁ:==1T (M)

1
is a group are thin (after smoothing at a finite number of non-
differentiable points).]

Remark: There is a canonical surjection

t.
™1 (1) —> T, ()

which is an injection when dim M = 1.



LEMMA Suppose that ¥~ & -- then VWP ¢V [T € OUup),
WA t
h(F,p;¥) = h(P,0: &) (PeT “(%).

[Note: 1In general, if ¥ ~ §, then

h(l,p;¥) # h([7,p; §).]

Therefore h( M,p;—) gives rise to a homomorphism

mrMm—> ¢

which is smooth in the following sense.

Definition: A homomorphism
t .
h:TTl(M)—4> G

is smooth if for every smooth family of loops 1V:U-—§‘§1(*) the

composition

o £ Q) 2 nte B>

is smooth.

Notation: Hom°°(1T§(M),G) is the set of smooth homomorphisms

t
h:1Tl(M)~—§ G.

The group G operates to the right on Hom(17§(M),G), vizs

-1
he-.g = ¢ "hg .

Denote by

" Hom ( n‘i(M) ,G) /G

the associated set ‘{[h]} of equivalence classes.



Observation: Hom?o(TTi(M),G) is a G-stable subset of
t
Hom (TT4 (M) ,G) .

If p),p, € T (%), then

[h(rrp:L;_)] = [h(r'rp27_")]l
hence the class of

h( P:P;—-)
in
Homon(‘ni(M),G)/G

1

is independent of the choice of Pp€E T ~(*). On the other hand,

[Py] = [P, = ([, p—)] = (P, p;—)].

THEOREM The arrow
VIAAAAAN

[(P1—> [h([, P;—)]

implements a bijection

11 oue) /A (p)— Hom°°(1TJlC(M) ,G) /G.
P

Remark: Let OiF(P) be the subset of OUL(P) consisting of the

flat connections -~ then it follows from the Ambrose-Singer theorem

that VY " € O’LF(P), Holo([’,p) ={e} , SO

=8 =7 h(l,p;¥) = h(l,p:8),

thus the map

W‘%h(r':P:?’)



passes to the quotient and induces an arrow
T M7

which is a homomorphism of groups. If h:‘ni(M)——? G is a homomorphism,
then the composition

mon—> o —2>e

is necessarily smooth. It is wellknown that

LLot, @) /4 (2)<= Hom(Tr, (1) ,0) /G.
P

[Note: Let M be the universal covering space of M -- then M—> M

is a principal Ti, (M)-bundle. Each h€ Hom( (M) ,G) determines a left
1 1

action of TTl(M) on G. The associated fiber bundle M X11 (M)G is a
1

principal G-bundle which admits a natural flat connection.]

Example: Suppose that dim M = 1.

Case 1: M=R -- then every principal G-bundle is trivial:

P2~ R XG. Here
v

t =
and

Hom(TTl(Eg,G)/G

Hom (% ,G) /G

= {5

thus [)(F(P)/,%](p) is a singleton.

1

Case 2: M=S . Here
Vev
1 1
M) = M (8,



and

Hom (1 (S)) ,G) /G

I

Hom(Z,G) /G

= G/Int,
the set of conjugacy classes in G.
[Note: 1In both cases, WV P, OU(P)= 01F(P). This is obvious when
MﬁB: All connections are flat and, up to gauge equivalence, there is
only one, namely the standard connection. When M=Sl

VAW

trivialization consisting of a coordinate neighborhood U diffeomorphic

, in a local

to R, we have ﬂ—l(U)zUXG,':;Bva, thus V¥ " € OL(P), the induced

1

connection on T ~(U) "is" the standard connection, i.e., [Mis flat.]

Two loops ¥ , & € {)2(x) are said to be holonomically equivalent
it Ve s VI€E OL(P),

h(P,p;¥) = h(M,0:8) (pem *(x).

Accordingly,

¥ & thinly equivalent =y ¥, § holonomically equivalent.

Notation: )f}ﬂs is {)(*) modulo the holonomy relation.

FACT With the obvious operations, ){AHG is a group, the G-hoop

group of M.
Remark: There is a canonical surjection
My —
Ty (M) — Rl

The preceding theory can be written in terms of )(ﬁyG as opposed

to TTE(M)' the upshot being thé following conclusion.



THEOREM The arrow
WA

[F1— [h(f ,P;—)]

implements a bijection

1L ot /Y ) —>om™ (MY 0 /c.
P

Definition: A connection " € O1(P) is irreducible if

Hol(f ,p) = G.

FACT Suppose that
r, € ouey)
[, € 0y

are irreducible with

ker h( rl’p;—) = ker h( rlzvl‘p;__)l
where
are viewed as homomorphisms }Q}H(;——> G -- then'a an equivariant

diffeomorphism £:p, —> P, over M such that £, Fl =f

¢
Rappel: A groupoid G is a small category in which every morphism
is invertible. So, ¥V X€o0b G, Mor(X,X) is a group under composition.

[Note: A group G is a groupoid with one object e:Mor(e,e) = G.]

The notion of "holonomically equivalent" for loops can be generalized



to arbitrary curves.

Definition: Let 7Yy , S be curves such that x= ¥(0)= §(0) &
y=%(1)= §(1) -- then ¥,8 are holonomically equivalent if ¥ P &
v ' € oup,

Ty = Tg

G,@G is the groupoid whose objects are the points of M and
whose morphisms are the equivalence classes of curves from x to y per

the holonomy relation.

[Note: Therefore

Mor (x,%) = R ,.]

By a point structure on P, we understand the specification of

a point in each fiber of TT.
Claim: Fix a point structure on P -- then every [? € 0OU(P)

determines a functor

h[1: OD§HG —>G.
[Send the objects of O’Q'G to the identity of G. As for the

morphisms, take [¥ 1€ Mor(x,y) and, relative to the given point
structure on P, let p€ Tr—l(x) , 9€ T[—l(y) . Define gze G by the
relation

T o (p) = I gy
Then gx depends only on the holonomy class of & . Putting

h =
one checks without difficulty that hrl respects composition, hence

is indeed a functor.]



F:C—D
Rappel: Let " ™ be functors -- then a natural trans-
- — i
G:C D

formation "= from F to G is a function that assigns to each X€ Ob C

an element = X€ Mor (FX,GX) such that for every f€ Mor(X,Y) the square

P
-
—

FX X

> GX

Ff GEf
FY ——7~ GY
Y
commutes, = being termed a natural isomorphism if all the E:X
isomorphisms, in which case F and G are naturally isomorphic.

are

[Note: If C,\PM are groupoids, then it is automatic that the :—:X
are isomorphisms. ]

Example: Let G,K be groups, thought of as groupoids (thus
functors G —> K are homomorphisms). If f,g€ Hom(G,K), then a natural
transformation = :f —> g consists in the specification of an element

M € K such that WY 6 € G, there is a commutative diagram

e > e
flo )l \g (o)
v
e 7 e .
W
Of course, — is necessarily a natural isomorphism. Therefore, to say

that £ and g are naturally isomorphic amounts to saying that

[f] = [g] in Hom(G,K) /K.



Example:

Let‘s'be a groupoid, K a group.

10.

Let & ,"f:&—> K

be functors -- then a natural transformation = : ¢ —> ¥ is a function

X —> =x

is a commutative diagram

from Ob G to K(= Mor(e,e)) such that \/4’6 Mor (X,Y), there
L%

e > e
Ip 1 licb
e :sz> e .

The construction of

h[1: G)AHG-—§'G
hinges on a choice of the point structure for P. If this is changed,
say
P—>p' = p6F
g—>q' =q9g-T ,
. -1
then is replaced b ' =T . Proof:
gU p ng g?r
Ty(p-c‘) = T?oRd_(p)
= Rg.o TX (p)
=R .
s (2 gx)
= q'gaq'
= (q-T)- (T g )
{ 5o

From this, it follows that

—
-
—

there is a natural isomorphism

<h'
rl

—> h .
r



11.

In fact, assign to each X€M the element

- '
,__,XEMor(h r,x,hr,x)
corresponding to ¢ . Let [Y¥]€ Mor(x,y) -- then by the above, the
diagram
e L > e
T
I ‘ lgar
\
e _(7 e
commutes, i.e., the diagram
—x
h'_ x > h_ x
l-l
h' [Y] h_ [¥]
r r
hi,y > h'ly
- r
-y
commutes.
Notation: Hom( (-4 ,G) is the set of functors h: Y . —>¢c.

So, each [*" € 0L(P) determines an element

hf' € Hom ( 0’21 G,G) .

D> 46040 C.COGH GG CULEC ST OS OGS 00 COE 00660 006 C,0.0.£.20.0.C.0:6.4.,04-0.4

Moreover, it can be shown that the arrow

r— n

r

implements a bijection

11 Ol (p) —> Hom®™ ( (Y,@G,G) .
P
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There is one final point in this circle of ideas.
Fix a point structure on P -- then every f € -\H(P) determines

a function Ff:M--—-) G, namely

x-——§Mf(P).

Obviously, Ff = Fg —=»> f=g, so we have an injection

Y (P)—> Map®™ (M,G) C Map(M,G) .

[Note: If
P — p' = pro .,
then
f(p') = £f(p)-&
= p- Me(p) o
_ ¥ -1
=p'-C Mf(p)o"
=>
-1
L —_
Ff = g EE?G.]



The Analytic Setting In what follows, we shall take G compact

and assume that the base of our principal G-bundle is analytic rather
than smooth.
[Note: Every paracompact c® manifold admits an analytic structure
which is unique up to a c® diffeomorphism.]
Suppose therefore that M is analytic and path connected with
continuous

dim M> 2 -- then in this context, a curve is %Npiecewise analytic

map ¥ :[0,11—> M which is a piecewise embedding, thus
¥ 00,5010 -0t _;,11— M
and ¥ ' (t)#0 on [ti'ti+l] unless X[ti,ti+l] = {xS for some x& M.

[Note: In the analytic category, two curves can intersect in
an infinite set only if they overlap on some closed interval. This
is false in the smooth category.]

An edge is a curve e:[0,1] — M whose restriction to 10,1[ is
an embedding.

[Note: We shall not distinguish between edges which differ by
a reparametrization, i.e., by an analytic orientation preserving
diffeomorphism of [0,1]1.]

FACT Given a finite set of curves 1¥k(k€EK), 3 a finite set
of edges o (€ L) such that

(a) ¥V ke€xg, 3 L €L such that
+
zk=!lex7
Ly

BYNV R 17Ky e g () = e g (6)) = £1,8,€ to,1}).

2



Remark: An embedded graph is a nonempty subset A C M for which

there exists a finite set of edges ej (L€ L) such that

/\=/léJ eq
and

V R.#4,, exl‘tl’ =e, (t) = t,t,€{0,1} .

2
The preceding result thus says that given a finite set of curves,
3 an embedded graph with the property that each curve admits a
representation as a product of certain edges of the graph (and their
inverses).

[Note: A 1is a finite one dimensional CW-complex. As such,

there is no unigque choice of the ez satisfying the stated conditions.]

Example: If Y :Sl-—b M is a loop, then the range of ¥ is an

embedded graph.

Consider now the definition of "holonomically equivalent™.
Ostensibly, this definition depends on the choice of G. However,
since we are working in the analytic category, this dependence can
be partially eliminated.

Definition: Let y'l,'xz be curves -- then )’2 is said to arise

from Y 1 by inserting a retracing if there is a T € [0,1] and a

curve v such that

Y, (28) (0 €45
T T z .1
N4 t- =) (& 4t£5+ 7
T 1 T 1 T 1
Y)(4(—-2-+7“t)) (-—2—‘*‘71‘{‘.11‘:.——7""2—)
¥, (2t-1) (% + Tetz).



THEOREM Suppose that G is a compact connected nonabelian Lie
SAAAANNY
group -- then two curves ¥ , & are holonomically equivalent iff 3

a finite sequence ‘)l,...,'qn of curves ‘)i such that *Lf=X,..., 7n=6

where 'ﬁi and " i+l differ by a reparametrization or ‘qi+l (’]i)
arises from V)i (‘)i+l) by inserting a retracing.

[Note: This description is completely internal to M.]

Under the foregoing circumstances, we shall write (P*?, }QJH in

place ofo),eG, }Q;&G

Remark: It is clear from the theorem that if two loops
Y, § € Q(x) are holonomically equivalent, then they are thinly

equivalent. Consequently, the canonical surjection

nion — Ry

is an isomorphism.

[Note: The fundamental groupoid TIM is a quotient of the holonomy
groupoid @Y .1

The relation figuriné in the statement of the theorem is an
equivalence relation of general applicability, call it ~o.

FACT Composition and inversion of loops gives rise to a group

structure on

QO )/~ = L (%).

So, in the nonabelian case, £ (x) is the hoop group. On the

other hand, if G is a compact connected abelian Lie group, then

WY =L@/ IL ), L &1,



a description which is again completely internal to M.

Remark: Suppose that G is a compact connected Lie

group (e.g., U(1)X SU(2)X SU(3)) -- then there are just two
YW vonn wAwW
possibilities for QY :

Ly /L L (x), £ (x)] (G abelian)

£ (%) (G nonabelian).

