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LOCAL QFT
WA

Ay

Causality Let Mfg}’d(d;Zl) be the Minkowski space~time of
dimension d+1.
1
Definition: Let SC M -- then the causal complement S of S

is the set of points in M which 1lie spacelike to all points of S.

[Note: Subsets S,TC M are said to be causally disjoint,

. A AL
written s L T, if sC T .]

Properties:
14
(1) scC s ;
(2) snst =g;
1Lt
(3) s =Si ;

1
(4) scC T =>mT c:s"‘;

L
5) (Wsp = sy .
i i
. ey B
Definition: The set S is called the causal closure of S.

i
If S=8 L , then S is said to be causally closed.

et ———————
LEMMA The set K ,, of causally closed subsets of M is a lattice.
NAAAA M
[The operations are

SAT = SAT

SvT (SUMLL . ]

Let £,:MxM —%‘Evbe the function defined by the formula

fM(XIY) =<X"YIX"'Y> .

Put
c, = {yeM:fM(x,yK oi.

Then



LEMMA Let S be a nonempty subset of M -- then
NSV
A
st N oc.
X €S
Let x,y€M -- then the double cone Dx v generated by X,y is
14
. 1L A
Dy = (¥} U iy} (= (C,NC,)™ ).

[Note: Therefore double cones are the causal closures of
two-point sets.]

Notation: Given xX€ M, let
v, (x) =4y EM:fy, (x,¥) > 0, yq-%X3>0%

V_(x) ={y€ M:fM(x,y)> 0, yo-x0< OS .

LEMMA Suppose that y(EV+(x) -~ then the interior of Dx,y is

v, x)NVv_(y).

It is also necessary to relate causality to the topology on M.

—

1
LEMMA Let KC M be compact -- then K #f@ is open.

[The point is that the function y — gup fM(x,y) is continuous
X€K

and takes on negative values.]

Application: Let O be a bounded open subset of M -- then

int o% % g.

— 1 i -1
[For 0OC 0O =0 C 0 and by the lemma, O is open and

nonempty. ]



. i A ) L
[Note: It is also true that O is closed, hence OO = int 0 .]

. . . .
A bounded open O is said to be connected with O if

T 0Ot £ g

[Note: Since

@* = fr (U int @
— - L
and 0 N(0) = @, we have
SNt @ #4.

- — 1
thus 3 xOEO and {xnl; C (0) such that x — X,- But

£§6=6—int6=5—int 0.

Therefore x, ¢_J£_t O (otherwise xnea— (n>>0) = 0 1'1(5)'L # @), which
means that
- - 1
fr onfr(o) # g.]

In practice, it is often convenient to replace the collection
@ = {OS of all bounded open subsets of M by a smaller subcollection
O 0 = {Ook .

Definition: A final subcollection GOC@ which is a basis for
the topology on M is said to be causal if

i gt
(l) VOO' 00 - OO ’

(ii) \100, 0y = int O,;

1
(iii) ¥ 00, O0

. - — . L

LEMMA The collection
A A NS

Vilx) N V_(y) (x,y€Miy €V (x))



is a causal subcollection of CD .

Denote by 49 the collection figuring in the lemma -- then the

by D(x,y) (so D(x,y) = int D | ).
—— le
[Note: ) is invariant under the operations of & 1ﬁ]
Now put
Wy ={xEM: |x01<xl}
and let

w ={(Ala).wR: (/\la)€0)I}I
the wedges in M.

— 4
Fact: YV WELW), W) '=_i_r5-_w'L.

LEMMA LS generates 9 by intersection, i.e., V¥V D(x,y),
NN AN
D(x,y) = int () W,

where () is taken over all W containing D(x,y).

LEMMA LS separates ) , i.e., if D(x,,y;)s D(%,,7,) € L) and

D(x;,y7) C Wy
D(xy,v,) 1 D(x,,v,), then B W, ,W, € : s W, Lw
D(XZ'YZ) CWZ

5°



The Axioms of Local Quantum Physics Results from the theory

of C*-algebras will be recalled as needed.
Definition: Let 0l be a Banach algebra, *: Ot— 01 an involution --

then the pair (Ol ,») is said to be a C*-algebra if V A € 0,

(i) Hasll = nan & (ii) pa*all = (a2,

[Note: A morphism of C*-algebras is a linear map <}> :0t— &

such that -

$(a,8,) = @) $(a,) & FA¥) = P(a)*.
Every morphism is automatically continuous: || $@)ll ¢ Nall v aeOt .
Furthermore, the kernel of 4? is a closed ideal in Ol and the image

of 4: is a C*-subalgebra of G . Finally, <'> injective =) 4’ isometric:

Hd@il| = all ¥ ae0( .]

Example: Let X be a LCH space, Cw(X) the.algebra of continuous
functions on X that vanish at infinity. Equip Coo(x) with the sup
norm and let the involution * be complex conjugation -- then the pair
(Coo (X),*) is a commutative C*-~-algebra.

[Note: If Ol is an arbitrary commutative C*-algebra, then 3
a LCH space X and an isomorphism QU —7 Ceo (X). Such an X is unique
up to homeomorphism and is compact when Ol is unital.]

Example: Let 3¢ be a Hilbert space, M (¥ ) the algebra of
bounded linear operators on o . Equip (¢ ) with the operator
norm and let the involution % be the adjunction -- then the pair-
(65(3¢),x) is a C*-algebra.

[Note: A norm closed x-algebra 01 < ®B(¥¢) is a C*-algebra.

Conversely, every C*-algebra is isomorphic to a norm closed #*-algebra

in @®(¥¢) for some ¢ .]



Philosophy: The idea is to produce a mathematical construct
which reflects the claim that everything that can be known about a
physical system is contained in the assignment between regions of
space-time and their observables.

Let M=Rl rd

R’ (d >1) be the Minkowski space-time of dimension d+1.

Axiom I: To every bounded open subset OUM there is associated

a unital C*-algebra 01(0) such that

0, C 0, =V 01(01) C Ot(oz).

Rappel: Let '{Oﬂi:ié?I} be a collection of unital C*-algebras
indexed by a directed set I. Assume: 4 injective morphisms

. . .o . _
f£..: Oii 2 an (i £3) with f . fkj of

and f,.=id -- then 7 a unital
ji ii =

ji
C*-algebra 01 = C*( U fi( 0‘(,i)) and injective morphisms fi: Uli"—>01
I
such that U fi( 01i) is norm dense in Ol and Vi <3, the triangle
I

£.
i

i > O

ot
\ -1
£..
BRSNS ///////;j
Ot

J

commutes.

In the context of Axiom I, the OU(0) are called the local algebras

of the theory, L) 0l(0) is called the local algebra of the theory,
o}

and Ol= c*( U 0OL(0)) is called the quasilocal algebra of the theory.
0]

[Note: The selfadjoint elements of O01(0) are the observables

which can be measured in 0.]

Remark: If G is an unbounded open subset of\&i'd

, then by definition




oLe) = c*( U 0oto)),
oCG

thus
m(&l,d) =0t .
Axiom II: If 0, and O, are spacelike separated (i.e., if OlJ_Oz),

then the elements of 01«}1) commute with the elements of 01(02).

Rappel: Let 0l be a C*-algebra, G a topological group -- then

a representation of G on 0L is a homomorphism &« :G —> Aut 0.

Axiom III: There is a representation o« of 6’1 on 0l such that

YoeQ,
Y :
«(N,a)- 0L (0) = OL((A,a)-0).
[Note: Sometimes this assumption is made only for the translation

(i

subgroup of 6’1 ("Axiom IIIT_").]

Rappel: Let 0l be a C*-algebra, G a topological group. Let

& :G —r Aut O be a representation of G on 01 -- then a triple

M, ,U &, where € is a Hilbert space and

Tl is a nondegenerate representation of 0lon xe
U is a unitary representation of G on ¢ ,
is said to implement ¢ if

U(er) T@AU(s) T = T(x(d)a) (A €D, Tea.

[Note: Recall that a representation Ti of Ol on ¥ is a morphism
: 00— GH(3¢) (thus 1 is automatically continuous: || 1 (a)l|| < |Ial}

VY a € QU (which sharpens to HIm@)ll = 1lall V ae 0 if 17 is



faithful)). There is an orthogonal decomposition

- @,
into invariant subspaces b{rl and b{’d, where }?n is the closure of

the linear span of the Ti(A)x (A€ O, x 63—?) and }Q a is the set

of x¢€ H : MAYx=0 YA€ D(. One calls T nondegenerate if }?d = { 0} .

Every nondegenerate representation is a direct sum of cyclic repre-
sentations.]

1,4

Let U be a unitary representation of\B\ on }{ -- then

V=1'(a,
jk e < p> dE

1,4

U(a) = o’

the support of E being the spectrum of U.
Axiom IV: There is a faithful representation Tj of Ot on.}{
. 54
and a unitary representation U of G’+ on be such that the triple

%:bﬁ ,Ti,U% implements X , where the spectrum of U\led
vw

is contained
in V+.
[Note: Sometimes this assumption is made only for the translation

subgroup ("Axiom IVT."L]

Definition: A theory satisfying Axioms I-IV is called a theory of

local observables: § 01 ,x, 3¢, 1,0},




CCR Let E#0 be a real linear space equipped with a nondegenerate

alternating bilinear form ¢ (so either dim E=+ 20 or dim E=2n (n=1,2,...)).

Example: Take for E a complex pre-Hilbert space, view E as a

real linear space via restriction of scalars, and let

0(x,y) = In<x,y>.

Definition: A CCR realization of (E,G ) is a C*-algebra CCR(E,qo )

which is generated by nonzero elements W(f) (f& E) subject to

W(f)* = W(-£) (f €E)

and
W(£)W(g) = exp <-' y-1 cr(f,g)> W(f+g) (f,9€E).
2
CHExample: Let b—(’ be a Hilbert space. Consider ?:S(B-Q) -- then one

can attach to each f655¥ the Segal field operator

6l
C
i

£) +~S(f))'

2 (al
S Vr?? w
As we know, EEs(f) is essentially selfadjoint. This said, put
W(E) = exp (V-1 B (£)),
a unitary operator on ?FS(BQ ). One can show that

W(£)* = W(-£)

and

W(f)W(g) = exp ( - y-i Im <f,g>> W(f+qg) .
2

Therefore the C*-subalgebra of B ( a:s(&f)) generated by the W(f) is

a CCR realization of (}{,Emg(,>).



o

EEEBBE& OF EXISTENCE The pair (E, &) always admits a CCR

realization.

[Fix an infinite dimensional Hilbert space;{r. Put JTE== (:) O(f
fEE

(L =d Y £EE) and define w(f) € B (L ;) by the rule

WEIA) () = exp( Y=L 0(x, £))A (x+E) (x,£€8; A € ol )]
- 2

Remark: Let Gll(E,o’), 0(2(E,6‘) be two C*-algebras per the

theorem of existence =-- then there is one and only one isomorphism

P : (f‘(l(E,r) — GLZ(E,O“) such that

$(wy (£)) = Wy (f) V £€E.

[Note: Uniqueness is, of course, trivial.]

Properties of CCR(E, 6 )

Wwie) T,

r

(L) w(o) =1, W(£)*

(2) CCR(E,6 ) is not separable;

(3) CCR(E,s ) is simple.
[Note: Another point is this. Let M be a subspace of E -- then
the C*-subalgebra of CCR(E,s ) generated by %;W(f):feba} is equal to
CCR(E, o) iff M=E.]

linear
Aﬁ?ijection T:E — E is said to be symplectic if

6(Tf,Tg) = o(f,9) WV £f,g€E.

LEMMA Given a symplectic map T:E —3 E, 4 an automorphism &
A T
of CCR(E, o ) such that



o(T(W(f)) = W(Tf) (fE€E).

[The W(Tf) satisfy the same general conditions as the W(f) and
both generate CCR(E,¢"). Now apply the preceding remark.]

[Note: Needless to say, the condition
MMWEH = W(TE) (f£€E)
determines O(T uniquely. ]

The O(T are called the Bogolubov automorphisms. They form a

subgroup of Aut CCR(E, 6) and the arrow

—7 X
T —2 T

is a representation of the symplectic group of (E, 6 ) on CCR(E, g ).

Rappel: Let E#0 be a real linear space -- then a complex

structure on E is a linear map J:E —> E such that J2= -I.

[Note: E becomes a complex linear space if we write V-1 f = Jf.]
Example: Let ) be a real Hilbert space, G a nondegenerate
alternating continuous bilinear form on X -- then J a complex structure

J on §€ such that J*= -J = ~371 with g symplectic:

¢ (Ix,Jy) = o(x,¥).
Now view be as a complex linear space via -J and put

(X, ¥, =-0(x,Jy) + V-1 a(x,y).

Then the pair ( ¢, <, )c_) is a pre~Hilbert space.

[Note: Implicitly, matters have been arranged so as to ensure
that -~ 6 (x,Jy) is an inner product on 3¢ . 1In addition, it is

necessary to work with -J to get the correct signs. E.g.:



il

- 0(x,J(-Jy)) + V-1 o (x,-Jy)

<x,\f:]—.‘y>c_

- 6(x,y) - V-1' o (x,Jy)

=V-1' (V=T o (x,y) - 6(x,3y))

=‘\/:—T<x,y ><r .1



Example The free relativistic particle of spin zero and mass

m> 0 admits a theory of local observables. Thus take for E the real

0 1,3

linear space C_ (R
C v

;:R) and let

o(f,g) = Im<£f,g>,

where

<tg> = ) E@man, (o).

X
m

But there is a technical problem: Our standing hypothesis of non-

degeneracy is not met by 6 . To remedy this, put

N ={f€E:T x =0},

Then the arrow

ral
[£1— £]x_
2
E/N—> L (X_,a )

is one-to-one and has a dense image. Therefore the prescription

——

Fas A
{I£],0g1) = j £(p) g (p)d v, (P)

X
m

equips E/N with the structure of a pre-Hilbert space, so

c([£],[g]) = Im< [£],[g]>
is nondegenerate.

Remark: The elements of N are those elements in E of the form

( E]z + mz)f.