[Note: G is necessarily reductive.]

INTERPOLATION PRINCIPLE Suppose given
VAANAAVNAAAAAAAANYY  AAASAAANRAN

G — P

AR
M,

where G is a compact connected Lie group. Let [3&},..., [)&J € }?}HG -

then V h€ Hom( 3P4 ,,¢), d Meoup):

h[}k] = h(’_'lp; a,k) ;(k=ll""ln)



Ashtekar Space Suppose that M is analytic and path connected

with dim M> 2 -- then by the term "graph” we shall mean a connected
embedded graph, Gra M standing for the set of graphs in M.

Notation: Given a graph /A, denote by E(A) its set of edges
and V(A ) its set of vertices.

If A 1 1\2 are graphs, then /\]_A_é_/\2 if each edge of /\1 is a
product (¥) of edges of A, and V(/\l)C:V(f\z).

FACT Gra M is directed by £ .

One may attach to each N\ € Gra M the groupoid OJH/\ which is
freely generated by the edges of A . Thus the objects of 6{£b\ are
the vertices of A and the morphisms are all possible compositions
of the edges and their inverses.

Assume now that G is a compact connected nonabelian Lie group --
then the notion of "holonomically equivalent" does not depend on G

and the groupoid 4 is generated by edges (but it is not freely

generated by edges). In fact,
@Y= colim @Y .
A N
Let

01./\= Hom ( G,e/\ ,G)

A, = Map(V(A),G).

Since a functor h:Gﬁ%/;—é G is determined by the images of the

e€CE(N), it is clear that

0L ~gtEN)
A .

&

Analogously,

O o~ HFV(N)
)%A~G )



Therefore iﬁy\ and ,&ﬂ\ are compact Hausdorff spaces.

Observation: There is a right action of .&%\

on B'-LA, viz.
w— - » t—
oL, x,‘{j/\ —_— ol
(hl¢) —_— h‘é,
where

h- d(e) = de(1)) ™t

h(e) ¢ (e(0)).
FACT EiﬁU/Jg>\ is a compact Hausdorff space.

Let T‘l(/\) be the fundamental group of AN (based at a vertex) --

then ‘lTl(/\) is free on 1- X (/) generators (X (A) = #V(A) - #¥E(A)).

The hoop group of A "is" the fundamental group of A and
Bl /.4 ~ Hom(T,(A),G)/G.
A ’%’/\ 1 ’

Suppose that A‘lélﬁ‘z -- then there are arrows of restriction

denoted in all three cases by Tri.

FACT These maps are continuous, open and surjective.

One can check that

2 3 3
/\lé./\z é/\3:7 l_fl GTTZ = Ul

r

which sets the stage for passage to the limit.



Definition: Put

AH = lim th

ol/%Y = lim IILA/}bA (CT;\[ 01/\/,81/\ ).

(CT,I,%)A)

e

Obviously,??[,}ﬁ, and Ol/Y are compact Hausdorff spaces.

There are projections

T — 0,
5 — A,
oy —%ﬁA/EA,

denoted in all three cases by TU\ .

FACT These maps are continuous, open and surjective.

THECREM We have
NAAAA A

DL > Hom(G®.Y ,G)

&|

2~ Map(M,G).

Observation: There is a right action oijcnlﬁL, viz.

7 0

oL x Y

SRR REEEINEN.



THEOREM We have
AANANAANY

oL /Y = /Y ~ Hom(¥}.Y,c)/G.

Remark: A choice of a point structure on P leads to embeddings

\

——

ot(p) —> 0L L
o, e/ ey— 00y .
Y — Y

Each has a dense image.

Let;g* be the subgroup ofﬁ consisting of those strings o-x(xe M)

such that ¢, = e -- then it is clear that

M X exy,
Claim: We have
Hom((P QY ,G) 7 Hom( 3R ,G) X ,Q*
[Let E ={exzxe M} , where e, is the trivial loop and WV x#x,
eXEMor(*,x) is an edge. Define

®E: HOm(GH IG) —_ Hom( M'H IG) X E*

by the prescription

H{ Y1 = h[ Y1
@ h = (H, $,):
<‘>0(x) = hex.

Then it can be shown that @E is a homeomorphism.]

[Note: Hom((@®.% ,G) is a right Y -space:

hed (1¥1) = $(FANTRI¥FND G (¥(0).



The same is true of Hom(}¥ .Y ,G) x Y,. Indeed,

H- ([¥])

o)ty d 0

(H, $o) b= (H-d, ¢, ¢)
(dod)(x) = ¢ T () (x).

Working through the definitions, one finds that GDE is actually

Rf -equivariant.]

Application: We have

Hom ( &Y ,,G)/,g
~ (Hom( WY .6 x Y ,)/0€E x F,)
~ Hom( Y ,G)/G X Ei*/ :g*

X Hom( ¥, G)/G.
0l /¥ ~ Hom( ¥30,9,G) /G.

SLICE THEOREM For any h € Ol, 3 a subset >¢FCO'L such that -
WYY NAACANANY

(1) o - is a neighborhood of h-, g with he i ;

— —

(2) 3 an equivariant retraction r: :.F A — h- Y with

rliiny) = .

SupprEexkhakxMxxgxaraiykiexandxrakhxgerregkedxwikhxdinxMMxexIx



Types Suppose that M is analytic and path connected with
dim M 22 and G is a compact connected nonabelian Lie group.
INRXRXXXFRRERXAXRXANXXSRAREXAYXAKIRRRRAQRIx kR xRREx2egR@ Xk

Let he O = Hom(@® Y ,G) be given -- then

H

L= h(RY )T e

is the holonomy group of h and

Zh = CenG Hh

is the holonomy centralizer of h.

FACT Let H be any subgroup of G -- then 3 he Ol :H = H.
[Note: There are no topological requirements on H.]
Remark: Fix a point structure on P -- then each I € 0l(p)

determines a functor hr, : Y — G, viz.

Ilr [¥1 = Iy

So, working at the base point * and taking F€ (L (%), we have by

(Ta'(p) = a9y ).

definition
Hol ([ ,p) ={ga,:X€ (%) %
hr.()-eﬂd).

LEMMA V#EE:

|
-
*
I—-l

Hhcb(*)

o
-1
Zhog = $(x) " z, ().

The orbit h~§5 is a compact Hausdorff space:

G B, \Y.



FACT We have
4 \Y x> @\ &)%Y .-

So, as a corollary, if Zh and Zh are conjugate in G, then
1 2

the orbits hl-)S and hz-E; are homeomorphic.

Definition: The type typ(h) of an orbit h-)y is the conjugacy

class in G of Zh'

[Note: This definition depends only on [hleiﬁi‘/iy . In fact,

if h' = h-qp , then Zy =<‘7(*)_th¢(*).]

From the above, therefore, if two orbits have the same type,

then they are homeomorphic.

Rappel: A subgroup H of G is said to be a Howe subgroup if

there is a set S CG such that H = CenG S.

Example: Take G = §E(2) -- then the maximal tori are Howe

subgroups.

Notation: ff is the set of conjugacy classes of Howe subgroups

of G.
[Note: Since G is compact,:T is at most countable.]
. . L , )
Given t,,t, €T , write t;£t, if 3 H,€ t,, HyEt, such that

H. DO H

1 2°

Example: The maximal element 'in j’is the class tmax of the center
Z. of G.

G

Example: The minimal element iJl:T is the class tmin of G itself.

Notation: Given t € '.T , let



ﬁ?_t ={ne0t : typn)> ¢}

ot =t ~ fhe 0l : typ(h) = t}

ai{-_t ={helt : typm) <t}.
Properties:

(1) DL, , is open;
(2) RLt is compact;

(3) Ol_, is open in Ol .

(4) 01=t is dense in GiLt

THEOREM V¥ t>typ(h), 3 h € 0L :

typ(ht) = t.

Let 'h be the trivial element of Hom((® g ,G), i.e., hi¥] = e

o = :) = = ,
VY then Hh { es Zh G, hence typ(h) tmin' It therefore

follows that YVt € 7Y , 3 hteﬁ :
typ(ht) = t.

In other words, the set of orbit types exhausts the set of conjugacy
classes of Howe subgroups of G.
Rappel: Let X be a topological space -- then a collection,J’= {S}

of nonempty subsets of X is said to be a stratification of X (the S

being strata) if X = JJ_ S and
A

S o s!
SAS' # g =
S' N(sSus') = s'.



[Note: Write s< S' if Ens' # @ -~ then it is easy to prove
that

5= U g
s<4s'

Example: Take for X the unit cube in 33. Let;J’consist of the
interior of the cube, the relative interiors of the six faces, the
relative interiors of the twelve bounding segments, and the eight

corners -- then >f is a stratification of X.

THEOREM The collection {T)_t_ it € T} is a stratification of
VAAAAAY =t

m .
An element h € 0l is said to be generic if
typ(h) = tmax'
[Note: Therefore, when h is generic, Zh = Z..1]
(%}
Let
OLgen - Dt=t )
max
Then
... = Ol ,
gen Ztmax
so Eﬁgen is an open subset of'Gi. On the other hand,
=01,
- "max
hence O(gen is a dense subset of 0.

[Note: It is clear that then is ¥ ~invariant.]

An element h ES'-L is irreducible if Hh = G.




Obviously, h irreducible => h generic. The converse is false.

Proof: Fix a proper subgroup H C G: CenG H = ZG -- then ] he Q.

H = H, thus h is generic but not irreducible.

h
[Note: One can take for H the subgroup generated by a countable

dense set (H is countable, hence is a proper subgroup of G).]



The Holonomy Algebra By way of motivation, we shall first

look at a special case. So suppose that M is analytic and path

connected with dim M = 3.



Consider

sU(2) — P
A\ 4
l'n
M.
Then P is trivial: Pﬁ:M)(gg(Z).
[Note: The canonical section s:M-—>D4X§2(2) is given by
s(x) = (x,e).
If g:M—> SU(2) is smooth, then
Vv ’

s (x) = s(x)-g(x) = (x,9(x))

is another section and all such have this form.]

Agreeing to work only with MXSU(2), write 0l in place of O1(P)
and ;%j in place of :8 (p).

Given a connection |’ on M>(§g(2), let

WM ,¥) =3 trm(T,p¥)) .

Then

W(f', ¥) depends only on [T'] € U'(/;%} and [¥1€ XY , thus W(—, [T 1)
is a real valued function on QU/Y .

[Note: Recall too that -

h([,p—) : RAY — su(2)
is a homomorphism.}

Since

b
Y (i _>e su(2), lal® + |bj® =1
_b WA
=

a

0£la)] £1 =) -2£a + 73«2,



it ‘follows that

Claim: The complex vector space spanned by the W(—,[ ¥1) is
closed under the formation of products.

[V g,h€ SU(2), we have
VWA

tr(g)tr(h) = tr(gh) + tr(gh™t).
Therefore

W(—, [¥ | DW(—, [F,])

W, [T D)+ W—, LY 11,1700

N+

Denote this algebra by 01 and call it the holonomy algebra.

Claim: Q4 is a unital commutative *-algebra.

[The x-operation is
(‘Z'l: c,Wl—, [y, 1N* = ?l: ciW(——,[Xi]).]

Equip ¥ 0(with the sup norm -- then its completion 0 is a

unital commutative C*-algebra, thus Ol C (Spec {01 ). And (see

below),
Ot /Y = spec R 0T .

[Note: The identification

Hom (¥,Y ,G) /G2 spec 01

(G=SU(2))
he=> @, w

is characterized by the relation

@, (W(— [¥1) = 5 tr(h[y1).]

XU K X KB KKK XHK X H KR K BREH XK XX R ol XX e XA K KK XA KR
XEK XHX KKK X X DXXK X



To generalize these conclusions requires some preparation.

Assume that M is analytic and path connected with dim M > 2
and let G be a compact connected nonabelian normal subgroup of
U(N) (N22).

VWA

Notation: Per M XG, Ol is the set of connections and :% is the

set of gauge transformations.

Rappel: Let H be a topological group -- then 3 a compact

topological group H and a continuous homomorphism o :H—> H with
the following property: ¥ compact topological group H' and YV
continuous homomorphism e':H —>H', § a unique continuous homo-

morphism @ :H — H' such that &' = B ocx:

[Note: & (H) is dense in H and H is unique up to isomorphism.]

Definition: Let H be a topological group -- then H is said

to be injectable if Ker ={e} .

[Note: 1In general, the kernel of & is equal to the intersection

of the kernels of the continuous homomorphisms of H into all compact

groups or, equivalently, is equal to the intersection of the kernels

of the finite dimensional irreducible unitary representations of H.]
| Example: Equip 99,4 with the discrete topology -- then 30 is

injectable.

[In fact,

n ker h(P,p; —) = {ida_e)g} .1
Freot



Definition: Let H be a topological group -- then a bounded

continuous function f:H—> C is said to be almost periodic if f is
vwv

the uniform limit of finite linear combinations of matrix coefficients
of the finite dimensional irreducible unitary representations of H.

FACT Let fEicb(H) -- then f is almost periodic iff 3 a con-

tinuous function f:H —? C such that f = FTeex .

W

Example: Equip 0 with the discrete topology =-- then
Hom (MY , G) 2 Homc('}?;?j r G,

the subscript standing for continuous.

Denote by AP(H) the set of almost periodic functions on H --
then AP(H) is a closed subspace of Cb(H), hence is a unital commutative
C*-algebra. And: AP(H)®s C(H) via f—> ¥.

Pass now to MXG and define

w: 0L/ X Yy — S

by
WLPY, [¥]) =3 tr(h(7,p;9)).
Definition: The holonomy algebra P8 is the algebra over C
Wy
generated by the W(—, [¥]) ([YI1E€ MY ).

[Note: The elements of 01 thus have the form

n.
j.=1

W(—, [¥1) = W(—, [¥ 1),



it follows that JO0U is an involutive subalgebra of B(OL /& ),

the C*-algebra of bounded complex valued functions on Ol/>y

LEMMA There is a canonical map
h—> & h
from Hom( ¥ Y ,G) to the continuous multiplicative linear functionals
on M .
[Given h, define

. —
@p: 0L c

by

@uW(—, [¥1)) = ¢ tr(ly D).

2

That @ n actually does extend to a multiplicative linear functional

on 0L is implied by:

1. If
(¥ eee, L)
€ Y
(8,1, ... 18]
and if
W(—-,[Zl])"'W(—,[a'n]) = W("'—r[sl])"'w(‘_‘l[sm])l
then

n m
T ep— 12,10 = T ] @ (—, [, D).
k=1 A =1



2 If
n.
n 1
S ey T W= 1¥5 D =0,
i=1 j;=

then
n.
n i
> e T Q@ (— 175 10) = 0.
i=1 3;=1
Ad 1: Owing to the interpolation principle, 3 | € 01

hig,] = h(lM,pr ) (k=1,...,n)

h[éﬂ 1 =h([",p; &, ) (R=1,...,m).

X

Therefore

n
TT @pW— 17,0
k=1

n
- 1
= TT &% txrz, D
k=1
n
=TT §ete@Me )
k=1
n

- WO, LoD



m
= /;rjl W(P,[SX])
m
= TT -1% tr (h(( ,p; SI))
£ =1
- 1
= XTI < tr(h[Slq 1)
m
- X‘]‘I Qh(w<-——,[8£ 1)) .

Ad 2: Owing to the interpolation principle, [70 c0l:

— . > L. A
h[?ji] = h( Po,p,?{ji) (L£i<4n, léji_éni).

Therefore

n.
1
> e T1 @y (— (5 1)

i=1 j;=1

n ni
- 3 ey [ ] % tr(hl ¥y 1)
i=1

1

n.
n 1
i=1l

1



I
Q
l..l
=
-
[a]
&
.
M

To establish the continuity of (¢ ,, choose f"o as above and

then note that

n.

n 1
lan¢ > o T7T W(—,wjim}
i=1 .=
1
n nj
i=1 j,=1 .
n 0
é sup ,Z Ci , I W(P:[WJ.]),
Fesyy i=1 j;= *
n ni

v
m

_ W(———,[arji])lloo .1
i=1 j;=1

Denote by o0l the closure of K O{ in B(Ol /Y ) -- then

e —

H Ol is a unital commutative C*-algebra. And, thanks to the lemma,

there is an arrow

Hom( Y ,G)—> Spec 3 O ,

viz. h—> @y, -



10.

PR

[Note: Tacitly, @4 has been extended by continuity to 3¢0t,
which is permissible ( (qklis a continuous linear functional, hence,
of necessity, is uniformly continuous).]

Obviously, ¥V 6 € G,

@ (=«

) = @, -
h-6 clheo b

This said, suppose that (_qh = L.Q_h -- then V [(¥1¢€ H?‘H ’
1 2

tr(h [¥]) = tr(h, [T 1),

But
Hom (Y ,G) &2 Homc(ﬁ ,G) .
so, if
B : Y —>G
hy: kY — ¢

correspond to

hl: H¥—> ¢

hz:}Q;%j*--—"> G,

then there is an equality of characters

X _ =X_ .
hy h,

Since oA is compact, it follows that I UE U(N):
Wy



11.

Therefore
-1
h2 = U hlU
=>
@ (W— (7))
1
= 1—\1' tr(hzla" ])
1 -1 ;
= 5 tr (U Th [¥ 1U)

1
=N tr(hl[? 1)

il

@y W(— (1))

LEMMA The conjugacy classes in G per U(N) and G are one and
WAMAAAY ww

the same.

Consedquently,

Hom ($¥Y ,G)/U(N) = Hom(HAY ,G)/C.
Summary: The arrow h——>(gh passes to the quotient and induces
an injection
U :Hom( Y ,G)/G—> Spec H Ol .

[This is the upshot of the foregoing discussion.]

Y Y
View Hom(o¥Y ,G) as a subset of G and take G in the



12.

product topology -- then Hom(){éﬁ ,G) is closed, hence is a compact

Hausdorff space. Next, give Hom (% ,G)/G the quotient topology =--

then it too is a compact Hausdorff space. Finally, equip Spec 90t

with the Gelfand topology.

Observation: Since the W(—, [ 1) generate 0Ol , the Gelfand

topology on Spec 201 is the initial topology determined by the
~ —
W(—, [ 1): Spec R0l —>cC,
WAy
i.e., is the coarsest topology for which the functions

W ———>WW(—,[F1)) (W € spec KOl )

are continuous.

LEMMA The injection
WVAAAA WY

q :Hom( MY ,G)/G—> Spec ¢ O

is continuous.

[Bearing in mind that

Hom (%Y ,G)/G

carries the gquotient topology, one has only to check that the

composite

Hom (€% ,G) —> Spec 2RO

is continuous. In turn, this will be the case iff V [¥ 1, the

function

A
Hom( 39 & ,G)—> Spec ¢ 0L > C

Wy




is continuous. But, from the definitions,

A\
W—, (¥ (@)

@, (W(—, [¥ 1)

_ 1
= S tr (T 1),

and WV [¥ 1, the function

Hom( o4 ,G) —> ¢C
WA

h —> % tr(hl[¥ 1)

is certainly continuous.]

We have

()1/,9 <—> Hom(g®HY ,G)/G C‘-l—WSpec ot ,
where

TP W—,[o1))

wirrl, ¥ 1)

S tr(h(F,piy)).

B e ——

Claim: The image T (O01/4% ) is dense in Spec 3¢ 01 .

PRESSEEE SR

[Suppose that f:Spec 30l —> C is a continuous function which
WA

~
vanishes on 1 (0C/ Y ). Choose 4: € #00L : £ =<'> -——- then ¥V [ '],




is

or

we

On

14.

AN
0= £(LIPD = LIrD = D

Therefore
1 :Hom (Y ,G) /G —>Spec &R OL
a homeomorphism, hence
Hom (90 Y ,G) /G 2 Spec ¥ O

still,
Homc(be% ,G) /G 72 Spec O .

P e —

Remark: Introduce the constructs Dt,}y , OL/Y -- then, as

have seen earlier,
OUY ~ Ol o Hom( 30y ,G)/G.

the other hand, 72 ( 01/Y4 ) is dense in Spec ¥ O , thus the

notation is consistent.



Abelian Theory Maintaining the assumption that M is analytic

and path connected with dim M >2, let us turn now to the case when

G = U(l) =- then again
Ve
Hom (304 ,U(1)) N Spec ¢ O
ww
hé—'—>(qh.

Observation: Hom(JPA4 ,U(l)) is a compact abelian topological
yYww

group, call it 0C/% .

————

Let,f«o be normalized Haar measure on O{/% -- then } O can

be represented on L2 (01l />¥ P G)

7\ 2
(TTo(Prur @y = Pla (e, (FELZ(OL/H 5 4,).

[Note: 1In particular,

T _/\
(TT W (—, (71 D) (@) =W(—, [¥]) (@ )E(,)

@, (W(—, [¥ D)E(@,)

h{Y 1£(@y) .1

On the other hand, there is also the regular representation

of O/ on LZ( O/ PAAG) t

Pl@)E(@,,) = £(Qy @®y)

= (@) -



Given [d ] € H;?j , define

by

Xy @) =nix).

Then ’X.[a.] is a character of 0’(/,8

FACT %Y (discrete topology) is isomorphic to the character

group of 0(/54Y via the map
A

HY —> /Yy

(Y] —> %

Remark: Given f€ Ll( O‘L/;Qj ), its Fourier transform

A FaS
f: O/ —> ¢ is
WYWAY

Fal —
are "'j Xy A4
oy

Let W, be the state on R0 determined by Mgt

/N
W, ($) =j b an,.

ot/

Then

W, (W(—, [¥ D) = J @<-,[71>d/~*0
(14 0207



I
l
Ra
~
HQ-I
T
o

oL/
1 if [J] = id
_ Y
0 if [&] # id .
HY
To illustrate the preceding generalities, take M = R3 and denote
WA
by
01 -- the set of connections
AH -~ the set of gauge transformations
per
3
U(L)—> R X U(1)
VWww M\L\N\N
R3.
YW
Ad 01 : There are identifications
ot —> A3 VT nye—>c®r3;rY),
W www Wiy vy
viz.
" &—> w_<—>Aa
N o
where

Y a
Wr, = V-1 Aadx

A = (Al,A

r

Ad;% : The elements of C’BE COO(R3)
Wy

21A3) .

operate on COO(R3;R3) via
WA ww

A—>A +V P .



Holonomy - We have

h([:;¥) a@(-5?<ur )

a
exp( Y-1' j; A dx™7).

[Note: Since U(l) is abelian, it is permissible to write
Wwy

h(f";¥ ) in place of h([,p;? ).]

The assignment

A -—'—7J Aadxa
pg

is a compactly supported distribution with components (X

So, symbolically:

4 R
A
Observation: We have
1 2 3
aX-a QXB* 'DX—J

[In fact,
3 a 3
L e 22y.- 3 <29,
: J
a=1 Ix a=1 9x
=_j Dwadxa
Y 0 x

1
Z ’

X

2
7

3
’ XZ')'



Remark: There is a unitary representation U of x?(R3;R3)T
wWW Ay

on L2 (OU/H i), namely

UF)E(@,) = e, @p)

where
LQF[X] = exp(\/:Tf F),
b 4

and a unitary representation V of ¢y on L2( ol/4 ;/40), namely

VIIIDE(@,) = X[y](cqh)f(qh).

[Note: From the definitions,

UE)V([Y 1) = exp( V-1 JB‘ F)v(l¥ynom,
which are the analogs of the canonical commutation relations in
this setup.]

Given t >0, let

2

1 X
f,.(x) = exp( - —).
t (2Tit) 32 2t

Then, in the sense of distributions.

1im ft=8 .
tJo

Definition: The form factor attached to t, d is that element

Xt,)’ € j (Rw:;vl\li) defined by the convolution

x:'?’, (x) = j ft(,x—y)xaar (y)dy.
3

R
wn



Observation: We have
X € x?(R3;R3)T.
tl} Yyvw YWy

[In fact,

holonomically
It is clear that hergremizaXXy equivalent loops have the same

form factor, hence ¥t >0, there is a map

Rad v
[¥)

A s o d

> A"

> X

t, ¥

which respects composition, i.e.,

= X

e, Y08 e,y t%,8 -

. 3 _3,.7T .
Recalling that “J = )X£§vi5~) , define

Gatf T* —> oVY

by

(@ NI¥1 = exp(V-T A(xg o).



LEMMA Y t, @t is measurable.
* »
[The relevant 0 -algebra on j is

Cyl = Bor .

Se————

On the other hand, the relevant ¢ -algebra on O1/5Y is the ¢ -algebra

generated by the 7(,[3] ([Y] € }?;%] ), i.e., the Baire 0 -~algebra.
Therefore @t is measurable iff V [ 1€ 38Y , % (Y1 o® ¢ is

*
Borel measurable (as a function from ’.T to U(l)). But
‘v

= (@A) [¥] = exd( VI A(X, o))
and the composition

A —> ?‘(Xt,?{ ) —> exp( /=1 7\(Xt,z ))

is obviously Borel.]

*
Let A« be a Borel measure on :T -- then (® t)*/“‘ is a Bailre
measure on 01./;8 , hence admits a unique extension to a Radon measure
on OU/54Y .

—a———

Remark: The topology on 0L/ is the initial topology determined

by the 'X[Z] (IY1ERY ) ana VIV, ’X[),]o@t is weakly



continuous, hence strongly continuous. Therefore

* —_—
@tzojs 01'/)8
*
is continuous. But trs is a Souslin space, thus so is its image

*
G@t(fj's), which, while not necessarily Borel, is at least measurable

w.r.t. (C)tﬁ*‘ﬁa (i.e., is in the domain of the completion of

(@), M)

[Note: A compact Hausdorff space is Souslin iff it is second

countable, a property that in all likelihood O1/¥) does not have.]