Definition: The quasilocal algebra of the theory is

2
0l = CCR(E/N,5 ) <¥ CCR(L™(X_sm ), 6).
Notation: Write
— N
W(E) = W(E|X ),

a unitary operator on %Fs(Lz(thﬁ«m)) which depends only on the
equivalence class of f, hence

W([£f]) = Ww(f).

We have now to deal with Axioms I-IV.

Ad I: Let

0lo) = c*{w(flx ) : spt £Co}.

Obviously,
0, € 0o, => D((0;) & 0OU(0,).
And:
OlL=c*( (J Ol)).
0
Ad II: Suppose that Ol_L 0, -- then
£,€EE : spt £, C Oy

= =
G(fl,fz) 0.
fZC—E : spt f2 C 02

To see this, recall first that

= emZ) - e2
Am(X) = O (x5m”) A (xim7).
On the other hand,

X spacelike => Lxm(x) =0

= Im A, (xim’) = 0.



Therefore

G%fl,fz) = S. fl(xl) Im A;+(xl—x2;m2)f2(xz)dxldxz
0]

From this, it follows that

Y -1
W(E IW(E,)) = exp | - — o(£1,£,) | W(E +£,)
= W(fl+f2)
= W(f2+fl)

_ V=T

which proves that the elements of 01(01) commute with the elements

of 0l(0,).
Ad III: The Poincaré group C?zfoperates on E:

(AN,a)- £ = £ ’

A,
where
Ea al®) = £(N"1(x-a)).
Since
A Vtii(a,p> N
fA’a(p)=e £(AN "p),

this action passes to the gquotient:

(N ,a)-[£f] = [f ].



Bearing in mind that.,g‘m is invariant, we have

c((N,a) [£f1, (N,a)-[gD)= ¢ ([£f]1, [gl).

So, by Bogolubov, 3 a unique automorphism o(( of 0U such that

N,a)

(W(f)) = w(£ ).

X
(A ,a) A,a

But this implies that
% n gy 0L = OUCA,2)-0).

Finally, the arrows

¢t — symeE/N, &)

Sym(E/N,s ) —» Aut CCR(E/N, ¢)
are homomorphisms, thus the composite

& : 7 —>Aut CCR(E/N, ¢ )
is a representation of G’: on 0L .
Ad IV: By construction,
2
0l = CCR(E/N,6 ) < CCR(L™(X_, )/ 6 )
and
CCR(L2(X A )y 6)
m'  m’
is realized as a C*-subalgebra of O ( a:s(Lz(xm”~‘m)))' Take any

2
¢ €L (Xm,ﬁam) -— then

1

o™ (AL v™ (ALa)t = ww™ (AL ).



So here 11 is simply the inclusion
2
_—
Ol—=B (F @ (X an )))
and the implementation of « is immediate. 1Indeed, V f€ E,

wo™ (A6 = we™ (A2 F k)

and
(m) A _ 2’
U (A,a)f)xm—f,\'a\xm
=
(m) -
(W(U (N ,a)f) —W(f,\'a)
= A& ( ALay (WEN .

(m)\ Rll‘3'

That the spectrum of U is contained in-G; has been seen before.

Remark: The foregoing analysis can be extended to cover the case

of the free relativistic particle of spin s >0 and mass m>0.

[Note: The massless case can also be incorporated.]




CAR Let E be an infinite dimensional complex pre-Hilbert space

equipped with an antiunitary involution [ :E — E, so

M2 =1, <I's,"y> = <v.x> VY x,y€E.

Definition: A CAR realization of (E,[?) is a C*-algebra CAR(E,[")

which is generated by nonzero elements A(f) (£€ E) subject to

A(f)* = A(["f) (f€E)

and

A(f)A(g) + A(g)A(f) =<V'f,g> I (f,geE).

[Note: Here it is assumed that the map A:E —7 CAR(E, ') is

linear.]

Parallel to the CCR situation, there is a theorem of existence
and essential uniqueness. Moreover, if M is a [T -stable subspace of

E, then
CAR(M, ') < CAR(E, ).

Remark: It is easy to see that

£l
V2’

< fiagj) ¢ WY .

One can in fact be precise:
Hasl) = 21 el 2+ C HeEN 4 - J<re,e>]3H/31/2
Y7

Therefore the map

A:E — CAR(E,[")

can be extended by continuity to a map



2:E — CAR(E, ).

On the other hand, it can be shown that the arrow

CAR(E,[" ) — CAR(E, [")

is an isomorphism.
Denote now by "L((E, ") the subgroup of the unitary group of

E consisting of those U which commute with .

LEMMA To each U € TA(E,[") there corresponds an automorphism
NAAAANY

o ; of CAR(E,{" ) such that

X 4(A(f)) = A(UE) (f€E).

The y are called the Bogolubov automorphisms. They form a

subgroup of Aut CAR(E,[' ) and the arrow
U—> &Ky

is a representation of ‘L((E,r') on CAR(E,[?).

— ~ 0
E=E€~)E,l’1=< rl) .
" 0

Then [ :E — E is an antiunitary involution, thus it makes sense to

Put

form CAR (E,F ).

[Note: View the elements of E as column vectors, so

My

(x,y€E).]

i 0 Mx



This said, define a unitary operator U :E =< E (04 ©<21m)

3]
by
e V710,
Ug f = .
-V-16
e Y
Claim: V © ,
Uel'1 =MUug .
In fact,
. e\/—lGrly
Ue £ =
e—\f-Te r
while

Me V719 eV 18y
.\"'Ue?= = .
M e V-10 X e -10 M x
Accordingly, ¥ © , there corresponds an automorphism o(e of

CAR(E, ") such that
O(G(A(f)) = A(Ue £) (f €E) .

Moreover, the assignment

a—>o<e

~ T 2y
defines a representation of_v"I"von CAR(E,"'). since E =£, there is a

decomposition



car(E, M) = @ car_ (&, 1)
n
- o0
into norm closed linear subspaces
P~ V-1 ne
caR_ (E,[") = { A: «_A=c¢ Al

Obviously,

~ ~ T _~
CAR (g, M) CAR_ (E, M c CAR . (E, ")

and

~ NS o~

CAR, (E, ')* = CAR_ (E,").

Therefore CAR(E,T') is a Z-graded C*-algebra.
YA



Example The Dirac field admits a theory of local observables.

1,3

Thus take for E the complex linear space Cc (R C4) with inner product

{f,g> = ‘Y j- <f(x), B’ODm (x-y)g(y) > dxdy

2 &
S v (x)(?{ D (x- y)) 1,gl’,(y)c'ixdy,
24 4
NAn N

where

_ 1 1 ]
D (x) = —(m+ ~——— J-° .)A (x).
m 2m V-1 J m

Take for | :E —> E the complex conjugation and pass from (E,[")

to (E,"). Here,

E = "O(Rl r3 c4@C4).
Vv

Definition: The field algebra of the theory is

5 = car(E, ).

[Note: It is clear thatva}'3 operates on T :

~~

£—>F (£, (x) = £(x-a))

from which an automorphism o(a: ?}'—9|g;characterized by the relation

a4

X 5 (A(£)) = A(f).]



2.

“~

Notation: Given f = (gj), write:i(f) in place of A(f), and given

g = (g) , write c(g) in place of A(EJ).

[Note: Since A is linear, we have

s -a(y) -2 (5) 0 (9)
2 (8) 2 (3)

ald) +ctP.

il

In addition,

a(f)*

(=(5))"
A<<r9f>) = c().]

It is easy to check that

\E(f)\i(q) +£(g)3(f) =0
c(f)glg) + c(glg(f) = 0
and
a(f)lcla) + clgla(f) = (T"f,g) I.

Notation: Given a monomial M in the\i(f) and\g}g), let n(M)
be the number of‘E}f) and n* (M) the number of»a(g), so n{(M) + n¥* (M)
is the degree of M.

[Note: Monomials are total in %F .1

Let

F© =c*{a®: spt fCo0}.



Then

¥ =C*<((.)J F ()

3 - 3. .
LEMMA ’;(O) is avagraded C*-algebra:
+ 00
Fo =D F 0.
-cQ

And a monomial M € 9 (0) belongs to %:k(O) iff

n{M) - n*(M) = k.

V-1'¢e
[From the definitions, o(e (a(f)) = e a(f) and « _(c(g)) =
v v 0 v~

- VT

e \,E(g) . Since o(e is an automorphism, it follows that

KgM = exp(V-1" (n(M) - n*(M))oM,

from which the assertion.]

\I/@v% Suppose that O]__]_O2 -- then
A, € F,(0;)
— - (-1 k<&
—> AR, = (-1) A,A, .
A, € B 400,
[If
spt fl C Ol
14
spt f2 (- O2
then

vi(fl)gw(fz) + c(fy)alfy)

= {Tg,8,>1=<5,6>1



and
- 0
<E,E,) = g g T (YD ey
Ax L/
01 0O,
= 0.

So, for monomials

M) € Fy (0p)

M2 eaa'/e (02)1
we have

(n(M)) + n*(M)) (n(My) + n*(M)))

MlM2 = (-1) M2M1

(n(M)) =n*(M;)) (n(My) -n*(M,)))

= (-1) M2Ml

kR

= (-1) M My

and the result follows by density.]

Now put
+ ©
F(0) = _@6 F . (0  (nF0)
F%0) = F ;0
and let
g7 = cx( Lal F7(0))

FO = (U Fpon.

£, (y)dxdy



Notation: Z/Qﬁ is the subgroup of T generated by °<2 (n#0) .

n

LEMMA An element A € ?F belongs to ?Fn (n#0) iff A is‘Z/nZ:invariant

and an element A€ 7F Dbelongs to 53:0 iff A is T-invariant.

[It suffices to consider the case when n#0. Trivially, V A €_€Frh

L] N —-—
e c 2/n2 = o(eA=A. On the other hand, if A € 2 and D<2ﬁm A=A,

+00 n
then with A = > A,, one has
-0 I
X A= > exp (V-ljzr'm A
21 m 5 — n j
n
n-1 V""ZTTkm +§
= exp -1 ) A
= A
=
+ o0
/?Z:_Oo Agnsk =0 (k=1,...,0-1)
=
+00
_ n

- oQ

From this data, for each n=0,1,... one can generate a theory

of local observables. Here the local algebras are

o —» F2"(0),



the associated quasilocal algebra being EFZH. Axioms I, II, and III.r

are then immediate. In this connection, observe that if O1 1_02, then

Aj < 32kn ( 1) 2
4k R
:f) A]A2 = (-1) = A A

a, € F, g, (0))

Remark: It is possible to incorporate a representation o of

> T
6>+ on %;Zn so as to strengthen III_r to III. To get a true theory

of local observables, it is also necessary to verify IV but I shall

omit the details.



States Let 0l be a unital C*-algebra.

Notation:

(1) (ﬂ,R is the collection of all selfadjoint elements in

Vo

Mr i.e.,
= cA* =
01"13” {A&O’( :A* = A} .
(2) 01,+ is the collection of all positive elements in Ot ,

i.e.,

01.+

{AZ:AE U‘[\B’}

$a*a:ae 0L} .

Definition: A state on Ol is a linear functional < : Ot —;)éi

such that
W (A)>0 vVaeot

Ww(I) = 1.
[Note: A state &) is necessarily hermitian: W(A*) = w(a) VaeQl .]
Let 47(01) be the state space of Ol -- then %P(Oi ) is a convex
set and its elements are necessarily continuous of norm 1, thus J’(Oi )
is contained in the unit ball of the dual of {{ . It is easy to
verify that J7(OL) is closed in the weak* topology, so ﬁ7(01) is
compact (Alaoglu).
Fact: Y A€ (X R’
Noan
all = sup {Jw@|: weFf o0} .

[Note: The supremum is achieved, i.e., d cwo:{lAll = lco(A)l.l

If Tf is a cyclic representation of Ol on g{, then one can attach



to any cyclic unit vector ) €3{ a state

Ww(a) =<2, Mm@ 2.

Conversely, given a state ¢y, the GNS construction produces a
cyclic representation Tnd of 01 on a Hilbert space b?g)with cyclic

unit vector flkdsuch that

w@ =< Q2 , T w2 > .

[Note: Suppose that 1 is a cyclic representation of 01 . Take

any cyclic unit vector {2 and perform the GNS construction on
@) =<2, @) >.
Then THD is unitarily equivalent to Ti .]

Definition: A state ¢yis faithful if Tﬂd is faithful.
[Note: On general grounds, T , is faithful iff A >0 => T (B >0

or still, A2 0 =) W(A) > 0.]

Example: Recall that a density operator is a bounded linear

operator W on §f with the following properties:
(1) W is nonnegative;
(2) W is selfadijoint;

(3) W is trace class and EEjW)=l.

This said, take 01 = CB(BQ ) and fix W -- then the state

A —> tr (AW)
is faithful iff W is invertible.
Remark: Let JJ be a representation of Ol on &{ -- then each

density operator W determines a state q)w, viz. A—> tr (7 (A)W).

Denote by QPT_ (O1) the set of such -- then TT is faithful iff ,j’ﬁ (0)
i



is weak* dense in qf( ).

Definition: The universal representation Ty of 01 is the

direct sum of all its GNS representations Tna (W GﬁzP(Ot )}, thus

- O, R

WE L (0)y W -

Remark: T U igs faithful. 1In fact,

T U(A) =0
= MWD, =0 Vo

= || n Q! 2.9 VYw

=>w(@a*a) = 0 VYV
=>A*A = 0
= * _ 2 _
=>1la*al]l =11al] “ =0
=>A = 0.
Rappel: Let 1] be a representation of (J{ on a Hilbert space }Q -
then the following conditions are equivalent:
(1) 1M1 is irreducible;
(2) m(OL)"

(3) T(OL)Y" = B(o¥d);
(4) T(OU)S2 =¢ V CL#0 in ¢ .

CI;
oy

Definition: Let ¢« € qP( 0() -- then « is pure iff it is an
extreme point of xP(OI).

Fact: The GNS representation ., associated with a state w is
irreducible iff w is pure.

Remark: Let Tj run through the unitary equivalence classes of

irreducible representations of 0{ -- then



YV aelOt, sup [In@il = lal) .
T
Let f: 0 — 0( be an automorphism of 0l -- then a state

W e >X( 0l) is said to be invariant w.r.t. o if

AT(W) (= Wwox) =w .

Consider the GNS construction per ) =-- then there exists one
and only one unitary operator U  : b‘?w - Hw such that U Qw =
_O_w and

U, Tw (A)U-;])' = T (xA) Vae(0t.

[Note: The definition of U(

3 is the obvious one:

Uw'.‘w(A)Qw = Mk, -

Therefore Uw has a dense domain and a dense range. That U is

unitary follows from the ¢ -invariance of W :

2
o My Q 1y

il

B 0 T (B >

Q. T,lan* m (B >

W( o (A*A))

QW (A*A)

CQyyr MO >

Il @ 2]

Let o :G —>» Aut Ot be a representation of G on 0( . Suppose

that <) is a G-invariant state:

o((o')Tm = W Y o € G.




Consider the GNS construction per ¢3-- then 3 a unitary representation

U, ©of Gon stuch that ¥V ¢ €, Uw(o-)ﬂw =Q<«) and
Uw(s) TTQ(A)UQ(G‘)—l = T,k (o)A) Yaeol.

Therefore the triple { }QQ » e ,leg implements o .

[Note: Cyclic representations are necessarily nondegenerate.]

THEOREM (Markoff-Kakutani) Let K be a convex compact subset of
AN NAAA A,
a linear topological space X. Let Obe a commuting family of con-
tinuous linear maps X —» X which leave K invariant -- then 31 p€ K:

Tp=p WVTE I .

We shall now apply the preceding machinery to

Ol= c*¢( LOJ O  (0)).

Suppose that Axiom III,.r is in force -- then V aGRl’d, K (a) is an
VAany

automorphism of 01 and it is clear that ¢x(a)T’ leaves xY(()() invariant.
On the other hand, the «K(a) commute among themselves, hence so do the
dia)T . In Markoff-Kakutani, take for X the dual of 0{ equipped with
the weak* topology and let K= qf(O( ) == then the conclusion is that

3 a translation invariant state &)
¢ , T
{ ch. (%V]

Remark: Part of Axiom IVT’ is therefore automatic. However

T thus the triple

.U implements ¢ .
L Yer

these generalities tell us nothing about the validity of the spectral

condition.



W*-Algebras Let b( be a Hilbert space, ¥¥)a nonempty subset of

D (3¢) -- then the commutant YN' of Yy) is the set of all TE€ @ (¥ )

. . TN
that commute with the elements of YY) . The bicommutant ¥r} is the

' ;
commutant of YY) . It is easy to check that m'=m"'".

Suppose that YY) is a x-subalgebra of @ (Jd¥) containing I --

then the following are equivalent:
(LM =m:

(2) Y} is closed in the weak operator topology;

(3) M is closed in the strong operator topology.

[Note: 1In general,???(weak or strong closure) isWTf'.
Proof: ‘'YTMm Cﬁ =m 'CYY)| = YY)“Cﬁ‘;_T;). But M is weakly
closed and contains YN, hence'Yn';:;ﬁ.]

Definition: A *-subalgebra YN of D (d¢) containing I is a

W*-algebra if it satisfies one (hence all) of the preceding conditions.

Example: For any nonempty subset ™ of ®(3€), ( ™M u M*)’'

is a W*-algebra.
Example: Let JTbe a representation of a unital C*-algebra

on a Hilbert space of -- then TT(Q()' and T(0( )" are W*-algebras.

. . *_
LEMMA Suppose that 01 is a unital C*-subalgebra of G3( 3¢ ).
Let YN be the strong closure of 0{ -- then the unit ball of 01 is

strongly dense in the unit ball of YV} .

Given a W*-algebra Y1) , let WYY) be the set of all linear

functionals on YY) continuous in the weak operator topology =-- then



WYT) is a normed linear subspace of T* (which, however, need not be

closed) and the arrow

is an isometric isomorphism.
‘ : 2 00 . .
Example: Take }{ = L°[0,1], Yn= L™ [0,1] (realized as multi-

. . 1
plication operators) =-- then here W17]= L7[0,1] and YN = “;i

[Note: 1In this situation, W is a Banach space, which is

m™m

generally not the case.]

LEMMA Every W*-algebra¥Y| is isometrically isomorphic to the
dual of a Banach space.
[Let Ran\be the completion of W7YL -- then the arrow of restriction

Wk —7 y* is an isometric isomorphism, so YYL MW* .]

m

I ———————

Remark: A W*-algebra Yrn} is closed in the norm topology, hence is
a C*-algebra. On the other hand, not every C*-algebra is isomorphic
to a W*-algebra. For example, it is wellknown that C[0,1] is not
the dual of any Banach space.

Rappel: Suppose that {Ai& C Q@(¥?) is an increasing net of

selfadjoint operators: i <j => AigAj. Assume: 4 C »0: “AiH L cVi--

then 4 a bounded selfadjoint operator A of norm 4 C such that Ai—4> A
in the strong operator topology.

[Note: It is customary to write A = lim Ai']




Let A: YN — C be a continuous linear functional -- then ‘A is

said to be normal if for each bounded, increasing net {Mi} in Y] R’

we have
lim ;\(Mi) = A(lim Mi).
LEMMA Let A€ YN * ~-- then A is normal iff J a trace class

operator T on ¢¢ such that

AM) = tr(MT) VMEM.
[Note: Accordingly, a state « € ‘uV(TY)) is normal iff (M) =
tr (MW) (M€Y ) for some density operator W, so, e.g., if S2 € ¥?
is a unit vector and if P is the orthogonal projection of §¢ onto

&Q , then M—> < ) ,MCL> = E(MPKZ) is a normal state.]

Notation: VYY), is the set of normal elements of YN*.

Fact: Y, is a norm closed subspace of *.

[Note: Therefore Y, is a Banach space, the predual of Y .]
Remark: One can be more precise: M, is the norm closure in

» hence YW 22 ( YN, *.

m* of W 7 ie,, ™M, = WYY\.
To see the point, take YN = QB (H) -- then M, =~ ®;(2€) (the
trace class operators on ¥{ ) and, as is wellknown, (3¢ ) can be

identified with @l(}e )*. The associated weak* topology on & ( &f)

is called the ¢ =-weak topology. It is generated by the seminorms

A—7ltz(an)| (T € @, )).
It is clea;r that the ¢ -weak topology contains the weak operator

topology and is contained in the weak topology (the smallest topology

on @ (3f¢) for which all norm continuous linear functionals on 0 ( 3f)



are continuous).

LEMMA Let A €Y * —— then A is normal iff A\ is 6 -weakly
NP e

continuous.

Example: Suppose that ¢f is separable. Fix an orthonormal basis

fe,} and let M= @ (3¥) -- then the assignment

—_> 1
A p2 —5 <en,Aen>
n 2
is a faithful normal state, thus is in the predual Y¥,. But it is not

continuous in the weak operator topology, thus is not in W

m:

LEMMA Suppose that <« is a normal state on Yy] . Let ( Noo r Ty o
QQ) be the associated GNS data -- then T, m)c o« Nw) is

a W*-algebra.

Definition: Let Y| be a W*-algebra -- then 2 €3{ is separating

for M if M2 =0 (M€Y ) = M=0.
[Note: If TN admits a separating vector {2, then ¥ normal state
W, —jl X EH : QM) =<x,Mx> (M €M ) (x can be chosen cyclic

provided ) is also faithful).]

. . : . . T
LEMMA (2 is cyclic for Yy iff £2is separating for YN '.

Fact: YY] admits a faithful normal state iff ¥ is isomorphic to
a W*-algebra T (Y] ) which has a cyclic and separating vector.

A W*-algebra Y is ¢ -finite if every collection of mutually



orthogonal projections in ¥N is at most countable.

1f ¢f is separable (as we suppose in the applications), then
every W*-algebra on ¥ is necessarily 6 -finite. On the other hand,
it is not difficult to prove that every ¢ -finite YN possesses a
faithful normal state. Consequently, in the separable case, there
is no essential loss of generality in assuming that YY1 has a cyclic

and separating vector.

The center of a W*-algebra TYLiS‘Z-n1='Yn A M'. One says that
is a factor if Z = CI.

[Note: In some sense, the study of W*-algebras can be reduced
to the study of factors (decomposition theory) but I'll omit-the

specifics as they are not particularly enlightening.]




Particle Theories Let{ Otfx)éQ)Thtjk be a theory of local

observables -~ then Ti is faithful, so 0U "is™ m(0(). Accordingly,
we shall agree henceforth to identify Ol with Ti(O0() and work
entirely in 3 . One can then embed O01(0) in O(O0)" and this is

how W*-algebras make their appearance.

Definition: A particle theory in a Hilbert space o is the

assignment of a W*-algebra YY|(0) to each bounded open subset 0 C M

subject to the following assumptions:
PT,: 0;<= 0, => YN(0;) © M(0,);

PT,: 0,10, => M(0;) < MI(0,)";

. . . >
PT,: 3 a unitary representation U of ¢, on &€ such that

1

U(A,a) MO)UIA ,a) "t =M((N,a)-0),

where
spec(UlRl'd) C V..
y +

closure of U Y(0) and the global algebra M of a particle theory is
0]

the weak closure of (U WM(0).
(0]

[Note: Ol is a C*-algebra, Y¥] is a W*-algebra, and Y = OL".]

1,d

Remark: If G is an unbounded open subset of\Bv’ , then by
definition
e = (U o) )
0CG
thus

M(Rl'd> =m .



Observation: From the definitions, 6’2 is represented on M by
. . . . . N eV _l
conjugation. This carries over to M ': ¥V M'€ T', U(A ,a)M'U(A ,a) " €M",

Thus take any M € YY1 -- then

Mu(R,a)M' U(A ,a) "t
— N -~ -1 N [ N -1
= U(AN,a)U(A ,a) MU(A ,a)M'U(A ,a)

~ N — A -
= U(N,a)M'U(AN ,a) 1 MU(AN ,a)U(A ,a) 1

~s ~ -1
= U(/N,a)M'U(A ,a) M.
A particle theory admits a vacuum if 3 a.G’I—invariant unit

vector QO such that (U W(O))QO is dense in o¥ .
O;

[Note: Therefore 01§20 and'THQQO are dense in of .1
Notation: A PTV is a particle theory that admits a vacuum.

Example: Take f =G, so @ (3¢) = C and assign to each O the

W-algebra YN(0) = C. Take (2 =1 and let U(A,a)=T YI(A,a) -

then all the requirements for a PTV are met.
[Note: To eliminate this triviality, in the sequel, we shall

assume that dim of » 1.]

THEOREM Suppose given a PTV -- then
NN

U(&l'd)cm .

[Fix MEM), M' € M' and put U(a)=U(I,a) -- then, on the one

hand,

1

<2y U(a)M'U(a) M Q4>

=<M* Qor U(a)M'QO>,



while on the other,

{ Q,.u@mn'u@ M, >

=L, M'u(-a) M 2, >

< M'*CL,U(-aIM D o>
The Fourier transform of
a = {M*Q,,u@m O >
has its support»in-v; and the Fourier transform of
a —>{M'* QO,U(—a)M QO>

has its support in‘Gl. Therefore the support of the Fourier trans-

form of

a—> <Q,,u(a)M'U(a) M2 | >
is the origin, so, by the usual argument,
<, v@mno@ M, >
is a constant function of a, thus A4 a,
<M*QO,U(a)M'U(a)’1QO>
= <M*2,M Q).
since M <2, is dense in ){, this implies that V a,

U(a)M'U(a)—l QO = M'.Q_O

or still,



1

(U(a)M'U(a) ~ -M") 2, =0

=)

U(a)M'U(a)_l = M',

<2, being separating for YN '. It then follows that

ua)e ' M" =M,
as contended.]
N~
[Note: PT, provides a representation of 6’+ on ] , i.e., a

“~
homomorphism (3 I —>» Aut TY) . This representation restricts to a

representation of Rl'd on YY) and the theorem says that the action is

W

via inner automorphisms.]

The vacuum of a PTV is said to be unique if

dim {xe}R :U(I,a)x=x V¥V a } = 1.

~1

[Note: This condition implies that the space of 6’+—invariants

o
is one dimensional (£ I is semisimple).]

1,4

Remark: If the vacuum of a PTV is unique, then ¥V nonzero a€R’

14

dim {XGH :U(I,ta)x=x WV t€R }= 1.
[Here is a sketch of the proof. Let E0 be the orthogonal pro-

jection of € onto .S.Qo -- then V¥ xEE’éH , d (x,Ea x > 1is absolutely

continuous w.r.t. Lebesgue measure, which implies that

lim U(I,ta) = E

t —7 + 00 0

in the weak operator topology. If now x,L\gkCZO and U(I,ta)x=x \ftEiE,



then
2
Ix{] © =<x%,0(1,ta)x>
—> (x,E0 x»=0 (£t = +x),
so x=0.]
EﬂEQEE@ Suppose given a PTV with a unique vacuum ~-- théen 1T =
G ().
{From the previous theorem,
U(r,a) e M VYa.
Sso, ¥ M'EM',
3 ] —1 T
U(I,a)M'U(1,a) =M
—_—
U(1,a)Mm' QO = M'QO
S
M'QO = CQO (d o
=
M' = CI
=
m' = CI
=
M=mm = @ (¥H).]
LEMMA Suppose given a PTV. Assume: YY| is a factor. Let
a€v13}’d be spacelike -- then ¥ Me (U MU(0),

0]

lim U(I, Aa)MU(TI, >\a)'l =(Q_O,M QO>I
N>+ 00

in the weak operator topology.



[Since YN is the dual of YY) ,, ¥V r >0, the ball {M e :{fmil ¢ r}

is ¢ -weakly compact (Alaoglu). Let M, GYYK(OO) , where O is arbitrary

but fixed. Consider the net

fu(T, Aa)My UL, Aa) " T:Az o).
To prove that it is convergent to (QO,MO QO>I in the weak operator

topology, it suffices to prove that every subnet has a subnet con-

vergent in the weak operator topology to <QO’M0 QO >I. Since

W u(z, ra)My UL, Aa) T £ Mgl

every subnet has a subnet convergent in the ¢ -weak topology to some

point in the ball of radius HMO l| , say

l+m U(I, }\ia)Mo U(r, ?\ia) = A

Oo
1

Because a is spacelike ( {a,ad = a(z) -—]a\2 <\'0), Yo, 3 ?\O: A ?‘O =

(00 + Aa) 1 0, thus 310:1 210

=
(0, + ;\ia) Lo

=
U(I, Hia)My U(I, Aja) T € N0, + A;a) SI(0) !,
so ¥YM € M(0),

U(I, Aja)My UL, Aga) teM

= M-U(I, ) ;a)My U(Z, A,a) T,

Passing to the O -weak limit, we get

AOM = MAO =) A, € (0)'.