*
Take now for M the unique gaussian measure Efr on ﬁf with

-0_/2
Fourier transform e , where

o0 (F) = <F, (- )F > (FET).
r 2.3 _3
L"(R7;R7)
VAW v
To be in agreement with the physics literature, choose r = - % -
then
~ V-1 A\(F)
P (F) = e d¢ 1 (A)
-1/2 -‘-2—
7*
-1/2
=exp(—%—<F, (- D) F D )
12 (r3;r%)
Ww ¥
1 55
= exp( - 5 —= _a¥% ).
5 NS



Put

M= (B0, ¥ 1, -

a———

Then ;4 determines a state w . on HROU :
A
w, ($) = P ..
ot/ %
Therefore
w,W(—, [21))
i A
J—_—_——
ot/
= Ky e
uO’l/ae

=S Ky (O N1A¥ 1, (A)

'J—*
=j (@ AVF1 ATy, (A)
T*
=S exp( V-1' A(x, 1A _j,H (A)
aJ,*
Xy %
= exp( - _]2_-_ 5 tl? tl? d‘g‘ )
3 WS

WA

FACT The measures in the set {,ut:t>0 } (J {NO} are

singular w.r.t. one another.
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Since O0l/#& 1is a compact abelian topological group, it

follows that none of the AAt is quasi-invariant under the action

of O(/5% on itself by multiplication.

S—————

[Note: Every quasi-invariant measure on 01/ is equivalent

to the Haar measure /AO.]
Thanks to the Hahn-Banach theorem, the arrow of restriction
3 3* *
R”;R —>
@it —>
A —> AT

is surjective. This said, suppose that YV X A= 0 =- then ‘A \¢)'= 0.
Thus let FEJ :

F=-V X(G * curl F)

-{ ¥ X (G % curl F), A D>

AN
3
>
\/‘
i

=-<G*CurlF,VX?\>

= 0.

[Note: This argument is suggestive but formal, there being no
assurance that G * curl F is rapidly decreasing so, strictly speaking,
integration by parts is not permissible. The way out is to appeal
to the homology theory of currents which implies that an element

™\ E )X(R3;R3)* admits a potential 47 € ,\?(R3)* iff V X A= 0.

But then

L1 5=<F, V5

= - <diV ¥, ¢>= 0.1
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*
LEMMA Y t, the X, y separate the points of 7J .

*
[Let )\l #N 2 be distinct elements of ’,T -- then the claim

is that 3 ¥ : '}\l(Xt’a,) # 7\2(th3,) or, rephrased:

NE, ) =0 VI => K=o,

14

But VYV & .,
0= Ax, o) =< £ x Xy s A D
-—<ft*7\,Xy>
=j ft*7\
J
—d
0 = curl(f, x )
=ft*curl’)\
=>
A
o=ft(Vx?\)
>
(7 XA =0
>

¥ XA= 0.1
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Rappel: Let 9f , X be Hilbert spaces. Suppose that T: 3f —> X

is an isometry such that ran T

X -- then T is surjective.
[Given YE N, Ja sequence {xn} C P Txn-———> y. But

HTxn i\ = Hxn” , hence {xn} is Cauchy, so x —»x =>y =

lim Tx, = Tx, i.e., ran T = MK .1

The map
£f—>F O@t

induces an isometry

TP O/ o ) LT Y )

via the change of variable formula

2 2
J£] 7 dm, =5 lte @ _ | A _y/yr
o\/Y T
*
Since the Xt Y separate the points of 7Y , standard generalities

then imply that the functions

V-1 A (X )
~ —Se t,o

*
constitute a total subset of L2( T, 3’_1/2). But

V-T A(x )
(’X[X]o®t)(%)=e £ ¥ .

Therefore T is surjective.
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*
Fix £t >0 and consider the restriction of @t to VJ' - ’7 :

®t,F =®.rF

s

@t’F[b'] = exp( ¥-1 J- F Xi,b’ dx) .
R3
Vv

Since

O

172

= @t,F ’ ®t,F '

1 2
there is an action = of Y on OU/Y :
o/ X7 —> 0/ Y

(@ ) ——> @, @ ;-

FACT . is quasi-invariant Ww.r.t. =

zact e
Let
R oYy —> /Y
be the map
Ch Q@ o (=TT (@,F)
and put
A o= (T p) & (= (@, ¥ 10,0

so that
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j £ th,F = J £ oEt,F d/‘At.
oYy oy

Then the prescription

1/2
d A
_ ) t,-F
Ut(F)f((Qh) = f(cqh @t,F) [*————d (cqh) ]
e

defines a unitary representation of OT on L2( 01/;& Y t) .

other hand, the prescription

613 1/2
f(7\+F)[ ‘1/2"F(?\)]
a7 _; /5

Il

U(F)E(A)
. . . 2 *
defines a unitary representation of ff on L ( ff ; 3’_1/2).

LEMMA The diagram

VAR
2 == T 2 *
LECOL/Y s/ y) > (T P _y/0)
Ut(F) U(F)
p2(OU/ i 4 ) ———> LT W)
T
commutes.

[As a function of 7\,

U(F)Tfl’}\

On the



15.

1/2
ay
TE( N + F) [ —1/2,-F (7\)]

1/2
d¥ _
= F(@ (O +F)) “1/2:7F (ay
t av_,,

' a7y 5 1/2
f(@dx*@t,F)[d =t/ "F<7\>] ,

3_1/2
while
TU, (F) £
t
A
= U ®EHE )
1/2
44
t,~-F
= f(@t')\-@tlF) —— (@ )
dpa,
Since

there exists a nonnegative function

2
£ € L0/ 5 A y)

such that




le6.

———————

But for every Borel set B 01/ ,

Mip,p® = (@D F 1/, p®

_ -1
=¥ 1, OB

dd
[ ~1/2,-F (m] a¥_1,5 (M)
da’_l/z

® !

) J (0@ p)° (N a¥_yyy )
Gl
S fF(®t’)\)2dJ_l/2 (A)
@t

i I
NI e
A "dmw

Q|
Q
X ‘} 3
- d
o
| ISO——
o
T
o+

. e g 1/2
F ap ,
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1/2

1/2
do_ - dpa,
1/2'F(')\)] =[——-—————t'F(@t7\>] .
4% _1/2

Therefore

U(F)O T = TOUt(F).]

*
There is another unitary representation of 7J on Lz(fj' ;2{_1/2),
viz.

V(F)f = ’X,Ff,

where we have written

V=1' N\ (F)
7(F(7\) = e .

However, the analog of this in the Ul/fy -picture is not so
transparent: Put

V (F) = T_lOV(F)o T

and define

m, €12 ( OUA 1 pap)
by
Kyp = m; O @t.

Then

-1
Ve(B)E =T " ( Xplf 0@ ,))

T H(m, 0 @) (F 0 @,))
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= me.
anmple: We have
'th,X "Xy 00
=
"X o =X [y



Cylinder Functions Suppose that M is analytic and path

connected with dim M> 2 and G is a compact connected nonabelian

Lie group ~- then

O = lim fﬁ,\ - Hom((P Y ,G).




Definition: A function f€ C(Ol) is said to be a cylinder function

if 4 A€ ¢ra M and f/\€ C('Ei,\) such that the triangle
TAL —
\\\\\\ OL
S

Write Cyl(0l) for the set of cylinder functions on 0L.

commutes.

LEMMA Cyl(01l) is a x-subalgebra of c(oL) .

e e Y 4

[It is obvious that Cyl(ﬁf) is closed under conjugation and
scalar multiplication. Therefore the issue is closure under sums
and products. This hinges on the fact that Gra M is directed.

f =

Consider, e.g., sums. Let fl,fze Cyl(Ei): £, = £ 2

oT ’
1 Aq Ny

f/\2<: 11,\2. Choose /\3: A 2/\1,/\2 -- then

1l
[
>
o
=
‘_I
+
Hh
P
Q
=
N
Q
=
>




a kg

f(x

then

Since

point

Rappel: Let X be a compact Hausdorff space. Let AL C(X) be

ubalgebra of C(X) which separates the points of X (xl¢x2:ﬁ7 d fena:

#f(xz)) -— then the uniform closure of A is all of C(X).

LEMMA Cyl(o1) is dense in C(0l).

[Take hlyéh2 in 0 and choose A € Gra M: | T\A (hl)# Ti,\(hz) -

_—:lfl\GC(D‘t/\):

(hy))AE \ (T (By)) .

f/\(ﬁ/\ A

f/\ o 11/\ € Cyl (a) , it follows that Cyl (E’_L) separates the
__.]

s of Ol




The Ashtekar-Lewandowski Measure  Let X be a compact Hausdorff

space| -— then a linear functional I:C(X)—> C is said to be positive

if £20 =>I(f)> 0. This said, the Riesz representation theorem

provides a one-to—one correspondence between the positive linear

functionals I on C(X) and the Radon measures A on X:I<&—> A, where

I(f) = ‘y fdm .

X

[Note: C(X) is a unital commutative C*-algebra and its states

are the normalized positive linear functionals, hence are parameterized

by the Radon probability measures on X.]

Specialize now to the case when X =1 -- then given any state
W on C(OL ), there exists a unique Radon probability measure /“cu
on Ol such that
w (f) =‘f farm .

_— w

ot
Moreover, the assignment

£f—>T1 (£)
w

T@P - £

defines a cyclic representation of C(Q1) on L2(5i;‘/40J). Here,

of course,

wE =1, T 1> .

On the other hand, every cyclic representation of C( (O() is unitarily

equivalent to a representation of this type.




Suppose given a collection { AA/\}- , where WA ., /A/\ is a
Radon probability measure on 01ﬁ\—_ then {,u/\} is said to be

consistent if

NaZ Ay
=
5 —
5 fonld,u/\2= j_‘ fdMAl (f€ C( 01/\1)).
ot 0
/\2 /\l

Example: Every Radon probability measure on O gives rise to

a consistent collection {‘/Aﬁ\} of Radon probability measures on

th { .
e 71/\

[A state (y On C(a) defines a state w/\ on C(F’L/\ ) via

the prescription

f) = £ .
(UA() W ( O‘IT,\)]
The converse is also true: Every consistent collection { /x,\}
of Radon probability measures on the 01/\ gives rise to a Radon

probability measure on O . To see this, let L“ﬁ\ be the state on

C( 01_/\ ) determined by M,\ . Given f€ Cyl((-ﬁ ), write £ =
f/\Q‘TD\ and put

w(f) = UJ/\ (f/\ ).
Then

w : Cyl(a)-—%c
WA



is a

welldefined normalized positive linear functional.

Observation: A positive linear functional I on Cyl(Ql) is

necessarily continuous.

[Take f real -- then

FEL £ Hell => JIgll +£2 0
=> 1(1) - IE) + I(£) 2 0

=> j1®l £ - HEN .

Since Cyl(0l ) is dense in C(Ei ), it follows thatw admits a

unique extension to a state on C(01 ), which in turn determines a

Radon| probability measure on ¢1.

Then

Let /Ar\ be the normalized Haar measure on

— E(N)
oL, x G :

the collection {JAAA\} is consistent. Granted this, the Radon

probability measure on Ol thereby produced is denoted by,AAAL and

is called the Ashtekar-Lewandowski measure.

M age]

po——

[Note: Write w,, for the state on c(0l) corresponding to

L




Suppose that £ is cylindrical w.r.t. f\l and /\2, i.e.,

A oTrA andf=f/\

e Mp -- then f is cylindrical w.r.t.
1 1 2

2

any 4A\3 Z/\l,/\z. Accordingly, it will be enough to prove that

where

be th

edge

where

each

5._ £, da, =L Epdm s

ol A oLy

VAN A\

Let €rre-es€ be the edges of A (=>n = #E(A)); let ei,...,eﬁ.
e edges of A' (=Hn' = #E(A')) -- then, since A £ A', each
e; admits a decomposition in terms of the edges ei,:

_ ' E(i,i")
e; =TT fepiiny)

il

r(i, i€ §{1,...,n'}y, &(i,i)e {-1,+1}. Furthermore, for

(a) i#j => k(i)#k(3);

(b) eé(i) is not used in the decomposition of the €5 (1< i)

+
J x
(c) (ek(i)) is used in the decomposition of e, exactly once.

Li
Observation: The arrow of restriction T[:: : 01/Q

L} ]
be identified with the map TTg :G" —> ¢" that sends

(gyr o ray)

i€ {]4...,n} , 3 k(i)€ {1,...,n'} with the following properties:



to

where

€(1,i")
(T_T (o—r(l,l')) ooy T_I— (o

L i r(n,i

ry) €, 1h,

With this preparation, we can now prove that

f‘—‘ £ daa =-("" £ ' d/\A v o
M ATA T, A A

AN &£ N'. Thus

/\v dM/\l
nl

lT_I]_ dMl' f/\|(6'11 lO’n|)
n'

n

iT,Il Ay y darg (1) f Ay (n)
G G

i'# k[1,n]

/\ .'d—k(l) ...'...,...c-k(n)...)
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nl
- S iTIl dMi'S d"‘k(l)"'f 4k (n)
Gn'—n G G
i'@ k[1,n]

AT @y k)

n
=S 'll;[l dang £o (@ yreergy)
n

—
=4
3
>

Example: Consider the simplest case, viz. when n'=2, n=1, € =+1 --
then

g dmla Ndm et (ayrey)
2
G

I dM(G‘l)dm(cz)fA (o‘lo‘z)
2
G

S aM(¢l>j' damlgy) £ (ayay)

G G

il

S dm(a)E N (6) -
G




6A.

Example: Consider an analytic circle /\u with a single vertex

u {::7 e .
u

Fix a point v#u and thereby determine a second analytic circle A

u and a single edge e’

\'4

with a single vertex v and a single edge e,:

e@v
v
Then el
s Q)
€2

is an| element
/\u,V

of Gra M refining /\u and /\V:

€a T 2%
e, = €;e,.
Suppose that
f=£f o (£ EC(O'-_( ))
u Tl',\u u Ny
g=9,0 Tx (gV€C(5iA )) -

v v

Then

f=fu°TTuo'ﬂ'u,v

«Q
|

S 9y 0T 0 Wy,

where
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17, OC -
u /\u,v m/\u
& T :fﬁ —> 1
u,v /\u,v
T, 6"( —> 0
v /\u,v 01r\v
So, from the definitions,
5 fg dMAL
ol
= 56{ (f,0 1T ) (gvoTrV)d/M/\u ,
l\u,v
=j d6dT f, o W (¢,T) g, 0o, (06,T)
GXG
= 5 dgdT £ (To) g (6T)
G XG
=J aTtT ( J' de £,(07) gv('to*‘t'l)).
G G
Therefore
j fg -d/"‘AL=( 5 £ED ¢ 5 g,)
ot G G

provided that 9 is G-central.
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Properties of Mar,t

(1) fa (O0) = 15

(2) £€c(Ol), ££0 = w, (£5)>0;



(3) NAL(Olgen) = 1.

[The first property is obvious (look at the construction of MAL) .
Turning to the second property, note first that if UCG is open and

nonempty, then A (U)> 0. In fact, { Us :6 € G} is an open covering

n
of G, so] o‘l,...,o*nEG:G= o Uo
i=1
AU) == 2 mle;)> = m(G) = .

1

Now put F = ff and let U = F-l(] H Flloo/z, +00[). Since Ol= lim 5:(,\,
-1 —
AT A (U/\) Cu (U/\C 01/\ open and nonempty)(true by the

definition of the topology on Ol). We then have

Wl (F) =‘s’_, F daa
AL 01- AL

Zj Fdapr,

U

2{ Wiy /2 apnyy
U

> WFll /2 f 1 dmpg

U
Z”F"w /2 \y ldMAL
-1
TT/\ (U/\)

2 I Fllg /Zj L dm,

UA

= (1l Fllgy /2) - s o (U, ) >0.



The verification of the third property is more difficult and will be

omitted (recall that E{ge is open, hence is measurable).]

n
Fix an edge e:[0,11—> M and for s € [0,1], put
e (t) = e(st) (0£t £1).
Define a map

ol Y5 glos1]

h > v

h
by

vh(s) = h(es) .

Let’:AL be the completion Of"'\AL -- then it can be shown that the

AL -measure of
AL

{he—(-)-‘L : 3 s:v, is continuous at s b

is 0. Therefore the ;AL—measure of

{héa : V s:v

h is discontinuous at s}
is 1.
[Note: V P, 3 an embedding O((P)—> Ol with a dense image.

The vy associated with the [T€ O0U(P) are certainly continuous, so

MAL(O’L(P))=0-]

Rappel: There is a right action of ;8/\ on O‘(/\ , viz.

OtAx ,8/\ > 01/\
(h,$) ——> h-¢,




where

h- (e) = $(e(1) ™ h(e) (e(0)).

Let n = #E(A). Fix elements o‘i, v} 32_ € G (i=1,...,n) —--

then ¥V Fe c(c™),

n
1 2 1 2
T dm; Fl61610 777 0 n0p0 p)
i=1

il

n
TT apm Flo i) -

n i=1
G

g

Therefore A is -invariant.
N\ *3/\

Rappel: There is a right action of ﬂon 01, viz.

oL X Q > 0
(i{n  }. {4:/\} )-———>{h/\'<’>/\} :

LEMMA Ax AL is ;% —invariliant.

[It suffices to check invariance on the cylinder functions.

But, on the basis of what has been said above, this is immediate.]

It follows that L2( oL ; MAL) supports a unitary representation

of )B , Viz.
£—>¢.f (Pedy ),
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where

¢t lh=f(h-¢r) (hell).

Indeed,

Voo ang, = |16 any,
o1 oal

A&AL being ,%j -invariant.

S

Remark: Let T : 0\ —> 6—1_/;6 be the projection and put

MO = TT . (MAL) -—- then it is clear that
L2 (0 ag ) 2 L2/ i)
inv iMpr) ~ s

Let DiffqJ M denote the analytic diffeomorphism group of M --

then Diff“’J M operates on Gra M in the obvious way:

N—> @N.

Moreover, this action preserves the partial order on Gra M:

AL EN, = @A, £ @N,.

LEMMA AA g, 18 Diff M-invariant.
[Let (@ € Diff = M =-- then /N € Gra M, there is an isomorphism

of groupoids @:B/\—> 6’}8(-9/\, hence, by contravariance, a homeo-

morphism

Hom ( @)%QA »G) —> Hom( @)&1/\ +G)
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or still, a homeomorphism

— —

N O-Lcn/\-—'> OlA-

When combined, the G/\ lead to a homeomorphism : 0L —” O
rendering the diagram

@
—_—>

2|

u |

&

>
|« g

QU <

en @,

commutative. Suppose now that £f€Cyl(01), say f = f/\ o TT/\

then

t—

fd(Z—Q)*/«hL=j_ foQ dMAL
Cl

1]
|
>m
Q
yy
>
o)
by
s
>
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But
5'1(“\ ~ ?#E((.Q/\ ) =n
% | 3,
ot ~ > \'/#E(/\) = n

A G

Here, the arrow on the right is a topological automorphism of Gn,

hence has modular function — 1 (c" being compact). Therefore

£ @ a
LS-—- A% A *an

' 1 N\ N
n i=1
G
n
= - U dMi fA (61,..-,6n)
n i=1
G
= £ e}
S_. A A
m’/\
= —onT[/\ dAp = _ fd/uAL.]
ol oL

The lemma implies that there is a natural unitary representation
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of Diffcu

M on LZ(GL;/AAL). However, it turns out that the only
invariant elements in LZ((T(;/AAL) are the constants, hence that

w
the action of Diff M is ergodic.

A curve ¢ :[0,1] —>M is said to have no self-intersections

if (') = ¥ (") = t'=t"or ' =0, " =1l or t' =1, " = O.

Definition: A piecewise analytic edge is a curve which has no

self-intersections.
Every edge is, of course, a piecewise analytic edge.

Suppose that (@ :M—> M is a homeomorphism -- then ¢ is said to

be a C0 diffeomorphism if WV piecewise analytic edge e, the composite

¢ @ e is again a piecewise analytic edge.

Remark: Using piecewise analytic edges, one can form piecewise
analytic graphs. Therefore a homeomorphism (§ :M—> M is a C0 diffeo-
morphism iff @ sends piecewise analytic graphs to piecewise analytic
graphs.

Notation: Diff0 M is the group of C0 diffeomorphisms.

FACT‘AAAL is Diff0 M-invariant.




Two Dimensional Yang-Mills Theory Recall our standing

assumptions: M is analytic and path connected with dim M2 2 and G
is a compact connected nonabelian Lie group.

Suppose given

\er

M!
where M is orientable and semiriemannian.

Rappel: The Yang-Mills lagrangian J:YM is the functional with

domain O((P) defined by the prescription

oCYM(I") =S (?P,3F> vol.
M
It is invariant under)ﬂ (P), hence passes to the quotient and defines
a functional on the configuration space 01 (P)/ Xﬂ(P).
Now let P run through a set of representatives for the isomorphism

classes of principal G-bundles over M -- then is defined on

™M
Hotwey/ 8 e
P
or still, J:YM is defined on

Hom ™ ( R Y ,6) /6.

Problem: Extend the definition of JZYM to

Hom ( }Q% IG)/GI

oL/Y /Y .

[Note: The motivation is the quantization of Yang-Mills theories.



————a.

Since Q1 /&4 is the guantum configuration space, heuristics arising
from constructive field theory and functional integration suggest
that one should consider

-k

B YM |
dasyy = © dasnr,-

Here Aa,. is the Ashtekar-Lewandowski measure on 0{/f4 but the exact

-k

meaning of e M remains problematic.]
In what follows, we shall consider a particular case, viz. when

G = §E(N) (N2>2) and M is the plane. However, even in this situation,
the analysis is by no means simple.

First we need to deal with a generality (valid for arbitrary M).
Fix '€ O0U(P) and let UcM be a local trivialization of P with
coordinates xl,...,xn. Consider a small square of side length g in

the x™ -x¥ plane:

N
O
“

Here [ < is the plagquette loop traced in the counterclockwise direction

. . —_ . 3 — -
defined by its four corners (x,x+€‘qM., x+-8§ﬁ~ + € e x+ Ee,, ),

LY 4

where x€ U and _gM ,_ei’ are unit vectors. Let {Ta} be a basis for

EE(N) and write

¥ 2 F T_.

P R a
AV a

i

!

[Note: By definition, oF s*fzr, is the local field strength:



M v

where the @ are su(N)-valued functions on U.]
Ay —

APPROXIMATION LEMMA We have
WAAAAANAANA A N

WAARAAANX

1
§ e ((l,p, O,)

2 a

_ € ,

=1+ & Za F .., otrr)
4 ,

3 a b 6
s S F.o 0 F, y trrr) + 0.
a,b
Remark: Since it is a gquestion of su(N), tr(Ta) = 0. Therefore

the expansion reduces to

4
b
1 _ 1. & a 6
§EE(Mps O = e 2 F o, F e, )€,
Now take M = R2 (base point the origin) -- then P is trivial. And:
W
XK%%§§§§§%NXKXXXMXXK
1 1l 2 1 2 1
g:r_ > i}ilzdx Adx” + > F, dx" Adx
1 2
= q:lzdx Adx .
Write
a
Fio- 2_5 F 12 Ta
Then



=>
, (
a 1 2 b 1 2
= ;b g(F 12 (x)AxT AdxT, F oo, (x)dxT Adx”) (IP(T_,T)))
1 a b
- -5 aZb?lz(x)?— 12 (x) T (T T)).
Therefore

1
1 - 5 Re (tr(h([*,p; DX)))

4
~ € <?Fr q'r.>(X).

[Note: The Killing form vIEV(X,Y) of su(N) is 2Ntr(X,Y).]

Let A\ be a finite square lattice in \Pf with spacing & and length

& (A€ N) having the origin as a vertex, thus A contains ¢ 2
YWy

plagquette loops [] .

Notation: Given [] , choose a path PD in A from the base point

to the lower left hand corner of [[J and then put

-1
)’D = PD o] o (JD .
[Note: The ‘)‘D thus generate Trl(/\) .1

Let OL = OU(p) (P=R2><SU(N)) -- then the Wilson lagrangian o('\
b VW W

is the functional with domain 0 defined by the prescription

N 1 1
L (M =z % (1-% Re(tr(h ([ ; [ )))),

or still,

Lo =L z (1-f Re(tr (0 (" ¥ g D)),

e 2



. N . .
It is clear that £ y 1S gauge invariant: VY fret (=Y @),

L0000 = L8,

so "C/V\\T lives on ()(/;E . More is true: °(/v\c extends to Ol/RXJ . Indeed,

for any h€ Hom( %Y rﬂl(N))/ﬁg(N) '

AN _ 1 1
K5m) = =2 % (1-F Reltr (h( ¥4 )))).

Notation: N ——%Rz means that X —>eQ, &—> 0.
YW

HEURISTIC PRINCIPLE Y "€ 01 .,
WANAALAANAANY VAR

lim N _
2 £ L (") = Lo (T
eor

[In fact,

£~ Z <Fo Fp>e

>2 yM <"3},' 0'3:r,> vol

A—R

= L (M.

To simplify, henceforth write G for SU(N) and g for su(N),
where N > 2,

—_— 2
Let PL* ot/ — G'e be the projection

h—> ([ ¥g -
XZ

Given a continuous function 4:/\ :G¢7 —> C, we have
[P



g-———— p, d = J— d ’

A+, being the normalized Haar measure on G

AN

Example: ,("/;q = 42/\0 , where

N

-1 L
Paleg ) = c? % (1-5 Re(tr( o g ))).

Put

Z(A) =I exp (- 7 (h))dm,; (h).
oY

—————en.

Since the function h —» exp(-~ (KQ (h)) is continuous and 01/ is

compact, it is clear that the integral defining Z(A) is finite.

In fact,
2
Z(A) = < [ e 230 - L reter(ean(e )'Q :
) €
Given a loop ¥ in A , let
1 A
X (¥ N) = ™ f exp (- L 75 (M) tr(h[¥ 1)dmy, (h).
AW SR,
0/ Yy
Write
S €x
d =7 3 (€. = +1)
. J
Clll E]lk
Then
£ €
hi¥] =hl ¥ % 1---h[ ¥ .5 1
Y ou
1 k
1 /\
X (A A) = S exp(-L D ( o ))
7 (A) w =



k €.
Xtr( T[T o2 dda

1A Dij A(G‘D ).