But this holds V 0, hence Ay € Y]'. On the other hand, A, € YN

0
(convergence in the 6 -weak topology implies convergence in the weak

operator topology), thus AOGE mnnm =v§I,WT] being by hypothesis

a factor. Therefore
AO = C(AO)I (C(AO)GJE)'

To calculate C(AO), note that

Lim < C2,,U(T, A a)My U(T, Aza) "

1

Lo>

{CL,,caNI) >

A <Ly 2>

il

C(AO).
And: Y i,
-1
<€y, U(I, Aja)My UL, Aza) ~ (1>
= <2 My 2> -
Combining these two facts gives
c(ay) =<Q0,MO QO>,

from which the lemma.]

%EEQEE% Suppose given a PTV. Assume: Y] is a factor -- then

the vacuum is unique.

[Let x € ¥ :

U(I,a)x = x Ya.

Take x orthogonal to EZO. Fix a spacelike a -- then VM € U m™o),
0



lim < x,U(I, pa)M U(I,?\a)—lﬂo>
AN —> +00

<Q0'MQO > <X, Q0>
= 0.
But -

< x,U(I, pna)M U(I, %a)'lQ 0>

{U(1,- Aa)x,M U(I,-Qa) Ly >

< xMQ2y>

x ) (LOJ YY)(O)>QO
=> x = 0.

Therefore the vacuum is unique.]

Remark: Suppose given a PTV for which YY) is a factor -- then

YN must be ().

A PTV is said to be additive if
0 = L)oj =y ™M) = (U TY)(oj)>".
J J

A PTV is said to be weakly additive if WV O,

( LaJ ’h’)(o+a)> "= .

LEMMA An additive PTV is weakly additive.
NASAANS

[Fix a double cone D € ¢) and choose a poirt x;€ 0 -- then

D C \~J (O+a),
aG?ID



where a runs through all d-x (d=x0+(d4x0)). This guarantees that

0

k) (O+a)

aGEID
is bounded. In fact, ¥ x€0 & V d€D,

fx + all

“ X + (d"xo)”
Z Aixil + tall + =yl

which is uniformly bounded in x and d. Therefore

™ (D) < M ( U (,o+a)>

aeID

=< U YY)(o+a)>".

aEEID

But of) is final in @ , hence
™ = (U (D) > "
D

C(%} ( U m(o+a))">"

aGEID

(U mew ¥

= (U YN (0+a) > "

< m
(Laﬂ‘mma) ) =M .1

Remark: Suppose given a weakly additive PTV with a unique

vacuum -- then we shall prove later that V a,



lo.

() M) = cI.
0 2a hiad

[Note: The interpretation of this fact is that there are no

nontrivial observables at a point.]



Edge of the Wedge We shall need the generalization to several

complex variables of the following standard statement from one complex
variable.

Rappel: Let

D+

{z: |z|<1 & Imz>0}

D =f{z:121<1 & mz<o}.

1y +
Suppose given two functions {f_
£

+
holomorphic in.{D_ having continuous
D
boundary values at real points |x| {1l and that these boundary values

coincide -~ then J a function f holomorphic in { z: {z{ <1} such that

£]lD = f

fip =£f .

' Extensions of this result to several complex variables are called
edge of the wedge theorems.

Notation: Let CC;E? be a proper convex open cone with apex 0,

T (C)

n .
R +Y-T'c

the tube based at C.

THEOREM Let
NAANAAANNAN

B = {zé(f%llzll( 14
Y

and put

B NT(C)

1 Q-+

w
Q
I

BNAT(-C).



2.

+
BC

+
Suppose given two functions -{f_ holomorphic in ' having
f -

Ba

continuous boundary values at real points [lxl| < 1 and that these

boundary values coincide -- then d a complex neighborhood~Yl of
[l x11< 1 and a function f holomorphic in Y] v BékJBE such that
+ _ o+
fIBC—f

f\BC=f .

Remark: In one dimension, take

C ={y:y>05.

Then
+ +
BC =D
BC=D

and the role of Y] is played by D itself.
Application: Suppose that F is holomorphic in B OT(C). Suppose

further that

lim F(x+V-1y) =0 ( [IxIlI<1).
y —0

Then F=0 in B (\T(C).

[Define a holomorphic function G in BNT(-C) by

G(x +VY-1y) = F(x -V-Ty).
Obviously,
lim G(x +¥-1y) =0 ( |Jixll<1).

y—~> 0
y€-C



So, thanks to the edge of the wedge theorem, there exists a function
P holomorphic in a complex neighborhood Y] of |lx||l ¢ 1 which is an
analytic continuation of F. But
hxll < 1= @(x) = lim F(x+Y-Iy) = 0.

y— 0

vyE C
Therefore $ = 0 => F = 0.1

[Note: The last step uses the identity principle from several

complex variables: If f is a holomorphic function in a domain D
which, together with all its derivatives 3“ f, vanishes at some

point poe D, then £f =0 in D. Corollary: A holomorphic function

that vanishes in a real or complex neighborhood of a point of a domain
must vanish identically in that domain.]

Here is an example. Let U be a unitary representation of\B}’d
on a Hilbert space o€ with the property that the spectrum of U is

contained in V+:

S V=T <a,p>
e d

U(a) = E .
(a) J b
Ve
Put
V-1 <th>
U(z) = e dE_,
o P
V+
where
z=a+VY-1b € Rl'd + V-1 v .
ey +
Since

V-T'<z,p> V-1<a,p> =-<b,p)

e = e e



and

bE?V+

— =><b,p>> 0,
the integral exists. This said, ¥V Y E¥¥Y ,

V:f<ZI'P> 2
[ 16 |

Huz ¥l 2= A<y E Y
V+
-2<b,
< S e p>c1< Y B, WD
V+

a<y B ¢y = Nyl

i~
< e—

-+

thus JJU(z)|]] £1, so U(z) is a contraction.

LEMMA We have
NN N
lim U(a + V-1 b) = U(a)
b—> 0
in the strong operator topology.
[For any W € )¢ ,

Nua +V-I'b)y - u(a) ¥ || 2

5 V-1'<a+ V-1'b,p> \f‘T(a,p) 2
le -e |"a ¢ Ve, ¥ >

V—"_l|<, - bl 2
= Sle ap>(e< p>-1)l alV¥ ,E V>
v



But

and for fixed p,

Therefore, by dominated convergence,

) . —(b)p) 2

bJ.lmO j j1 - e | d<‘{),Ep\y>=0,
— —
v

from which the assertion.]

Now fix W,QOGH and A € D (3¥¢). Let:

£y, a(?) =<{Y ,U(z)AQ0 > -

1

. C s 1,d
Then f‘P,A is holomorphic in R

rd + V--l'V+ and continuous on\E{ +

vV -T v, U0l ):

r———

qu,A(a) =b{_—]:_;no f\]/,A(a +V-1 b).

Suppose that 3 €>0:

I all< g = fq,,A(a) = 0.

Then
£ (z) =0 V zert'd 4 VI'v
L'/,.A \Any +
=>
3 1,4
fw'A(a) =0 V¥V ae€r .



Reeh~-Schlieder Suppose given a weakly additive PTV -- then V¥ O,
YN(0) QO is dense in §f .

To prove this, fix OO and € > 0:

0y +2 CO Ya: Jlall <& .

Consider any W e€d¥: ¥ L M(O)QO. Given M, € m(OO), form
f,q},M0 (z) =<V ,U(I,z)M;<2 > .

Since

U(I,a) M (0y)u(T,a) "t

= Yﬂ(00+a)
 mo),

Va: “a”< & r

: -1
fW'M()(a) LY /U(I,a)My U(I,a) "Ly >

=0

f.ler0 (a) =0 V¥ a.
I.e.: Yas&s VM €M(Oo+a),

<W IMQO> = 0.
But, by weak additivity,
(U o) ) T =M,
a

so ¥ M€EwWM,
Y My H=0



= Y=o,
mﬂo being dense in 3¢ .

L =

Remark: S]_O is separating for M (0). Thus choose P:0C P
OLP = Y0) T M (P)' (cf. PT,). By the above, (1.0 is cyclic
for YN (P), hence separating for YN (P)', hence separating for T (0).

Example: Let E0 be the orthogonal projection of 3¢ onto C f?o -
YWy

then E £ Y (0).

[In fact, E, € TL(0) =>1I - Eq € MUO) & (I-Ej) (2 y = 0 =

0
I-E; = 0 =I = E,-]
. s 1 1,d 1 d, .
The restriction of U to R™ (R = R"X R") is the one parameter
YA AAy A wv
group of time translations, hence by Stone, U(t) = e V-1 tH, where

H is positive and selfadjoint, the energy operator.

Definition: ¥ 0 € ¥? is analytic for the energy if ¥, is an

analytic vector for H.

[Note: Therefore ¥ 0 € Dom n Y n and
H

2 HY T, |

n=0 n!

t? < + 00

for some t >0.]
Example: (20 is analytic for the energy (in fact,I{CZO = 0).

The foregoing can now be extended: If @EO#O is analytic for the

energy, then V 0, ¥ 1 meo) ¥, = YL MT,, hence Yo, M) ¥ 0

is dense in X provided that the vacuum is unique (so Y= (3 (¥ )).

N
Remark: Suppose that fE?ngﬁ) and spt £ is compact =-- then



XA A
S f(?\)dE%
0

X ® Vo1t
= 5 S e f(t)dt> dE?\
0 -0

0 00 Y-T tA
y f(t) <\( e dE?\) dt -
20 0

A
f (H)

1l

28]
S f(t)U(t)dt.

- 00

N
and: ¥V V¥ € ¥, £m) VY is analytic for the energy.

LEMMA In the weak operator topology,

WVAANANAN
-tH
lim e = Eg-
t— + 00
[First, ¥V A >0,
Y 1 (A=0)
e —>
0 (A>0)
Therefore, Y X,¥ GM,
~-tH 0 _tA
{x, e vy = S e d(X'EAY>
0

oD
-~ 50 Xgop a<m,y>

= <x,E0y> .1



The Intersection Property Suppose given a weakly additive

PTV with a unique wvacuum -- then \/ a,

M YY1(0) = CI.
03a i

To prove this, fix a and put -
1/, 2 + begatt}

L s =1vegh®: o+ et oty

Vg
Then
s, = U So-
02a
Take now an M€ () YN(0) -- then
0>Da
* —-M*
M=MEM -1 M-M ,
2 2Y -1

so we can suppose that M is selfadjoint. Let
Fy() = <L1,,MU(I,b)M >
where b €S_. Since M € YN) (0 3a), ¥V be So*

U(I,b)MU(I,b) "t € M (0+b)
. i
C iint O )

-1

M-U(I,b)MU(I,Db)

= U(I,b)MU(I,b) L-M

Fy(b) = <O.0,MU(I,b)M Q2>



2.

-1
<Q0,MU(I,b)MU(I,b) o>

1

<€L,,U(1,b)MU(T,b) MY o>

(QO,MU(I,—b)M Q>

i

FM(—b).

But S, = U s

hence FM(b) = FM(—b) Y b€s_, a relation which
032a a

OI

obviously persists to Sa' Let

_ 1,4,
W —~{vv€&i : lwg | < leI_}.
Then
WCSa:>WCSa.
=2 =2 = .
Fix we€W:wa =l w 1° (w,#0) and write
0 ey 0

d(e) = FM(thr) (t €ER).

On the basis of the definitions, it is easy to see that the Fourier
transform of t— ¢(t) has its support in V; and the Fourier transform
of t — $(~t) has its support in.G;. Since <¥(t) = < (-t), the usual

argument implies that ¢ (t) is a constant. Therefore
<€ MU(T,EWM >

<M QO,U(I,tV_V)M Q2y> = <Q0,M2Q 0>

CMQ M) >

”MQO H ° ” MQQ”



= HuQ 1 -1 v, enug |
U(I,tW)MQO =C. MO, —;ict)

ML, ULt M2 ) >

<M. MDD

c, < M2 4,ME2,

<M, M2y

C. =1 Y t

U(I,t'sz)MQO =MQ Y t.
Finally, for an arbitrary x€ §f ,

lim <x,U(I,t§)MQO>=(x,EOMQO>

S ——

t—> + 00

CxMQO>=<x,E; MOy S
= M-Qk-o=Eo M2

= M0, =XQMQ,>0,
= M=<QO,MQO> I,

€2, being separating for m(o).



Remark: The fact that ‘#(t) is a constant can be established

by using complex variables. To see this, note that
j V-1 t<{w,pd
$t) = e A<M OB MO > .

Vi

since <W,p> 20 VY peV,,

S e—V:Pt<§4§

P(t) ACM OB MO o>

<l

+
$b-t) = d(e).

Moreover, 4>(t) can be analytically continued into the upper half plane:

l

V-1 z<w,
4>+(z)=§ e #eMED

Vi

d<MK2y,E, MY o> (Im 22 0).

Since 4>+(z) is continuous on Im z > 0 with boundary values +(t), the

Schwarz reflection principle implies that the prescription

$_(z) = b, (2) (Imz<0)

is an analytic continuation of ¢.+(z) into the lower half plane. The

resulting function is bounded and entire, hence by Liouville, is a

constant.



Wightman's Inequality Suppose given a weakly additive PTV,

where YY) is not abelian. Fix O,P:
0 C P and dis(0,fr P) > O.
Then YY) (0) is properly contained in YN (P).
To prove this, we shall argue by contradiction and assume that

™M (0) =YN(P). Choose & >0:
llall< &€ = 0+acp

=> YN)(O+a) C 1N (P).

Take any b: bl <E§ ~-- then
M (0 +a+ b) =U(I,b) TM(O + a)U(I,b)'1
C u(I,b) M(P)U(I,b) *
= U(I,b) YN (O)U(T,b) T
= M (0 + b)
c M(p),
from which, by iteration,
n
m (o + k%l a, ) cme lla ll <& ,k=1,...,n),
so Y ae&l,d'

M + a) € M(P)

U Mo + a) < M(p)

a



2.

™ :<(a) TY)(O+a)>" < M(p)”

= ’YY)(P) <m

M) =m .

On the other hand, Ja:o+a Lo (choose a spacelike with |l all >2 0),

thus, from PT2,

™M@ + a) < M(o)".
But

U(I,a) N (0)U(I,a) "t

1

il

U(I,a) ! U(I,a)

i

m (U(1,a) € V) )

mcwm:.
I.e.: YY) is abelian, contrary to assumption.

Here is an application: Each TN (0) is infinite dimensional

provided that YY) is not abelian. Suppose false: 4 0: dim IM(0) < + oo .

Choose 0, D 0

1 2:3 --.:o‘DOn‘v’nand dis (0

ns1sEC 0) > 0 -- then YN (O.)

is properly contained in Y (0) Y n, hence
dim Y1 (0) >dim W) (0;) » dim M(0,) ---,
and this is plainly impossible.
Therefore Y not abelian => dim ¥ = +00. If in addition, our
weakly additive PTV has a unique vacuum, then Y= B(df ), so under

these circumstances YY) is not abelian if dim P»{ >1 and the Y7 (0) are

necessarily infinite dimensional.



V-1 tH

A Theorem of Borchers Suppose that t —> U(t) = e is a

one parameter unitary group, where the generator H is nonnegative:
H> 0. Let E,FE€ M (9f) be projections with EF = FE = 0. Assume:

3 £ >0 such that |t| < ¢ =>

U(t)EU(-t)+F = F-U(L)EU(-t).
Then VY t,

FU(t)EU(-t) = 0.
To prove this, introduce

e " rut)EU(-t) e E.

Due to the assumption on H, e is invertible and its range is dense.

Given VY € W , put

£y (8 =<Y e ™ rut)EU(-t)e Ry >

our objective being to establish that f‘P is identically zero.
We may assume that € = 1. Since

SCO eif:f z A

U(z) = 4ar

A
0

is holomorphic in Im z >0, the function defined by

Y. e Fruz)Eu(-20e™ ¥ D> (0<Im z< 1)

f.\l, (z) =

LY, e Mu(z)Eu(-2)Fe ¥ >  (-1<Im z <0)

is holomorphic in the unit disk and vanishes at the origin (the
boundary values coincide at real points | x| ¢ 1 and

U(-z)e H Imz¢1

is holomorphic in ). Fix §>0: 0< § < 1/2
e Mu(z) -1<Im z



and for n>1l, put-

/g ?ig,(Z;h)

\@' (z;h) = <V,e Hu(z)E, ---E, U(-z)Fe B WS> (-l<¢Im z <0).
y hy h_ =

1l

<‘W,e‘HFu(z)Ehl---Eh U(-z)e @ Wy (0<Im z<¢1)
n

Here h=(h;,...,h ) (lh;|< § & hi;éhj (i#3)) and E_ =U(h,)EU(-h,).

i
Obviously,

lim ‘é(;, (et V=T y;h) = Lim B (x+ V=T y;h)
y—>0 y—0

y>0 y <0

provided ix! < 1- § . Therefore the function

@fv (z:h) (0<Im z ¢ 1)
D (z;h) =
Y

§’~V (z;h) (-1 <Im z <0)

is holomorphic in }z | < 1- 8§ . An easy calculation shows that

® (zi-h;) =0

(i=1,...,n),
b 4
thus
7§q}z;h)

n

TT (z+h,)

i=1 1
is also holomorphic for lz|< 1-& . sSince llu(z)ll £ 1 and
lz+hi| > lzl - |hi[ > 1-§ -§ =1 -28§ if lzl=1-68 , it follows

from the maximum modulus principle that

n
1L 1 , . 2
| Byt im e —2— (TT Jzeng] ) - NIl



if Yz} € 1- S . Now let & =0 to get

ey @1 £ 121" lwl? (z1< D).

But n is arbitrary, hence £ vanishes identically in the unit disk.

4
0 S Im z <1

Finally, f\P is actually holomorphic in less
-1 < Imz<0

]-e0 ,-11 U [+1,+00[, so fly vanishes identically in this region as well.
Therefore

0=fy (cxV-T0) = £, (1),

from which the result.
Remark: This proof makes no use of the assumption that E,F € D (3¢)

are projections.



with a unique vacuum.
The Schlieder Property Suppose given a weakly additive PTV A

Fix O,P for which 3 €E>0: {lall<& => o0+ al P. Take nonzero

projections E € YY)(0), F € ™M(P) -- then their product EF is nonzero.
To prove this, assume instead that EF=0. Consider the one
parameter group of time translations: U(t) = e -1 tH. Since H is

> 0, Borchers theorem is applicable, thus V t,
FU(t)EU(~-t)=0
or, since the situation is symmetric,

EU(t)FU(-t)=0

EU(t)F=0

=
A
Ef(H)F=0,

A
where fElLlﬁg) and spt £ is compact. Choose 1VO:F\P 0#0 and choose

A A
f:f£(H)F Y 0740. Put V¥ O=f(H)F ‘Fo -- then ¥ 0 is analytic for the

energy and E §0=0. But ¥ o is separating for M (0), hence E=0, a

contradiction.

[Note: The Paley-Wiener space contains an approximate identity

FaS ;
(i.e., 3 (£} :f, —> ), thus £ (H) = I weakly, so Yy,

Y '€yl , we have

A
CE MY, ¥y
.o
= S £ <o)y , ¥ 'y dt
- 0

-—><U(O)\]/I 2 = <l’1'\‘l'
= an‘: \} > >

LMY A0 (¥ #0).]



with a unique vacuum.
The Borchers Property Suppose given a weakly additive PTV A

Fix O,P:

OC P and dis(0,fr P)> 0
and for which 3 Oy

1
0, <0 M p.
Then ¥ nonzero projection E € YM(0), 3 a partial isometry V € YY) (p)
such that V*vV = I & VV* = E,

Remark: If O,P are both double cones, then

O C P and dis(0,fr P)> 0

= 300:0 co"m P.

0

In fact O, being a double cone, is connected with 0" , i.e.,

— = —1 -1
o N0t # @, hence (see the causality notes) (0) N\ P#@g. But (0)

. = L iR

is open and (0)" N PC O~ ) P, so we can take

0y = o)y N p.

Rappel: Let V € 03(3€¢) -- then V is said to be a partial
isometry if J closed subspaces 3{' and 3pf " such that V restricted
to ' is an isometry from g{' onto 3¢ " while V restricted to 34'1

vanishes identically. One calls §f¢' the initial space of V, 3¢ "

the final space of V. The adjoint V* is then a partial isometry

with initial space ¢ " and final space p{'. Moreover, V*V is the
orthogonal projection of d{onto p{ ' and VV* is the orthogonal
projection of §fonto y{ ".

[Note: Any one of the following conditions is necessary and
sufficient that VE€® (3¢ ) be a partial isometry: (i) VV*V=V;

(ii) V*V is a projection; (iii) V*VV*=V*; (iv) VV* is a projection.]



LEMMA (2 . is cyclic for M(P)' and E() , is separating for

m(p)"'.
[According to Reeh-Schlieder, QQ.O is separating for YW)(P),

i.e.,ﬁ),o is separating for (™M (P)')', hence is cyclic for N(P)'.

Fix 0,:0,C 07 M B =y M(0,) € M(0)' & M(0)) © M(P). Suppose

that M'E $1 /=0, where M' € ™M)(P)' -- then VM € W)(0,), M'EM (2 ;=
M'MES) = MM'E 2, = 0. But {2, is cyclic for Y1(0,) (Reeh-Schlieder

again), so M'E=0. Therefore M'=0 (apply the Schlieder property),

which proves that E:Clo is separating for YN(P)'.]

[Note: Since E € IT)(0) < Y (P), we have M'E=EM', hence M'E=0 =>
EM'=0. This said, to draw the conclusion that M'=0, look at the
argument used to establish the Schlieder property. Here, || all <& =

O+ aCP =>U(a)EU(-a) € M (P). In particular: |t <& =>

U(t)EU(-t) € YW(P) => M'-U(t)EU(~t) = U(t)EU(-t)-M', which sets the
stage for an application of the Borchers theorem.]
—
Define now a positive linear functional on YN(P)' by the
prescription
M'— <EQ MEC2,>.
Because

<{EQyM*M'EQ2 4
=<{M'E CQLgMEC2,S

>0

if M'#0, this functional is faithful (by the lemma, E.flo is separating

for (P)'), so 3 a vector 4’0 cyclic for WXP)' such that ¥YM' € T(p)',



<EQOIMlEQ0> = <WOIM'W0> .
Definition: Write
L] — )
'Y= MEQY .

[Note: This makes sense. In fact, M' Y 0 =0 = <I§§10,M'E£70‘>=

0 =>M' = 0 (a faithful state is injective.]

To see that V € M(P), let N' €M (P)' -- then N'VM' Y , =
N'M'EC],O. On the other hand, VN'M' V¥ 0= N'M'E flo. Therefore
N'V = VN' => VE (Y)(P)")' = WM(P).

V*V=I: We have

<VAvM' Y o Nt Y S
= <VM'EQY /N W >

{M'E QO,VN' R 2P

< M'E L,/ N'E Q24>

CEQ M *N'EQL >
= <YM Y,

<M"Y /N Y 5 >

V*V=1I.
VV*=E: We have

VAVM' o = VEM'E £2

M'\}IO

VVAM'E Q) , = VM' Y o = M'EQ) .



VV*EM' €2 = EM' (2

0 0

=

VV*E = E,
@] 0 being cyclic for YY)P)'. Since V is a partial isometry, VV*

is a projection, thus

E £VV*,

To establish equality, it suffices to show that the range of VV* is

contained in the range of E or still, that EVx = Vx Y x E}Q . Indeed,

EVM' Y 4 = EM'E Q2
= M'EZQO
= M'F Qo
= vM' Y,

=

EV = V
=>

EVV* = VV*
=



Simplicity of the Quasilocal Algebra Suppose given a weakly

additive PTV with a unique vacuum -- thén the quasilocal algebra
0t =c* (UmMon
0

is simple, i.e., has no nontrivial closed ideals.

Thus let D £ 105 be a closed ideal of 0L , m : 0OL— 01 /9

the canonical projection.

LEMMA 30, 9 0Mo)# 05 .

AAAAAAY

[Assume the opposite -- then VY 0, the restriction of T to
YY) (0) is one-to-one, hence isometric, so by continuity, i1 is an

isomorphism, which implies that59=={0} , a contradiction.]

We can, of course, take the O of the lemma to be a double cone.

This done, fix another double cone P:
O0C P and dis(0, fr P) > 0.

Choose a positive selfadjoint M € < N M(0):

I mil
g A dE?\ .

M=
0
Consider the projection
11 mi)
E = dE% (&> 0).
3

Since E € YT) (0), 3 a partial isometry V € YY1 (P) such that V*v=I

& VV*=E (Borchers).

LEMMA We have M> £ E.
LEMMA 2



[In fact, ¥V Yy GB“Q '

N mi
CEAD =j A A<y B,
0

& Al M|
- | aacyEws +j A A<y JE, ¥

&
0
M
pd 5 AA<Y LE, WD
€
(1Ml
> E‘g‘ ad vy IECA\V:>
€
=€<.\'}/ IE\F> = <1}’IEEW> .
Accordingly,

V*MV > € V*EV.

But
VV* = E =) V*VV* = V*E
=> V*VV*V = V*EV
=
I = V*EV.
Therefore

V*MV > £ I,

which implies that V*MV € < is invertible. But this means that

S =0,



The Totality Lemma Suppose given a weakly additive PTV with a

unique vacuum. Fix a nonzero projection Eq €YN (OO) -~ then the set

2 U(T,a)EgU(I,-a) Y : aevgl'd, e s
is total in Y.

To prove}this, put U(a) = U(I,a) and suppose <'\y0,U(a)E0U(-a)‘\'/>
=0 Ya & VW -- then we have to prowe that \YO = 0 or, recast, we
have to prove that E_ Y, = 0 Ya => IPO = 0, where E, = U(a)E,U(-a).
Let P, be the orthogonal projection of ¥ onto {\{/O:Ea ‘lyo =0 Va } .
Fix O0: 3 € >0 for which Wall<g => O0 + al O -- then

EM = ME_ (M € YN)(0), Jall<ce .

Let P be the orthogonal projection of b-?onto Tﬂ(O)PO}Q . Obviously,

Hall € & = E,P = 0, thus by an analytic continuation argument,

E,P =0 Ya, so PﬁPO. On the other hand, it is clear that P, <p,
Therefore

P = PO.
But P € YYXO)'. 1Indeed, m is invariant w.r.t. Y)(0), hence

% M € YY)(0), MP = PMP => PM* = PM*P. Since YJ)NO) is generated by
its selfadjoint elements, it follows that YM & (0), MP = PM, i.e.,

P € M(0)' or still, Py €EYY)(0)'. To finish the proof, we shall show

that P, = 0. First, EaPOQO = 0, hence VY a#0,
0 = <Q01EaP0 QO >

=<2, V(@B U(-a)P, 2 ) >



=< EOQO' U(—a)POQ0>

o
n

lim <EqQq- U(--ta)P()(20 >
t—>+ 00

< By, <C2iPp0Q0> Q24>

<$24:2020 > CEpLp 24>

2 2
2,2 1 2 el 2.
But EO#O => EOQO#O,QO being separating for m(OO) . This means
that POQ0=O. But QO is separating for YN(0)' (being cyclic for

YN(0)), which implies that P, = 0, as contended.

0



Uniqueness of the Translation Representation Suppose given a

weakly additive PTV -~ then PT3 provides us with a unitary representation

U of 6’2 on of such that

1

U(A ,a) MIO)U(A,a) T = M ((A,a)-0),

where
spec(U | RV < V,.

Question: Does the assignment O —> YY) (0) determine U uniquely?
While the answer in general is "no", what can be said is this: The
restriction U,‘E}'d is unique.