The next step is to calculate X(Y¥ ;A ) in closed form. This is a
difficult undertaking and the final result, while explicit, is somewhat
complicated to state, thus I will omit the details. From here, one

then proceeds to the main conclusion, which simply says:

lim XY iN)
N—> R?
exists.

Example: If ¥ is simple in the sense that [¥ ] contains a loop

with no self-intersections, then

lim X (¥ A) = e S2L¥),

A—R?

where ¢ is a certain positive constant and A(Y ) is the area enclosed

by ¥ .

THEOREM There is a Radon measure 4 .. on O0U/,4 of total mass 1
SAAANAA M

such that
N ACYSIEN BRI CIE S IV
A2 927
[Note: A4 is called the Yang-Mills measure.]

YM

Remark: Proceeding formally, it is tempting to write

lim XY i/N)
A—>R?
Vv



_ [ lin  exp(- K7 ) er iy D, ()
tin 2N Y 5T Aow?
/\——‘»R
- I exp (- &k 4\ (W) tr(h[¥ 1) dm, (h).
VA7

However (see below), such a procedure is necessarily doomed to fail.
Properties of Aunt

(1) AAAL and,AAYM are mutually singular, 1.e.,_3 a measurable

set W< O(/54 with

Aap (W) = 0 & My (W) =1

~e

(2) Ang (BT /Y ) = 15
(3) Adyy oC(r)/5H (P)) = 0.

Properties (2) and (3) are the analogs of what we know to be

true of_/«AL; on the other hand, (1) implies that ja/a measurable

function S . on 0(/ such that

-S
_ M
/ULYM = e SA

AL



Decomposition Theory Suppose that M is analytic and path

connected with dim M 22 and G is a compact connected nonabelian
Lie group.

Let Tlbe a set of representatives for the unitary equivalence
classes of irreducible unitary representations of G. Given T GfTT,

denote by d ; its dimension and write [T(6)],. (14i4d_, 14544

j 7 TT)

for the matrix elements of T7T7(¢ ) (o G).

Rappel: The functions

are a complete orthonormal system in L2(G) and their linear span is
dense in C(G).
[Note: If Lz'*(G) is the closed linear span of the

\/dTT [11(°)]ij, where T # TTt (the trivial one dimensional
representation of G), then
12 (G) =val@L2’*(G) .1

Remark: Up to unitary equivalence, every irreducible unitary

. n
representation of G" (n>1) has the form CZD Ty (TTk eTl.
=1
Therefore the functions
n
TT Vag tmoor,
n k i
=1 k xIx



are a complete orthonormal system in L2(Gn) and their linear span

is dense in C(Gn).

Suppose now that A\ € Gra M -- then
N
ol —> gt ~ oFE(N)
/\ a4

and

2o, iy @ 2.
e€ E(A)

Furthermore, there is an arrow of insertion
L2 (00, ) —>12 (0L, )
AN ! AL

and the union

, —
,({J 12001, )

. . 2, ~7
is dense in L (Cﬂ.,AAAL).
[Note: The subspace corresponding to the empty graph isvg}.]

Let TT(A) stand for the set of all functions TT:EA)—> T1 .

Determine i and j_, per 77, (= Ti(e)) and put

{.ie} (1£i £d )

e

{ je} (1 ‘;jeé_dﬂe).

i

Jae
il

Definition: The edge network

T . A
A;Hl_]_'_l_j_



is the cylinder function (U —> C defined by

e
h*->TT \/dTre (M (T | D1y 5 .

e€ E(A) e Tele

[Note: 1If the orientation of an edge is reversed and the
corresponding representation is dualized, then the edge network
is unchanged. This type of overcompleteness will be ignored in

the sequel.]

LEMMA The span of the
WWAAVANY

T (/\ € Gra M)

A;T___Tlé-_lj

is dense in C(QU).

It follows from this that the set of edge networks is total
in L2(0L; m ).
"7 TAL

Example (Fleischhack): Contrary to what might be expected,

the set of edge networks is not orthonormal. To see this, take

for A an edge e and then decompose e into the product e, ey of two
edges by placing a vertex in the interior of e:
€2 €1
———>—
Denote by A' the graph thus obtained, so that N < A'. Fix

e ll : d_ > 1 and fix indices



Put
r=Yatmem, ol oy

an edge network per A . Define MW E€TT (A') by

TTel= n
T = TT.
€2
Let
£m={i(=iel),m(=le2)}'
Lo L
i {, B o } (1Zm<d )
i, = m(—Jel),J(—Jez)
Then the
Tm=\/dn'[1-r<n/\.( )lel”im'\/dﬂ'["(ﬁ,\" )lez)]mj

—

are edge networks per A'. From the definitions, Vh e 0,

N (h)]el T e (h)]e2

il

h{e;)h(e,)

I

h(elez)

h(e) = T, |,



hence
\/dTT T = Em: T .
But

————

T T D = S_ T T, dA,r
0t

—_— 2 -
= @, 5__ L7 CTT ) Ty - LT TTA.(h)[el)]in
ot

X [TTT o (h)
VAN

o) my T LTTCTT () | )1y Ay, ()

|
o
e
e
ow
2

C T ) dale)

X j Tie) y » TS 5 dmle)

G
- (a T[) 2 Sdmn Sdmn
b L]
= 6I'['tI'].
>
1
T > = <% TS




Since dTT~> 1, it is clear that T%Tn, yvet, by the above, T and T

are not orthogonal.

Consider LZ(G) -- then GX G operates to the right on G, viz.

_ -1

the corresponding unitary representation on L2(G) being the assignment

£(6)—>£(6 e o),
which decomposes as
P TeTm -
TeT]

[Note: For us, the inner product is conjugate linear in the

first slot, hence it is a question of ﬁ@‘ﬂ, not Tl'®:ﬁ' .1

Therefore

L2 (O )y & L2 (G)
A e€E(AN)

~ X P ToTr

e€E(A) TTETT

Here <’> € ;8/\ operates as

& & TT(P(e(l))) @ T(P(e(0))).

e€EAN) TTETT
[Note: Recall that YW h € (_T—'(/\,
h-P (e) = $(e(1)) ™! hie) P (e(0))

= h(e)-(P(e(l)), P(e(0))).]



Taking into account the associativity of tensor products and

direct sums then gives

2ol ) 87 Y

N ETTIAN)  eer(n) e @ T

the action of <j> € )8/\ becoming

P (V) =
TT (PeM)N® TT. (Pe(o))).
T1€ TTIA)  e€E(A) © ©

Put

2 &9 & =
(Ol ;TT) = .
N — e€E(A) TTe®Te

Then L2( ot ;II) is a finite dimensional )&L\ —-invariant subspace

of L2( 01/\). Since A ~ G#v(/\), its irreducible unitary

representations are in a one-to-one correspondence with the functions

p:vin—>TT.

s

So, denoting by
200U, s TT: )
N — L
. Y] 2, =5
the isotypic ;Q%A\—subspace of L°( 017\777') of type P , we have

AN

[Note: There are, of course, buE'finitely many P for which

2ot ;T =6P LYol P

2, =~
L ( ; H )
Ol g

is nonzero.]



Spin Networks Maintaining the assumptions of the preceding

section, suppose that A € Gra M.

Notation: Given v€ V(A), let

S(v) ={e€E(N):e(0) = v}

v}.

il

T(v) = {e€E(A):e(l)

With the understanding that an empty tensor product of rep-
resentations is the trivial one dimensional representation TTt of G,

we can then write

2o D Y (@ T R .

N TETTIA) VEV(A) e€T(v) € e€s(v) °©

In this description, the action of Cb 628/\ is

<3 Y ( ® TP @ g})( T (b ().

TEeTIH(A) VEVIA)  e€T(v) )

Notation: Given TT € TI(A) and vEV(AN), let
InV(II,v)

be the G-invariants in

> 7. @ ..

eE&T(v)

[Note: Since

D 7.® @

e €T (v) e€ S (v)

is a unitary representation of G, it can be decomposed into irreducibles.

Assuming that TTt actually appears, Inv(T,v) is simply a direct sum



of a certain number of copies ofvgron which G acts trivially.]
The space L2( O’L/\ /;%j/\ ) can be viewed as the subspace of

S%L\—invariant elements in L2( 01/\ ). Therefore

LZ(MA/%A),’”: @ @ Inv(TT,v).
TTETIA)  VEVIA)

Rappel: 1If TTl and TT2 are finite dimensional unitary rep-

resentations of G, then the subspace of G-invariant vectors in

TT]_Qp‘né is isomorphic to the space Hom(1Tl,TTz) of intertwining
operators from Tfl to T'Tz.

[Note: Let H; be the representation space of TTi (i=1,2) --
then ﬁl® H2 can be identified with the set of linear transformations

T:Hy _> Hy, the inner prboduct being

{T,8> = tr(Ts*).

Here,

T =x.@X
xl,x2 =71 2

*
sends y; to <xl,yl > X,, thus T¥ sends y, to <x2,y2 > %x;. To

17%2

run a reality check, fix an orthonormal basis {ei} in H2 --= then

<xl®x2, xi@xé >

= eyt Txpg D

tr (T . T* )
XXy TX sy



!
™
\
N

I
H
%
|—-l-
®
1
*
®
I—I
A4

T < <rpeg > xgs Koy > 10>

(xi,xl> Z {xyrey D K xp0e5

<xirxg D z Cejrxy > eyixy >
- xpony > x>
= <X1’Xi>ﬁl <x2,xé >H2 .

Next, if

A:H; —>H

B:H.—> H

2 2

are linear transformations, then

AR B:Hl® H, —> Hl® H,

is defined by
(A@ B)T = BTA*
and we have

(AQ® B) (xl®x2) = Axl® BX, .



In fact,
== *
(A®@B) (xl®x2)1 BT, . Aty
v 1772
1
= B(xy /A%y, >X,)
= < ax,,y; > Bx,,
while
Ax1®BX2’ = Tax. ,Bx. Y1
Y1 1 2

= { Axy,¥; >Bx,.

This said, T€ Hom(¥T{,TT,) iff Voea,

Tnl(o') = TTZ(G')T
<=>
-1
T=T,(c)Tm(c )
<>
T = T,(6)T T (cg)*
<=>

=]
|

(M ()@ TT,(d))T,

the condition that T be G-invariant.]

Consequently

Inv(TT,v) ¥ Hom( 6@
- e €T (V)



=1e)

Lz(a‘—‘k /7%} Y 3 @ ® Hom ( ®
TETTIN) veVIN) e €T (v)

It remains to make this explicit.
Let
T, reeer T
{ Moo Ta, }

[T, oo T )

be two finite subsets of'TT. Fix an orthonormal basis

{ek;ia (1£i, 44 )}

a
K k A
feg.; (&3, La_ )}
| b T
in the representation space of
Ta (k=1,...,K)

TTb’Q (ﬁ =l,--.,L).

Suppose that

K L
I€ Hom ( T, T, )
® Mo @ T,
k=1 X =1

is an intertwining operator =-- then

I(el;ia® "'®eK,-ia )
1 K

e’

@

e€Ss(v) m



But V ¢ € G,

I(nal(c)®---®na (@)
K

= (ﬂbl(o‘)®-~-®nbL(o”>)I

or still,

L= (T, (0)@ @y, (¢))1(T, (¢H®@---@T_ (c7™h).

1 K
Therefore
J <J
by by
1
ia 'ia
1 K
j J
by b,
= [V, (¢)] (7. (61
by b
l'lb L nb
1 L
n een
by by
)( I
m .. ma
a1 K
ma ma
1 1 1 K
X 7, (6771 - 1T, (6]
1 la K ia
1 K

So, e.g., these observations apply to the

IVGHom( @ We’ ® Tre)'
e €T (v) e€ S (v)




Note the index pattern

subscripts <—>T (v)

superscripts €«—>S(v).

Definition: A spin network is a triple (A\;T7,I) consisting

of a graph /\ € Gra M, an element 1_‘T_€'|'T(/\) , and a set

I-= {Iv:ve V(/\)} , where

I €on( @ e @ Y-
e €T (V) e €S (V)

Every spin network determines a function ? 7.1 °On 01, via
7 I___

N
the following procedure: Assign to a given h.Glaqa\the number

I P e (heNl « [ @ I.1,

v

e€ E(N) veEVIN)

where the bullet ¢ stands for contracting at each v&V(A) the upper
indices of the matrices corresponding to the incoming edges, the
lower indices of the matrices corresponding to the outgoing edges,

and the corresponding indices of IV.

[Note: The function QZ/\.TT I is called a spin network state.]
1 r—

(Loops) Take for A the graph

v < ) e__.
V

Let TTE.TTand let I, be the identity intertwining operator =-- then

= g3
T ™ Thie )y &7



= tr(Ti(h(e))) .