The proof depends on the following considerations.

Definition: An inner symmetry of a PTV is a unitary operator

T : 3¢ 53¢ such that 582, =2, and

s Mo)3 "t = M) Vo.

L V)

Example: LetUl,U2 be two unitary representations of (P:\on P4

Ul | R
attached to a PTV. Consider the restrictions -- then for
1,4
U, I B
any inner symmetry §,
A Ul(I,a)S U2(I,-a)
is again an inner symmetry.
THEOREM Suppose given a weakly additive PTV -- then every inner
VNN
v, | BHO
symmetry 5 intertwines i , i.e., Y a,
u. | R1,d



U, (r,a)3 = 3 u,(1,a).

Application: Choose § = I to see that VY a,

Ul(I,a) = U2(I,a).

To prove the theorem, take an fEELlQE}’d) and let
A= 5 f(x)Ul(I,x)S'UZ(I,-x)dx.
Rl,d
Y
Write
) V-1 <XIP>
Ul(I,x) = e dEp
Rl,d
Y -1 <x,q>
U, (1,x) e aF

§m = §

and, ignoring constants, put

ol V"1<XIY>
f(x) = e f(y)dy.
Rl,d
A
Then
Il feaas,sa
A= - B F
(p-q) pEI q'
fo
where

—_— —_— A
A=Y@ PeV,,qeV, p-a€spt T §.

(B) Let

N
B(q) S f(p-q)dE_,

p
& (B)



where
. —_— Fal
A_(8) =} p:peV,,p-gespt f }.
Then
A= j B dr .
(@) 5 q
A1,f
Here
A — — A
1,f = V+ r\(V+ -spt f).
(C) Let
A
C(p) = f(p-q)qu,
A .
f(C)
where
—_— Fal
he(o) = 1q:qeV,,p-q€spt £ §.
Then
A= j dEpS‘C(p).
FaN
2,f
Here
A=V OW A
2, = Va1V, + spt £).
Given Ml'MZ Ean(O), introduce
_ -1,
_ -1
= <M{Qo.3y U (I,x)M, 2 o>
and

-1
Fplx,y) = (€2 03 (T, x)IM0) (I,-x) 5 M5 "€ >

=<M§Q0,Ul(1,-x) 3 M Q_O >



Now multiply through by f(y) and then integrate w.r.t. y. After

some manipulation, we f£ind that

Fo(x;£) = 5 F,(x,y)E(y)dy
1,4

s

j Y-1 <x,p> -1
e | {MEQY f E(y)S " dyaE M, (2,5
v

1,4
+ X
and
Reuf T | menEmay
5},d
V-T'<x,q>
= f e My (10,dE__q f f(Y)’SydyMlQ())
3 glrd
or still, VT <
-1 <x,p>
Fl(x;f) = 5\ e Ml'f(P)
?a-
and —1
-1 <qu
v

where for Borel sets A :

Aqete =gy, | s 3ot ey e, Q>

and

Ay el =Ky Qe o) [ s s am >

Using the formulas for A in terms of B and C, it is not difficult to



check that
spt pfay ¢ © D ¢
SPtAn , £ C -h, ¢

At this point, £ is an arbitrary Ll—function, a fact which we
shall take advantage of in a moment. But first let's indicate how
the proof of the theorem is going to be concluded.

The function

Yy > <MEQgr SM 4>

= M3 €2,,Uy (I,y) TUL(I,-y)M; 2 o>

is bounded and continuous, thus defines a tempered distribution T.
The machinery developed above will then be employed to establish that
the support of ¥ is the origin, so ¥ is a finite linear combination
of derivatives of the Dirac delta. Our function is therefore a

polynomial in y, hence is a constant (being bounded). I.e.: ¥ vy,
<M§Q0,Ul(1.y)3 UZ(I,"Y)MlQ 0>
=<ME Qo SM; C24> -
By Reeh-Schlieder, the Mé-clo are dense in §{ , hence
Uy (I, ) 3UL(T,-IM; Q2 5 = T M (2.
But again by Reeh-Schlieder, the Mlﬁizo are dense in Q¥ , hence

Ul(IIY) g Uz(Ir—Y) = S

or still,

Ul(IIy)S = 3U2(IIY)I

as desired.



[Note: O will be suitably specialized below.]

Consider now any double cone

D(a,b) = Vv _(a)NV_(b) (bevV (a))

subject to

0 £ D(a,b).

A
Work with any f:spt £ CD(a,b). Recalling that

Ve
|

— — A
1,£° v, r)(v+ - spt f)

—_ — N
A2,f = v+ﬂ (v, + spt f),

we have
6, v, N{Y, - Da,p)}
=V, NV, (by) (b, = -b)
and
- b, ccV_N{V_ - Da,n}
=vV. AV (ag) (ay = -a).

In this connection, note that

-D(a,b) = V_(-a)f]V+(—b)
= D(bo,ao).
Therefore
SPt Acp e © D g © Y, (@)
@EMz,fC'Az,fCV— (q_).
where

Vilay N v _(q) = 8.



Picture:

The last step is to select O judiciously. Start by choosing
a double cone D centered at the origin and then take for O a double

cone DOCD: (D0 + x) _LDO Y XGDL.

Picture:




Since Sy is an inner symmetry,

-1 _
sym(o)‘sy =M (0)

-1
5yM15y €M (0) VMl.

On the other hand, VXGD‘L ’
Uy (I,x) M(0)U; (I,-x) = YN(O + x)

and, by construction, the elements of YY}(0) commute with those of

™M (0 + x). Therefore
‘SM'—l-U(Ix)MU(I-—x)
v13y 1 Xy

- ) . -1
= Uy (I,x)M,U; (I,-x) "SyMlsy
a

4 1
Fl(x,y) = Fz(x,y) (x€D 'YER ™

Fl(x;f) = Fz(x;f) (xEDl).

Let
/‘*f(ﬁ) =/~41'f(l§) —/qz'f(A)
F(x;f£) = Fl(x;f) - F2(x;f).
Then
'—1<le>
Fix;f) = e d/u\f(p).

Rl,d

A el



Moreover,
F(x;f) = 0 (xX€ Dl')
and

sptm .V, (@)Y V_(g).

V-1 <X,P>
F(x) = g‘ e d 1 (p)

be the Fourier transform of a complex measure s« of finite total

variation with

sptm < vV (g )V V_(q).

Assume that

F(x) =0 (xeDL).

Then
Aa = 0,
Accordingly,
M= 0
-
Ma,E T,
=

‘/Al,f = 0 &/V‘Z,f = 0,
the last step because the supports of_AAl £ anduA«z g are disjoint.
1 4 I

In particular:

1,d

WAA

0 =,A«2'f( )



10.

= <M Q, f £(y) 5 Ay >
Rl,d

LYY

y £(yY)< M5 Q2 ,0; (T,y) 30,(I,-y)M; €258y
7lrd |

N

LT, ES .

o0
Suppose that 4’€Cc (y{idl’d— {O} ) is arbitrary. Choose D(a,b):

spt #C D(a,b) (0€D(a,b)) (this is permissible (use a partition of

N
unity argument)). Write &= £ -- then

T, > = <, 4\;>
= <T,g\>
= (T,f )
= 0

=7



Inner Symmetries Suppose given a weakly additive PTV -- then

the gauge group G of the theory is its group of inner symmetries, i.e.,

the unitary operators S: E—Q*-—? M such that SDO = QO and

SM@3 "t ="o) Yo.

~4 .
Rappel: Let Ul’UZ be two unitary representations of C?+ on o
Ul'Bg,d
attached to the theory -- then every 5 € G intertwines ; i.e.,
Uzlgj'd

Y a,

Ul(I,a)s = SUZ(I,a) .
Taking 5= I, it follows that
Ul(I,a) = UZ(I,a) Y a.

However, it need not be true that

v (R,a) = Uy (A,a) Y (A,a).

Definition: G is said to satisfy the gauge condition if G is

compact in the strong operator topology and commutes with the U(;<,a):
SU(A,a) = U(AN,a)5 (S € G

for any U fixing.glo such that

U(R,a) MOU(A,a)"t = M((A,a)-0) VY o.

Remark: There are conditions which guarantee that G satisfies

the gauge condition, one being the split property: YY)is not abelian

and ¥V 0,P:

0 CpP and c_’ii'._f,(O,f_]_: P) >0,



Ja type I factor between YN(0) and YYV)(P).

[Note: Recall that YNN(0) is necessarily a proper subset of
T (P).]

LEMMA Suppose that G satisfies the gauge condition -- then U
AN
is unique.

[Given U, ,U fixing,f)0 such that VY 0,

1772

U, (K ,a) MOV (A,a)7 = M(A,a)-0
A4 (;<,a),
U, (K,a) MO, (K,a) = M(R,a)-0)
it is clear that
-~ ~ -1
Ul(f\ra)Uz( /\,a) G G.

This said, define a unitary representation U of (?.I on ¢ by
(R,a) = U (N,a)U, (A,a) 7.

Thus, on the one hand,

UC(A ,a)) (K,.ay))

(CA-,a1) (A U (( Ay ras) TN )71y
Uy LUA 3y 2132010, 27232 1731
= N u, (N YU, (AN y LU, (N a0 "t
= U3 (A1,27)0;IN5035)0, (N5 0a, 2Ny

while, on the other,
~ ~
U(A,a)U(A,,a,)
~ ~ -1 ~ ~ -1
= 0 (Rpap 0, (Rpap ™ (0 (R,,a)0, (K502 ™)

~ ~ ~ -1 N -1
Uy (R qeap) (0 0R,,a) U, (Ryray) 7 ) U, (R Lay)



Here we have used the fact that

~ -~ _.l
Ul(,\zlaz)Uz(/\zlaz) EGI

hence commutes with U2(7<l,al)‘l. It follows that U is indeed a

homomorphism. Recall now that the group of unitary operators on of
is a topological group in the strong operator topology. Therefore
G is a topological group. But G acts on 3f by itself: TT(3)x=5x (3 € G).

A
Accordingly)thanks to compactness,‘a cardinal numbers nTT(TTG G) such

>4
that 11 = Gah‘nﬂ'n . Since () + has no nontrivial finite dimensional
TEG

unitary representations, the action of (&

N~

4+ on each 7i is trivial. This

in turn implies that the action of C?:~on all of ¢ is trivial:
~/ ~ ~ _l
= I
=
U -\t

Remark: Since G is compact, the assumption that

Su(R,a) = BN ,a)5 (S € @)

is actually automatic.



Tools from Harmonic Analysis Let G be a LCA misedsan group, U a

unitary representation of G on of -- then the generalization of
Stone's theorem to G is the assertion that J a projection valued

A
measure E on the Borel subsets of the dual G such that V o € G,

A N
u(o) = <6 ,5 > dE(g ),
N
G
the spectrum of U being by definition the support of E.

Remark: Y fGLl(G), we have

5 £(5)U(g )as

G ;
_ g f(o‘)(j <o-,€>dE(§))ds-
G A
- f <X ()< 8 df)dE(cs)
A
G G
NOA A
- S £(c)dE(6) .
A~
G

Suppose now that JT) is a W*-algebra. Make the following assumptions:
(1) Vo€ 6 u(e)Mul(s)tcm
2) 3 0,€3 Q1 = 1):
U(g) D, =2 (6€6 s M2, =3t ;
(3) (spec U) N (spec u L =§g} .
Then it can be shown that U(G) C Y7 .
1,d

Example: Suppose given a PTV -- then YV a GB., '

U(I,a)M u(I,a) T <M .



By assumption,
1,4 -y
spec(UIVIEI ) C V+
=>
spec(Ul‘E,l’d) N —spec(Ulgj’d)

c V+n—v+=v+nv_={0} .

Therefore

Ug{j'd)c‘m.

®Returning to our W*-algebra YY), fix a unit vector QO ey? .

Definition: The centralizer M~ of M w.r.t. QO is
0

$aeM: <m0 >=<Q,Mma2,> ¥uEMY.
Supposing still that G is a LCA group and U is a unitary rep-
resentation of G on }Q , impose the following conditions on (M ,G,U, <2 0):
(1) QO is separating for YV} ;
(2) QO is invariant for G;
G
(3) ¢ 2y = ¥
- A
(4) (spec U) M (spec U) 1. {e };

5) ¢ = UL, where

o ={0€c: v(c ) MU(s)”

S ————————

levn ).

THEQOREM Under the preceding conditions,
WA NAA



3.
[LetAEYY)Q -~ then VG“G—J &§ Y ME), we have
0

<2, AU(o")MU(G“)'lQ()}

1

=L €2,,U(e)MU(6) A2, >

<Aa* ), UMDY >

= <M 2, U(6) A2, > .

Specialize and take M=A and A=A* (this can be done without loss of
generality; see below). Assuming that AQO Z0 (A QO =0 =DA =
by (1)), put

£(6) = {AL2,,U(6)a82,> (& €a).
Then

1

o€ of = £(6) =t(c"h.

put ¢ = A uf L, so

£y Veee.

f(o)

We have

| R N
£(6) = <AQ, 5<€.§>dE(€)AQO>
FaN

G
f <6, &> <A AE(5)A 02, .
N\
G

Here the assignment

O = (A E(AMAD DS

/\
defines a positive measure Anon G of total mass

<AQA0,>

0



with
_ -1
spt A1 = (spt &) .

But

spt a4 C spec U

=
spt 0 = {2}
= M = K 53 (K>0)
£(6) = j<o~,6~‘>dm(§)=K<c“,é\>
&
-
f(g) = f(e) Y o €c
=>

<20, U(6)A 0,

= <220, >
=lay ) 2
= a2 | - 1as2,
= lueraQoll - llaqy
=
u(e)AaC2g =c a2, (3Fc)
=

<AaQ,U(s)aT2,>

= <A§20,c<T A0, S



Cc' <’AS:)O'AC\)()>

n

{rA0 >

=)

c_ =1

(B
=
AQO = CQO (Jc)

=

(A—CI)QO =0
=

A-CI = 0
=>

m a, = CI.]