Example: Consider the graph

1 e3
Vll:::::::::,¥2 '> —0'v3
€2
Heré
stvp)) = {ej,e,}, (v =8
S(v2) = {e3} . T(v2) = {el,ez}
s(vy) = g, T(vy) = {e3}.
We have
Ivl: TTt _'—>Trel @ Tfez
IV2: ﬂel® TTez——>7Te3
IV3 'Tre3'4>17't
Therefore
(h) =
E/\ 71_:‘._1_:2
i i ig
[TTe (h(el))]. [TTe (h(ez))] [TTé (h(e3))]
1 3y 2 3, 3 i3



are §QA -invariant.

[This is a bit of a mess to write out in general but the idea
can be illustrated with the preceding example. Thus let q>ef)&t\ -
then the claim is that Vh G‘O(f\,

LN L SR PN IALY

where
hed (e) = $e (1))7" hle) ¢ (e (0)) (L£a£3).
Consider
i i i3
[nel(h-4>(el>)]_ [“ez‘h""(ez)”. [ne3(h-<l>(e3))].
313 3
X, )V a 7
1 2 1,1, 3 i,
i
-1 1
= [nel(4>(el(1)) h(el)<}><el(0)))]j
1

i2
hiey) $ (e, (0))) 1
I2

-1
[ne2(<b (e, (1))



10.

i

[T, (Pleg(1) ™! hley) Pleg)1 3
3 iq
33 i,
X ()72 ) (1. )
V1 Vo . ., V3 .
t1t2 13
4 i k £
= M, (P ™1t ot et T (pwgn1 L
1 ky 1 £ 1 N
-1, 12 ) Ry
(T, (P ™H1 2 (71, (hiey))] (17, (PNl
2 k, 2 ,22 2 iy
1,13 ks X3
[TT, (P(vy) ™)1~ [T, (h(ey))] [T, (P )1
3 kg 3 ,23 3 Js
3p3 3
X ) P2 a7 a
1 2 i3, 3 iy
%y %2 ks
= [T, (h(e)] [T7, (h(ey))] [T, (h(ey))]
1 2 3
1 2 3
R X 3,3
YT (Pl o, (den1 2o )72
1 3y 2 5P 1
£ 3 I3 -1, 41 -1
X [T, (fvpl ° (1,0 7 [T, (Pvy) 1~ [T, ((vy) )]
3 35 2 i,i, 1 L 2
X (I,) [T, (P )71y 3
Vil ey 3 X

k|

3



11.

Ky ky kq
- LT, (hle)lpT [T, (hle)lg” [T (hieg) ]y’
XX, £ 3
X (1, (1) (I )
1 V' k.k Vg, |
1% 3

Consider now the inner product
<§A;TTI_];I g/\;ﬂ'll' > .

Omitting for the moment the terms involving the intertwining operators
(which, being constant, can be taken outside the integral sign),

consider

i mew)]%e e

[Ti(6)] € ac
e€ E(/\) Je jé
G
or still,
Sﬂe,né
TT S. .. §. .. .
e€EN) (d_ a_ )1/2 Terte JerJe
Te ¢

Thus there is no contribution unless TTé = TTé, leaving

T7 L s .8, ., .
e€E(AN) d'n'e lerte Jerde
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Restoring the terms involving the intertwining operators then gives

<T/\;EI£ r iA;HI_]_:_'>

= -T—r D(v) £I_,1° '
vE V(A) <torty >

where

pev) = 11T dl.
e€ s(v) i

. ] [N
[Note: The fact that ZIV,IV> appears as opposed to <Iv'Iv >

igs a consequence of our definition of the inner product on

Hom( @ T]'el @ TTe) ’

e €T (V)
viz.
LI 1 D= tr(I 1%),

which is conjugate linear in the second slot rather than the first

slot.]

Fix 'IIEETjY/\) and adjust the definitions in the obvious way --

then the foregoing discussion implies that the arrow

E _>§/\nt:_[_
injects

@ Hom ( ® ' @

)
vEV(A) e €T (v) e e€s(v) '1¢

. . : 2, (et Y
isometrically into L“( 017\,/§3,\ ).
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[Note: The map

ﬂ Hom(® 7. ® )-)LZ(H /_ )
VEV(N) e€ T (v) e €s(v) e A\ ’8/\

that sends {Iv])' to il\;'ﬂ',}_ is multilinear, hence gives rise to

a map

vy fom( D , @ TT)—»LZ(FLA/EA)

vEV(A) cetT(v) 1 ees(v) ' '©

that sends ®Iv to -ﬂZ/\; E'E']
Remark: Choose an orthonormal basis fIv(b) : b€ BV} for

HOm( ® ’ ® )
e€ T(v) e e€ S(v) TT

and let I ={Iv(b) : VE V(/\)} run through all possible combinations

thereof -- then the spin network states

EAUNE (W € TTA)
constitute an orthonormal basis for L2( a/\/%l\ ) .
Suppose that A\ < A' -- then there is an isometric injection
2, & T a2, 7
20U,/ Y, ) —> 120U A A A0

which takes spin network states to spin network states.

LEMMA The spin network states
WVAAAAANAAN

EEA?T_IrE ( A € Gra M)

span L2 ( ot/ Y ; ) -
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[Note: Recall that the union
5 —
ot
L/J L2 0L, /XY N)

is dense in LZ(B'—l /;8_;/0\0)-]

There are certain redundancies in the description of spin
network states.

Example: Suppose that A' arises from /A by subdividing an
edge of /N into two edges labeled with the same representation by
inserting a vertex to which one has attached the identity inter-

twining operator -- then, as functions on O,

IA;BI_:_[_= i/\|1Tr'r_:!--__| :

——

[Consider
e

A vl' v,

and
€1 €2
N2y N Vo
3
Then W h € 01/\ ,
_ i j
Y/”\?'T_Trl (h) = [TT(h(e))]] (Ivl) (IV2>i

and \/11'6 61 Ve
AN



Let
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i

i 3 3

[T(h' ()] * [T(h'(e,)] 2 (x )"t @ ) oz, )72

iy i, 1 2'i, V3

i i 3 j
[TH(h' (e)] T [T (e,n1 2 ()t ) & 72

Jy Js 1 2 i, i,

k 1 I1
[TT(h' (e))]  [TW(h'(e,] 2 (1,0 1 (1 )

N k 1 2 i,

N e

: v T
11/\ 01/\ 01/\

be the canonical projection and take

Then

h =11 (h').
A

h(e) = h‘(ezel) = h'(ez)h'(el)
>
TV (h(e)) = Tf(h'(ez))Tf(h'(el))
=>
i2 i2 k
[TT(h(e))] = [TT(h'(e,))] © [TT(h'(e))]
Jq k 3y
=>
i j
¥ .. ) = [Tith(en] 2 (x_ ) Y (1)
NPT ll 3 Vl V2 i
1 2
i
= [TT(h(e))]_ (I_) (I_ )

3 V1 Vo i
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=—f/\;1_’_r,; (h) .1

Another type of redundancy involves TTt'

[Note: Let us agree that the spin network state attached to
the empty graph is the function = 1 -- then for any A #@, the spin
network state §/\3Hr£' where V e, T, =TT, and Vv, I, = ldTTt'
is also =1.

Example: Consider

N\ vy t——-%»—~—&———4>—a~—cv2.

IV3: TTel_;»'TTez (= TTt)
IV2: TTez (=TT,) T, -
Then\/hé 51,\,
¥.n®
i i y 3
= [T(h(e)] T [T (e, 2 @, )t ) (a ) 2.
3y i, 1 2 i, 3 i

But i2 =1, j2 = 1, hence
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= [TT(h(el))]_
J1 1
where, to normalize the situation, we have taken Iv = 1. Let
2
€1

/\l: v,e > o v

3

and take ’ﬂé =TI. Suppose now that h € ot - then, in view of the
1

commutative triangle,

A

ol > ot
. | =
Ny AN
\ —
A
1

we have
N

-
1 e N

S
g
|

(TV A (h)) }el

T

Therefore
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o, m ] 1t @t @
A €1 31 V1 V3 iy
=¥ n,r (A )
>
Fnpmz °Mw, Enimr ° A

Remark: There are two other ways to modify a spin network
without changing the state it defines, viz. reparametrization and

orientation reversal.

THEOREM There exists a subset Gra, M of Gra M such that the
AAAARAA Y 0

spin network states

g/\’I_T’_I- (N € Gra, M)

constitute an orthonormal basis for Lz(EQ./}B ;/40).

[Note: An element f\E’Grao M is minimal in the sense that it

cannot be obtained from another graph /\' by subdividing edges of
/N\' (but to prevent overdetermination, not all minimal graphs are

allowed...). Moreover, e€E(A), TTe # TTt and each

I ={_Iv(b) : VG‘V(/\)} is as before. Bear in mind that the empty

graph determines the constants.]

Remark: It follows that Lz(ai />&j;/&o) is not separable.
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Let ;4 be a Radon measure on 0(/}5 . Given an element

Eﬁ-f\-TT I of the orthonormal basis for Lz( 5i/§y 7/40) per the
AN

theorem, put

<1/\71‘L£ 2 =j_ — EIZ/\:I_Tr_I_ dss-

LEMMA Assume that the set
VAAAVYYW
{ i~ D = ( Y a1 O PO )
is uncountable -- thenj/f&‘Ll(E-t/;g ;/AO) such that da = fd,uo.

[Special Case: There is no square integrable f such that

dmMm = fd/AO. In fact, if this were true, then

Hh
I

S KE, e

=2 j_ _ g/\;n,g £dpm ) £
oLy -

=Z<j T dp) £
—_— /\;TTII
o/Y -

< Q'Z/\;TI,_I_ D £

But the set of nonzero Fourier coefficients of f is at most countable,

so we have a contradiction.

General Case: There is no integrable f such that d M = fd/bb.
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Supposing the opposite, choose a sequence an Cyl(0t /iH ) e

fn———> f in Ll(a /)&] ;,o\o) (with fn real valued) -- then
<§/\;T[,_];’ fn >
= _ IA;EIEfd/AO

/N
el

Since the set

U AT D <§/\-'ﬂ,£’ fn>750}

14

—

is at most countable, we once again have a contradiction.]

Example: Consider two dimensional Yang-~Mills theory (thus

M=R®, G=SU(N),N>2). Take & simple -- then
Wwv -

A ok’

S . tr(l¥ DA, (h)
ot/

_ e—cA(a’),
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which is nonzero for uncountably many 9 . Therefore,&«YM cannot

be absolutely continuous w.r.t. A4 0°

[Note: The standard representation of SU(N) onvEP is

WVWAA

irreducible and relative to it, the function h —> tr(h[ ¥1) is

a spin network state.]



The Weyl Algebra Suppose that M is analytic and path connected

with dim M2 2 and G is a compact connected nonabelian Lie group.
Let S be a nonempty subset of M.

Definition: A curve & :[0,1]—> M is

S-external if intd N s =2

S-internal if int ¥ sS.

Let ¥ :[0,1] — M be a curve -- then curves ¥ ,,..., & _ are

said to be an S-admissible decomposition of Fif ¥ =2 ...

and \/i, 'Vi'is either S—-external or S-internal. An S-admissible
decomposition ¥ = 3’n---'71 is termed minimal if for any other

] T
S-admissible decomposition ?ﬁ=3}“ oo Zl there are indices

1l = 30<]l<32 <"'<jn_l<jn = n'

such that

LEMMA If a curve & has an S-admissible decomposition, then it
VWA

has a minimal S-admissible decomposition.



¥ L}
[Let ¥ =¢ n' cosd 1 be an S-admissible decomposition of p, g—

nl
then there is a partition U Ij of [0,1] into closed subintervals
J=1

A t
Ij = [tj_l,tj] (to =0, tn' = 1) with ¥ ‘ Ij <—->2’j. Cancel from

the set T' ={ to,...,tj,...,tn,} those tj#o,l such that

int ¥ | [t g rt547) Ns =g
or
int ¥ | [t 1rt5,,] C S.
Let T = {to""’ti""tn} be the resulting subset of T', thus
n
(0,11 = {J 1,, where 1, = [t; ;.t;] (¢, =0, t =1). So, if
i=1

P [ I. ¢ ¥ ., then the decomposition ¥ =9 ...¥ . is S-admissible
1 i n 1

and we claim that it is in fact minimal. To see this, let

¥ =29 o 51 be an arbitrary S-admissible decomposition of J .
m

Here Y ' Jk 4'—)5]{ and [0,1] = U Jk' Can J, overlap I, and Ii+l?
k=1

I.e., does 3 E 70 : [ti—ﬁ . ti+g 1 Jy? This would mean that
Y (t;) € int ék and there are then two possibilities: B’(ti) € S or

¥ (ti)¢ S. Consider the first:



X(ti)E S —> int & x = int ¥ | J . Cs

=>
int¥|1,cs s int¥j1, ,Cs
=
int¥ | (1, VI, )
=int Il 1; O { ¥t} U int ¥ | 15,
C s
=

a contradiction. Ditto for the second. Therefore the S~admissible

decomposition ¥ = B'n---Z’l is minimal.]

[Note: A minimal S-admissible decomposition is unique (up to

parametrization of its components).]

Definition: S is called a pseudosurface if every curve X'has

an S-admissible decomposition.