[Note: To explicate the detail omitted above, observe first

that A€ M =>2a*e M, : VMEM,
0 0

<A o>

=<AL2,,MC2 0>

=<M*A 2, 240

{€2,,M*A 0 >

{2/ AM* ) o
=<aM* (4. L2 >
=M QY 0, AFCY >

= <Q0'MA*QO>-



This said, write

A = Asa* o V-1Ya-a*)

2 2Y -1

= E + F.

Both E and F are selfadjoint and in.WY\flo, hence

E

n

CEI

=y A = (cE + CF)I.]

F = CFI

Remark: The case when G = %P can be treated differently. Since

QO is separating for YY) , it is cyclic for Yr}'. And: ¥ 6 € G,

Ue ) Mu(s) M =u) mute) P m.
Therefore
UG m'.

This in turn implies that

UeI)Mu(e) T =M ¥YMeEM" =

=>

U(,G)MQO = MQ_O
=

M = CI
>

YY):\EI
=>

m = CI.

Qo =

Observation: A consequence of the theorem is that 7Y) must be

= 1 B -
a factor. 1In fact, Z\m— mnam < on CI.



Projections and Classification In this section, we shall assume

that the underlying Hilbert space }Q is separable (but this restriction
is not essential).

Two projections E,F in a W¥*-algebra YY) are said to be equivalent

(written E~F) if 3 a partial isometry V € 1M1 such that E = V*V and
F = VV*,
double cones

Example: Suppose given a weakly additive PTV. FiXﬁP'P for which
32> 0: flall<& = 0+ acCP - then according to Borchers, hvd
nonzero projection E € YV (0), 3 a partial isometry V€ M (P) such that
V¥V = I & VV¥ = E. Therefore the nonzero projections in YY}(0), when
viewed in W) (P), are equivalent to the identity.

Define now a partial order on the projections in YY] by writing

EESF if E is equivalent to a subprojection of F (i.e., E~F'£LF).

LEMMA Suppose that E4F and FAE -- then E~F.
NVIAAAY

Remark: If Y is a factor, then any two projections in M are
comparable: E<AF or F4E.
A projection in Y1 is said to be finiﬁe if it is not equivalent
to a proper subprojection of itself; otherwise, it is infinite.
Example: Minimal projections are finite.
[If E is minimal, then its only proper subprojection is 0 and only
0 is equivalent ‘to 0.]
Facts:
(1) If E is finite and if E'4 E, then E' is finite.
(2) If E is infinite and if E'> E, then E' is infinite.
(3) If E~F and if E is infinite, then F is infinite.

(4) If E~F and if E is finite, then F is finite.



LEMMA Suppose that E and F are finite ~- then EVF is finite.
NN
[Note: This is the most delicate point in the comparison theory

of projections.]

Remark: If YY] is a factor, then any two infinite projections
in are equivalent.

Definition: YY1 is finite if all its projections are finite;
otherwise, YY) is infinite.
Criterion: Let YV ,Y)| be W*-algebras. Suppose that YYL C YL

is a proper inclusion. Leti?T)E‘be be cyclic and separating for

both YVl and YL -- then Y\ is infinite.

THEOREM Suppose given a weakly additive PTV. Assume: YY] is not
abelian -- then ¥ 0O, the W*-algebra YY(0O) is infinite.

[Choose OOCI(D: dis(00,§£ 0)> 0. Thanks to Wightman's inequality,
YYI(OO) is properly contained in YY](0). But, by Reeh—Schlieder,Qflo

is cyclic and separating for both algebras, therefore YV (o) is infinite.]

Terminology: Let YV be a W*-algebra.

(1) YN is properly infinite if all nonzero projections in 2

m

are infinite.

(2) YY1 is purely infinite if all nonzero projections in Y1 are

infinite.
[Note: Obviously, YN purely infinite =) YY] properly infinite.]
Example: Suppose given a weakly additive PTV with a unique

vacuum. Let W be a wedge =-- then it will be shown in due course that




YY)(W) is purely infinite.

THEOREM Suppose given a weakly additive PTV with a unique
AANAANAAA
vacuum -- then ¥ 0, the W*-algebra YY) (0) is properly infinite.

[Let EGEZWHW(O) be a nonzero central projection -- then 4 o.co

0
(OO#O) such that thé containment
MOHNIEW © MOIEH

is strict. Granted this, it follows that YN(O)|]EJ’ is infinite,
hence E is infinite (here it is necessary to observe that E,Clo is

cyclic and separating for both 'Yﬂ(OO)IEbf and YT} O)|Eo¢ ). To
establish our contention, let us suppose that the contrary held:

WﬂQ(OO)IEbQ = MO)E¥ Y 0, C 0. Obviously,

Lic ﬂ 'TY)(OO).

<
O0 O

On the other hand, in view of the intersection property, per any a€ 0,

M Mo, = cr.

0,C O
0,2 a
Therefore
m Y‘ﬂ(oo) = CI
0, 0O i
0
=->
M) |E] = CIIEH
=>
EX =ce2



which implies that E is one dimensional. But 3 a wedge W: OC W =
YN (0) C YN(W) and, as has been noted above, YY) (W) is purely infinite,
thus contains no finite projections. This contradiction establishes

the existence of 00.]

Let E be a projection in YY) -- then E is abelian if EYE is
abelian.

[Note: If E~F and if E is abelian, then F is abelian.]

Example: Minimal projections are abelian.

[If E is minimal, then each projection in EYY)E is either E or
0. Since EY)E is a W*-algebra, it 1is generated by its projections.
Therefore EYY E consists of scalar multiples of E.]

Fact: An abelian projection is finite.

W*-algebras are classified into types depending on the kinds of
projections which they contain.

Type I: A W*-algebra YN is of type I if each nonzero projection
in YY) majorizes a nonzero abelian projection.

" Type II: A W*¥-algebra YY} is of type IT if each nonzero projection

inYY) majorizes a nonzero finite projection but YY)} contains no nonzero
abelian projections.

Type III: A W*-algebra YY) is of type III if it is purely infinite.

LEMMA We have:

NAA AN
(i) Y} is of type I iff )' is of type I;
(ii) Y| is of type II iff YN\' is of type II;

(iii) YY) is of type III iff YY)' is of type III.

It is a fact that every W*-algebra YY) is uniquely decomposable



as a direct sum

™M=M;® M Py

of distinct types.

Each of the three types can be classified further, the focus
being on factors.

If YY)is a factor of type I, then YN is isomorphic to the algebra
of bounded linear operators on some Hilbert space. If that Hilbert
space is finite dimensional and of dimension n, YY) is said to be of

type I ; otherwise, YY] is said to be of type I,,.

The existence of factors of type II or type III is not obvious.
To begin with, a finite factor of type II is called a factor of

type IIl; an infinite factor of type II is called a factor of type ITyy -

There is also a further subdivision of factors of type III but we shall
put this off for now. Examples realizing the various possibilities
can be obtained by suitably specializing the following construction.

Let ¢ : G—> Aut YY] be a representation of G on YY) -- then the

triple {Lz (G; ¥¢), m ,U} implements X , where
TME(e) = (et (e Hme(o)

UGG )E(T) = £(o T T).

U(e) TMU(6) Lt = TT(k(e)M) (MEM, T € G).

Indeed,

1

(U(o") IMU(c) ~£) (T)

1

- (Tmu(e) ) (ot



6.

(o (T e)m wie™he (o7t

T)

(x(T YoM E(T),

while

(M (e IME) (T)

(A (T K(IME(T)

(o ( TremE(D) .

Definition: The W*-algebra generated by TI (Y")) and U(G) is
called the crossed product of YY)by G w.r.t. X and is denoted by
A (M,G, ).

Examples:

(1) et 3% = £2(10,11), ) = .990,1]), and G = Q -- then

NNy

G operates on [0,1], viz. x—> SL X+ o—% ( = the fractional part of
X +6 ). This action lifts to an action X of G on ¥ and QR (G,TV), )

is a type II. factor.

1
2 c0
(2) Let N = L°(R), ™M= L (R), and G = Q -- then G operates
My \any Ny,
on “li, viz. x—> x +6 . This action lifts to an action o of G on

Y and QA(G, YY), A) is a type II,, factor.
(3) Let 3¢ = L2(R), M = L®(R), and G = 2z KO, where (m, T)-(n, o)
AVV V] ety WY ey

= (m+n, 2“\7+=c) -~ then G operates on‘ﬁu viz. x = 20 x +6-. This

action lifts to an action x of G on YY) and (A(G, YV ,X) 1is a type III

factor.



Type III Recall that a W*-algebra YY) is said to be of type III
if it is purely infinite, i.e., if all the nonzero projections in TY)
are infinite.

Criterion: Suppose that JY) admits a cyclic and separating unit
vector QO' ‘Assume further that mQO = CI'and m #E'I -~ then M
is a factor of type III. |

THEOREM Suppose given a weakly additive PTV with a unique
MAAANNAAVY
vacuum. Let We€lJ be a wedge in M -- then YY)(W) is a type III

factor.

4

[Since W = (A ,a) W, for some (A,a)e @ _,

it will be enough

. 1,d
to consider WR( = {»xGM:lx()I(xlk ). Let a ={l,l,0,...,0} eva’ -
then

W + Na C Wy (A20).

This is because
Ixg + A1 ¢ lxg) + A<x +Q.

Now put

Owing to the unigqueness of the wvacuum,
dim §x € ¢ :U(I,ta)x = x YV t€R T =1
which implies that‘g,gio ='b€G. Next,

N2 0 =

1

U(.')\)m(WR)U(Q)\)— = Yn(wR+ A a)

- YY)(WR) .



2.

Furthermore, by Reeh-Schlieder, gﬁzo is cyclic and separating for

WW)(WR). Therefore

e

YY) (Wg) 2, = CI.

On the other hand, it is clear that YYKWR) #‘EF, thus ‘YH(WR) is a

factor of type III.]

Remark: Let YY) be a type III factor -- then one can attach to
YY) a closed subgroup {' (W) of R 4, which can be labeled by a

parameter A € [0,1]:

) A=0, F(m) =11} :
(A) 0<A<L, (M) = 4%

Ly A=1, (M) = 10, +ool,

YY) being called type III as the case may be.

0’ IIIA, or III

1

Example: WT)(WR) is a type 111, factor.

[Note: The details will be provided later on.]
Observation: Suppose that TY) is infinite and each nonzero

projection in YY) is equivalent to the identity -- then Y)) is type III.
[Fix E0 cEYN: EO infinite. Consider now any nonzero projection

EEM . We have: E~TI & E.~ I =) E~E

0 hence E is infinite. There-

OI
fore YY) is purely infinite, i.e., YY) is type III.]
Suppose given a weakly additive PTV with a unique vacuum -- then

T =P (3¢) is not abelian, so ¥V O, T(0) is infinite. Moreover,

™M(0) is "almost type III" in the following sense: Fix a pair



(P, &): laly ¢ € =70+ a CP -- then the nonzero projections in
‘YN (0), when viewed in YN (P), are equivalent to the identity if

O0,P are both double cones.



The Split Property Let E,F be Banach spaces, & :E—> F a

bounded linear transformation -- then ® is said to be nuclear if 3
sequences
je;f < B*
Zlncein -yl < +00
¥y c
such that

Ox) = 2 @;(x) Y, (x€E).
1

The nuclearity index of ® is then

N@IL = inf  Z llesn - NVl

where the inf is taken over all such realizations of @ .

Let Yn be a W*-algebra. Suppose given a selfadjoint nonnegative
operator H which admits 0 as an eigenvalue of multiplicity 1, say

H,f10 =0 ( ||§)ol) = 1). Suppose further that {2, is cyclic and
separating for YN} .

Definition: The triple ('nQ,Ierlo) satisfies the nuclearity

condition if ¥ # > 0, the map

®ﬁ= m — ¥f

M- e pHiM(QO

is nuclear.
Consider now a weakly additive PTV with a unique vacuum -- then
the energy operator H of the theory is selfadjoint and nonnegative.

In addition, PLflo = 0 with multiplicity 1.



Rappel: The split property obtains if YY)} is not abelian and

\V 0,P:

0C P and dis(0,fr P) > 0,

9 a type I factor between YN (0) and YN (P).

[Note: The uniqueness of the vacuum implies that\W)==CB (),

which is not abelian if dim ¥ > 1, thus Y (0) is necessarily a

proper subset of YN (P).]

Assume: Y 0, the triple ( M(0),H, O o) satisfies the

condition. And: 3 neN, P o >0 (both depending on O) such

(@./B)"
@, £e Fo/f (0 << 1).

THEOREM Under these assumptions, the theory possesses
NANANAANAN

property.

Example: One can associate with the free relativistic

of spin 0 and mass m »0 a weakly additive PTV with a unique

nuclearity

that

the split

particle

vacuum.

It is a fact (nontrivial) that the assumptions of the theorem are

met, hence the split property holds.

A W*—algebrafYn is said to be hyperfinite if J an increasing

sequence of finite dimensional W*-algebras Yn 0 C Y1 such that

(:Lj '\Wﬁ11> " =YY). So, e.g., a type I factor is hyperfinite.
n

Example: Suppose that the split property obtains and the YY)(0O)

are continuous from the inside -- then the YY) (0) are hyperfinite.



[Fix O and choose an increasing sequence OlC 02C cee 3

dis(0,,£r 0,,1) >0 & o, = 0, thus M(0) = (Ln} Mmooy ).
Choose a type I factor n nt M(On)CYl n CM(On+l) ~-- then

Y)lc'le ...and(UYln)"=W](O). But Yln=<L]£Ylnk)"’
n
where nnlcn n2 & .- and Yl nk is finite dimensional. Therefore

m(o) = ( U U n nk>" =( gl rél nnk >", which implies

k=n
that YY)(0) is hyperfinite.]

A W*—algebram is said to be ‘injective if 3 an idempotent map

r: M (H y — ® (¥¥) with the following properties:

r(® (3¢)) TMmM r(A*) = r(a)*
(2 €® (3.
rM) =M (MEM), Hz@ i £ {laf
Fact: sSuppose that YY) is a factor -- then YY) is hyperfinite iff

YY) is injective.
It is a theorem that up to isomorphism, § a unique injective

type III, factor, call it O’}

1

UNIVERSAL STRUCTURE OF LOCAL ALGEBRAS Suppose that the split

property obtains and the YY) (0) are continuous from the inside. Assume
in addition that ¥ 0, the Connes invariant S(YY) (0)) of YN(0O) is

[0, +00[ -- then

(0 X A ®)0,

where 5 (0) is the center of YY1(0).