LEMMA The embedded analytic submanifolds of M are pseudosurfaces.

Example: Let S be the open subset of M =»§3 lying above

vy = x sin(1/x) and bounded by x = 0, x = 1 -- then the straight line



¥ between (0,0) and (1,0) leaves and returns to S infinitely
often, hence does not have an S-admissible decomposition. Therefore

S is not a pseudosurface.

Let ¥ ,d" : [0,1]—> M be curves -- then ¥ , ¥ ' have the

same initial (final) segment, written & ™y ' ( ¥ I I 7Y, it
3 o<e<1 ¥ lro,el =¥ )10,€1 (¥lii-€,1) = ¥' | [1-€,1]).
Definition: Suppose that S is a pseudosurface. Let 0’;: 6‘;

be Z-valued functions defined on curves.
YW

o ; is called an outgoing intersection function for S if

1. 3(0)# s =>¢ S(¥) = 0;
2. ¥y =6 (¥ =0 (¥

6'; is called an incoming intersection function for S if

1. )’(1);{ s::>o';“(af) =0

-e

+

2. Yd L v =0z =0 S(¥H.

Let d'g be an outgoing intersection function for S and let 6';

be an incoming intersection function for S -- then the pair

o. = (0.,

+
S s’ G-S)

is said to be an intersection function for S if ¥V ¥,

- + _
TS + L) =o.



Example: Let S be an oriented embedded analytic hypersurface

in M -- then S carries two natural intersection functions.
Type I: Put o"g(Z) =0 if Z(O)%S or ‘5’(0) is tangent
to S and put 6;(3’) =1 (-1) if JY(0)€ s and 5’(0) is not tangent
to S but some initial segment of ¥ lies above (below) S (except ¢ (0)).
[Note: The definition of 6'; is dual.]
Type II: Put 6;(7) = 0 if 3’(0)¢ S or some initial segment
of ¥ is contained in S and put 6‘;(7) =1 (-1) if ¥ (0) € s and

no initial segment of ¥ is contained in S but some initial segment

of ¥ lies above (below) S (except 2 (0)).
[Note: The definition of 6'; is dual.]

In both cases, the terms "above" and "below" refer to the
orientation of S. There are, of course, two choices for the orientation
and the associated intersection functions differ by a sign.

Rappel: We have

—

0l 2 Hom( @Y ,0)

¥ 3 Map(M,G)

and there is a right action of:fjon 0t, viz.

r—

Gl x Y —> 0t
h- ¢ (171 = $TANE i PFT (0.

. . . - +
Fix a pseudosurface S and an intersection function CTS = ((TS,CFS)

for S.



Given h € 01, 436 >&j , define a G-valued function K

curves as follows. If ¢ is S-external, put

s (¥) o 5(¥)
Kh'+(7)=4’(3'(l)) h(y) $ (2(0))

and if ¥ is S-internal, put

Kh’¢('d) = h(¥).

on

If ¥ is arbitrary, let ¥ = Wn- .. Xl be its minimal S-admissible

decomposition and put

Ky & (¥) = Ky ¢ (¥ ) Ky 4 (7).

Example: vV , we have

-1, _ -1
[Take & S-external -- then
6 (¥ ot
-1 -1 S -1 -1 5
Ky b (¥F77) = ¢ (¥ () h(Y ") P (¥ TT(0)
_gg(z) -0 (Y)
.-l ]
= $(¥(0)) h(y) ™~ @ (7 (1)
B -1
= Ky, g (3771

¥~ h

LEMMA K passes to the quotient and defines a map from
WWAAAAAY hl¢



®Y to 6. As such, Kh,<’> is a functor, i.e., Kh,#: c ot

Fix 43 €Y ana put

Then

is a homeomorphism.

LEMMA AA AL is K4) ~ilnvariant.
[Let \ € Gra M -- then 3 a graph A' > /A such that every edge
e' of A' is S-external or S-internal. This said, define
Ke,:G —>G

by
ogleh cale’)
K, (6) = e (1) TP (e'(0)

if e' is S—-external and
Ke.(d') = &G

if e' is S-internal. Now enumerate the edges of A' : e! !

Jreeerely
then ¥V h € O,

l ' ) K h ' e >(; ' n Vo= # E !
I ' t I:‘ h‘ K ] .o K 1] ' ' Y h- .




Therefore
('WA )* (KC‘,)*MAL

AN
=TT (T 0g) sy

N\
= (TT/\ ) . (KeiX XKe'n.)*("/\')*MAL
/\I
=m0, (Keix XKe'n.)* 2N
= (Tl/\')
A A
/\l
= (TTA)* (TTA')*MAL
= (T )u My
= A/\
—>
(Kp), My = AMpp,-]
Definition: The Weyl operator attached to 4’ € )8 is the unitary
operator

W¢ : LZ(E{;MAL) -—-—>L2(0_'{;A4AL)

W¢f= fOKd’



[Note: Since /AL is K4>-invariant, we have
I wg £1 2 apmy, = |£ory |2 am
T AL — ¢ AL
ot

J

ot

2
} £1 d(K¢)*MAL

Jﬁl £1% appd

A Weyl operator depends on S and 6‘8:

S,¢
Therefore
S, g * S, &
S -1
Wy 27 = Wy 5)
_ WS,<TS
- -1
S,—(YS
= Wq, .
LEMMA Let S, and S be disjoint pseudosurfaces with respective
VAAAANN 1 2
intersection functions ¢ g. and O—S -— then V 4’1’ 4’2 6)8 , we have
1 2
S1:0g S2r0 g S3r0g S170°g

2

1 2 1
Wq,l OW(P2 W¢2 OW¢1 .
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Let ¥ € Map(M,g) and define

: R = M,
B m-»,zj( Map (M, G))
by

Eg(t)], = exp(tS(x)  (xem).

FACT The map
S, 6
S
t‘%wgy(u

is a one parameter unitary group.
[Note: 1In particular, this entails continuity in the strong
operator topology.]

By structure data for the theory we shall understand a nonempty

subset48<3f the set of pseudosurfaces in M plus:

. VSGXY , a nonempty subset Z (S) of the set of inter-

section functions for S;

. VSQ)X , a nonempty subset P (S) of the set of functions

from M to G.

Per some choice of structure data, put

w= (U U U {WZGS}'

sexf o4 € T(S) ¢ e Fs)

Then the Weyl algebra (of quantum geometry) is the C*-subalgebra

WS of @ (L2( ot ;MAL)) generated by C( ot ) and W.

[Note: Here, the elements of C( 0l ) are to be regarded as

multiplication operators on LZ(ER,;/AAL). Accordingly,hf admits



Irreducibility By its very construction,1xf depends on the

choice of structure data and the problem now is to find conditions

on the structure data which serve to ensure that WS operates
irreducibly on L2( 5'—(_ ; )
Yy iMat,) -
[Note: Since w o C(B:( ), the constant function 1 is cyclic.]
To this end, we shall impose the following assumptions:

1(2 : x? consists of the oriented embedded analytic hypersurfaces
in M.
* \/se¢e x? , 2.(S) is the Type I intersection function
carried by S;
e Y s¢€ )(7 , P(S) is the set of G-valued constant functions
on M.

1 irreducibly 5 —
THEQREM operates xxxeRxriky on L~ (07 ;,(AAL) .

The proof requires some preparation.

Definition: Let S € )J , let /\ be a graph, and let & be an
edge -- then a point x€ S is called a puncture of S and (A ,¥ ) if
SNA=g and sNint ¥ ={x} , where ¥ (x) is not tangent to S and

G

< (Y ) 1t,11)

i
H

(x =& (£), 0<t<1)

il

g (¥]o,t1) = 1.

S

[Note: The empty graph is allowed.]

FACT Let ¢ be an edge and A a graph. Assume: J and the edges



of A intersect at most at their endpoints -- thenV x €int & ,
3 Sé)y such that x€ S is a puncture of S and (A .,?7 ).

S,q

E3

o
EO_(M) = {o’} (g€ G), and given T GTT , denote by %ﬁ its

S

Notation: Given SGJ , write Wos, in place of W , where

character.

LEMMA Suppose that & and the edges of A intersect at most
WA

at their endpoints. Put

T

=T « T j .
¥ :Tlh,m,n A;_T_[:_J;r__

Let Sl’ 82 be elements ofxy such that the punctures Xyr X%, are
distinct -~ then
' 2 2
s s y Y, e B A C by
TT
(wlm,w?m>= CEEER A LEME
G a> 42
w

[Determine points tl,t2€]o,l[ (tl;étz) :

X, = J ()

X
|

5 = O (ty) .

Take tl<t2 and let
Y, < |10,t,]

Yoy it ,t,]

¥, < ie,,10.



Then

T
Y :Tr,m,n

E S
pP.4d

+ T « T .
1 ?l;ﬂ'mlp Xo;ﬂlplq yz?ﬂlq:n

So, from the definitions,

S
Wl

(e 4) T 6 4) T, . T
dﬂ kl”ql P,qg Xl;n’m'kl 1 klp 1 pjl Zol‘ﬂ-rae l,q XZ, 79,0

1 2
= ﬂ(6 ) T . « T . .T .
dTT k , X 1 k ’q z B'l:TT,m,kl B’OITT,,Ql,q Zz,n,q,n
and
S
2
Wd'z (TU ;ﬂlmln)
L T
T, T . me,) me,) T . .
d'rf k2’X2 P,q9 .XllTTlmlp ?OITrIplkz 2 k2q 2 q/Qz 3'2' T, kz'n
1 jz' 2
= W(O' ) T . .T . .T . .
dﬂ k2’/?2 2 kz/ez Zp Xl,’lT,mrP a,ol W,p,kz 2’2,"['[, ,?2,1‘1
Since
S Sl
W (T) =w_ (T ) T -
1 61 ;T ,m,n /\;E,}_,l
S S

=

2
|

=



it follows that

S S

1 2
<W°’1 (T), W () >

S 82

1
B < W0'1 (T77 TT,IH,n) ! W°'2 (TX ;TTrmpn) > . < TA;E'}_’i’ A;E'il.j_

=3 X > T T

dr ke Ay kor R o P g

2 2
(0 3) X T7(05)
Uk, Ry 2'k, R,

X <T yl;‘rr,m,kl’ T ?l;TT,m,P >
x < T'XO;'ITI ﬁqu’ T3'071Trplk2>
X <T3’2;T7,q,n' TZ'Z;-'TI /92:1'1 >

2
az x4 k,, £, B T
e, , X THE2,
141 2 %2

X 8klp S,le quz quz

— 7 2
- 2 Z Sy 9. Sk g, Ty o Ty 4
A% kA, Ky R, 1%1 Cky A, 11 24>



tr(TT(6 2)) e tr (TT(6 2)

2
drr

. -2, 2
_ ')Cn(dl) « Kpla )

2
dTT

Remark: If TT is abelian (hence ’X.Tris multiplicative and

dTT = 1), then

Wg (1 = X (691 (sexf ).

To prove that Wis irreducible, it suffices to prove that Lf"'

consists of scalars only. On general grounds,
O W = W' 'C (00" = L0 4y,) -

Let fEW"' -- thenV w€ {w) ,

fow =wof.

But

wof = w(f)o w.
Therefore

w(f) = £
. o0, vy .
in LYV 0 ,}AAL)-

Consider now a nonconstant edge network T -- then we claim that
{T,£> = 0.

Because T is arbitrary, this implies that fevgvl, as desired.

Bearing in mind that w € {W) =D w*€ W) , we have



it

<T,f> <T,w*(f)>

{wim) , £ .

Therefore
{wi(m),£ p =<1, )= w,(D),£>

for all wy,w, € {W) .

Write

T =T « T

X;Trrmln /\;_TII_.J;I_j_

Here ¥ and the edges of A intersect at most at their endpoints and

T7 # TTt {however, T/\ ST ,i,5 might be trivial).

Case 1l: TT is abelian -~ then
S 3 2
We (T) = ’)6...,(0’ )T
-
KT,y = Wy (m),£>

X(0%) 1,8 .

since Ti# T, 1 6 € a: 'X,TT(o'z) #1, thus <T,£> = 0.

Case 2: Ti is nonabelian -- then 4 T € G: ')C.n,(T) = 0

{due, in essence, to the Weyl character formula). But 3 GEG: @ 2 = T

pemnds
P %) = 0.

So, in view of the lemma,



51 52
{ug (1), Wy (1) > =

Choose an infinite subset X?(,\ a,)C:,xf :
’

Sl’SZGXY(/\,Z):>Xl7£X2'
Then the collection

{Wi' (T) = S€ ’J(/\,?)}

is an infinite orthonormal set in Lz(ai;/uAL). Call P the orthogonal

projection onto its span:

D s s
Pf = se S <W6(T),Pf>W°.(T)
(A,Y)
- > <WS:)-.(T), £ >Wi. (T) .
s € (A, y)
By the above, all the Fourier coefficients are equal. Since
> ; :
I<wg(m, £ )] <o0,
s€ X (A,

the conclusion is that WS € ,J(A ¥’
14

.S
<wg (M), £ =0.
Therefore

{T,£y =o0.