The Modular Theory Let T: M —y 3{ be a densely defined linear

operator. Assume: T is closed -- then there is a representation
T = VA, where V is a partial isometry (hence is bounded) and A is
positive and selfadjoint (hence, in general, is unbounded).

[Note: This representation is called the polar decomposition of

T. It is unique. Furthermore, the initial space of V is the closure

of the range of T*, the final space of V is the closure of the range

of T, and A =YT*7'= IT] .1

Definition: A standard W*-algebra is a pair (N 15:20), where

Wﬂj is a W*-algebra and C)O is a cyclic and separating unit vector for
™.
Given a standard W*-algebra (le,glo), define two conjugate

linear operators by

Sy MQO=M*QO (MEYY) )
Fq M'QY = M'*QO M'€) ).

Then S, and F, are welldefined onﬁYﬂ(?n and YY)' f)o.

0 0
[Note: Recall that:f)o is cyclic for YY) iff Czo is separating
for yv)' and.(lo is cyclic forYn' iff (20 is separating for m" =7Y) .

Therefore both ﬁon and ) QO are dense in ¢¥{ .1

Fact: S0 and F0 admit closure and
* — @
S0 FO
* = @
FO S0 .
Put
S = SO
F=F, .




'S
0
[Note: Since is densely defined and admits closure, we have
Fo
Tk = a% # = Q% = Q% = @ =
S0 SO S S0 S0 0 F
_ , hence _ _ .
* = W% * = P* = P* = =
Fo F0 F FO Fo S0 s

Fact: Each of the operators S and F has range the same as its

domain, is invertible, and coincides with its inverse.

Let A= S8*S ( = FS) -- then I\ has inverse Dsnl = 88* ( = SF).

The polar decomposition of S is

S =JY S*s = JL\l/z.

The initial space of J is Rans* = RanF =3¢ , while the final space
of J is Ran =3¢ . Therefore J is a conjugate linear isometry of o

onto 3 . It is not difficult to check that

J=J*,J2=I,JQO=QO

Lx—l/z = 3 £>1/2 3

Al - oA

s* = A2 g«

g3 a2 5
S N

Definition: Per the pair (YY).E?.O), J is called the modular

conjugation and 4> is called the modular operator.

Example: Let‘}f = L2([0,l]) and take YY) = Lco([o,ll) (the set



of all multiplication operators M on 3 : (Mf) (x) = m(x)f(x)) -- then

YY) is an abelian W*-algebra with multiplication defined pointwise,

the involution being complex conjugation and 1 € m(x) = 1. The

vector QO =1 is cyclic and separating for YY) . Here SM QO =

M*§71)4—>(Sm)(x) = m(x), i.e., S is complex conjugation, J = S, and
TANE

Example: Let }Q =w§n equipped with the Hilbert-Schmidt inner
product (i.e., < x,y> = tr(x*y)). Take for YY] the algebra of left
multiplication operators: YY] = SiLa:a egng (so Yv)' is the algebra
of right multiplication operators: YyN' ={Ra:a€vbjn} ). Fix a

nonsingular matrix QO of norm one and put c =QOQ*, d =Q6QO -

then
Ax = cxd L.
Write SZO =Yec v = vYd , where v is a unitary matrix such that
_ -1
c = vdv -~ then

Jx = vx*v.

Obviously, J2 = I and

*
JQO VQOV

v (Vclv)* v

vw*ycv

(Ly ama

Y)'. 1In fact,



(JLaJ)(x) _(JLa)(vx*v)
= J(avx*v)

= v(avx*v)*v
= vv¥*xv¥a*y

= xv¥*a*y

(x).

R
v*a*y

(2) T AT = Cs_l. In fact,

(T A\ J) (x)

I

J A (v¥ky)
-1
= J(cvx*vd 7)
— -1
= v(cvx*vd ) *v
_ -1
= v(d “v¥*xv*c)v
_ -1
= (vd “v¥*)x(v*cv)
= c*lxd
= [>_1(x).

Write

g
i

exp(Y-1 t log n) (teR),

e m—— Vev

where "log" is the Borel function on C defined as Log z if z# -|z|
» vy prni=

and as 0 if z= -]z]|.

Observation: We have

V-1 (¢ - J—%l) V-1t
AN MO g = A Jm* ) MeMm)
V-1 (¢ + Y21, -1t
2
aN M'p = O M'*C), MreEM').



[In fact,
Vo1 (¢ - ¥Y-1 51) It 1/2
TAN MO, = b AN M<2
V-1t 1/2
= I g3 A ML),
Y-1t
= I IsMC2
Y-1t
= A JM* <2 -
Ditto for the second relation.]
Suppose that { E,%g is the spectral resolution of A -- then

{JEAJ} is the spectral resolution of A7 ana Vxedl,

< JE, Ix,x > = (JE?\Jx,JJx>

{ I%,E ,0x >

{ EnJx,Ix >

VTt 0 v
<IN X, X5 = A d { JE ?\Jx,x>

- o0

j"’" AV_—l't

d<{E AJx,Jx)

il
7\
P
o
"
o
"

A4



V-1t V-T t
J = I J (tER).

THEQOREM Under the preceding assumptions and conditions, we have
NN

ama =vn'
and
V-1t - V=1t
AN N =YY\ (t€R).
Y
In particular, the theorem provides us with an arrow
‘}}v-—-)Autm
t—7 6,
where
V-1' t - V-1t
o.M = A M D .

One calls {O‘tg the modular automorphism group of the pair (YY),KT)O).

[Note: The state associated with QQO’ i.e., QJO(M) =‘<(70,M£)()> ’

is invariant w.r.t. Tt Loo(g‘t(M)) =<Q0,o“t(M)QO>=
<,§2 V-1+¢t -V-1t Y -1t
f

l'"lt CIO by the spectral theorem).]

Remark: Recall that YY) is said to be purely infinite or type III

if all the nonzero projections in YY) are infinite. It is then a fact

1_If A is selfadjoint, if f is Borel, and if Ax=Ax (x#0), then

£(Ayx = £(A)x.



that'YY) is not purely infinite iff 3 an invertible positive selfadjoint

V-1t
operator H such that H € YY) VW t and
V-1t -Y -1t
G,(M) =H M H ,

i.e., the O”t are inner.

Example: Take }Q =Mb3n and letm be as above -- then

V -1t
A =L R - V-1t -
V-1t a
c
Since
Y -1t -Y -1t
AN La & =L oy - Y-Tt ’

it follows that
g“t(YY)) =Yn WV t.

Definition: A one parameter group {o( t:tE R} of automorphisms

of a W*-algebra YY) satisfies the modular condition relative to a state

< of YY) if given X,Y €M , there is a complex valued function fX ¥
14

which is bounded and continuous on 0% Im z £1, holomorphic in

0<Im z<1, with the property that

fX,Y (t) = CO(o(t(X)Y)
(t€ R)

fX,Y (t +¥V-1) =W (Yo(t(X))-

[Note: More generally, if 0( is a unital C*-algebra and

go( t:té\g‘l} is a one parameter group of automorphisms of Ol , then



a state G)is said to be a KMS state w.r.t. o at inverse temperature
P >0 provided that for all A,B e()‘l , there is a complex valued

function fA B which is bounded and continuous on 04£Im z £ p '
14

helomorphic in 0 <Im z< @ , with the property that

fA,B(t) = Cd(o(t(A)B)
(t€ R)
Vi

fa,p(t + V-1'P) = @B (a).
Such a state is necessarily &« -invariant, i.e., VvV t,

WX (X)) = K)  (XEOT).]

LEMMA If x,y € Dom . 4 then the function

AN
fx,y(z) =<x, A%y >

is a bounded continuous function of z on 04Re z 4£1/2 and is a holo-
morphic function of z in 0 Re z <1/2.
[By polarization, it suffices to consider the case when x=y.

To see that x&Dom  and I AZ%x 1l stays bounded, proceed as follows.

FaN
With {EJ\} the spectral resolution of A, we have

o0 o0
TR 2=§ d(x,E?\x> ;N Al/2x||2= S’ '}\d<x,E9\x>.
0 0

When 0 £Re z €1/2 and A >0,



-
o0
y ,%zﬁtﬂ<LE%X>
0
o0
2 f (1 +?\)d<x,E?\x>
0
el 2o na?x1?2¢ o0
=>
x € Dom AZ
=
l<x, A2 x> < lizll - || A% 21
L xl) - Clxp 2+ Nal/? x gy 3L/
< +00.
And:

o0
f&xu)='§ %Zd<xﬂyf>’
0

For n=1,2,..., put

n
$ (2) =j A® dlxE,x).
1/n

Upon expanding ?3 = exp(z log A ) as a power series in z and noting
that it converges uniformly for A in [1/n,n], we conclude that 4’n is-

a holomorphic function of z. Finally, if 0 égg z ¢£1/2, then
| £4,x2) - ¢, (=)

1/n o0
=l<f +5 )7\2 d<¢x,E, x)

0 n



10.
Q0
+J >,(.l ‘+?\)d<x,E?\x'>
0 n
—7 0 (n—>ocd).

Therefore C‘:’n —7 £ uniformly on 0 £_I£e_ z41/2, thus f is continuous

on 04Re z41/2 and holomorphic in its interior.]

Rappel: Suppose that a<{b < c and £ is a complex valued function

which is bounded and continuous on { z:a<Im z gc} and holomorphic in

{z:a<Im z< b}

{Z:b(lﬂZ(C}.

Then f is holomorphic in { z:a<LIm z«('c} .

THEOREM The modular automorphism group {6’ } satisfies the
NAAAAAN AN t

modular condition relative to the state Q_)O associated with QO'

[Fix X,Y € YN) . Since T ). C Dom , the functions
0 &2 172

-V-1z

<Ly A Yy > (0 £4Im z £1/2)

1 +Y-1'z2
Cyx Qg A X(2y> (1/2 £Im z £1)

Il

g(z)

h(z)

are bounded and continuous on their strips of definition and holo-
morphic in their interior. But
v_1 -Y-1'¢t 1/2

) =< Qe A AN S QRS

gt +



-V-1t 1/2

= <sto, AN JJ I YO.O>
1/2 ~-V-1T't

=<{J3 A XQO,.JA SYQO>
-V-1lt 1/2

= <A v, AT x>

V-1t + 1/2
= v A x>
= h(t + YL,
2

so it follows that g and h can be combined into a single function f
which is bounded and continuous on 04Im z <41 and holomorphic in

0 {Im z<1l. On the other hand,

V-1t -V-1t
Ve, v = <O, A X v 2>
-V-T"t -V-1t¢t
=< Qolx & YQ0>
-V-T ¢t
= <QO,XA Yﬂ0>
-V-1t
= <X*Q0, AN 14
= g(t)

and similarly,

Q 4 (Y6 (X)) hit +V-1).

Finally, let



12.

Then
fx'Y(t)‘ = g(t) =@ ,(6, (X)Y)
fX’Y,(t +V-1) = h(t +V-1) = oY G‘t(x)),

from which the theorem.]

[Note: Suppose that {}X_t:t€jik is a one parameter group of

automorphisms ofnYn which satisfies the modular condition relative

to Wy —- then it can be shown that o(t =0, Yt.l

Remark: The equation G*t(M) = M is valid for all-teaa’iff
ME T .
SIO

[Assuming that G‘t(M) = M Vt, take an arbitrary N ém and

consider fM,N -— then

Hy
d-
]

Dy (6 (MM

i

Wy (MN)

and

fM,N(t +V-1) CJO(NG‘t(M))

Q)O(NM).

A certain nonzero multiple of fM N has constant real value on the
, reat

real axis, thus has an analytic continuation across the real axis

(Schwarz reflection principle). This extension is holomorphic in a

domain D that contains R and 0<Im z<1l. It is constant on R, hence
constant on D. Therefore fM N is constant in 0<Im z <1, thus by
r

continuity is constant on its closure. But this implies that

COO(MN) = Q)o(NM).



13.

Turning to the converse, fix M€ YY)Q -— then for any N € 1N and
0

all t,

QJO(o‘t(N)M) = CQO(M O‘t(N))

=

£y ulE) = £y y& +V-D),
so fN,M can be extended by periodicity to a bounded continuous function
onmC'v which is holomorphic in each of the strips {z:n(;_rg z<n + 13

(n =0, +1,...). This extended function is entire, hence by Liouville,

is a constant. In particular, fN M is a constant
14

=

Wy (o (MM =, (NM)

=2 W, (N g, ()

= Wy lg_, (N 63 0))

= W (e (NN = Wy ()
=

W o (NM -6 (M) =0 Yt.

Take now N = (M ~<T£(M))* to get

o
i

Wy (M =G (M) * (M -0 (M)

= <Q0,(M— o (M))* (M "o-t(M))QO>

2
-6, 00) 241
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M -6, 00) 2y =0

M=gag t(M) r
QO being separating.]

Definition: The natural cone (¥ of the pair (1M, ‘QO) is the

closure of the set

{MJMJQO: memi.

Properties:

V-1'¢ ,
1 A =0 Vt;

(2) 38 =% Vixe;
G MMr® cQ Vvem;
4 N -0 =F50};

5) § -0 ={x€edfl:0x=x};

6) & =(§’ (={xedl:{(¥ x> 20 VFITEPY}).
Fact: o€ is linearly spanned by (¥ .
[For suppose that x is orthogonal to the linear span of G --
then x€é=@ , hence <x%x,x> =0 =>x = 0.]
Observation: Let 3 € 0 -- then T is cyclic for YN iff ¥ is
separating for YY) .
[I1f X € @ is cyclic for YY), then § = J§ is cyclic for

™' = JYYJ, so § is separating for YT) and conversely.]
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[Note: Let ¥ € ® be a cyclic unit vector for YY] . Since ¥ 0

is necessarily separating, the pair (Y7], ETO) is standard. Denote

by JO its modular conjugation -- then
J0.= J.

Call 6’0 the associated natural cone. Since 6’0 is generated by

elements of the form

MIMIg §g = MIMIS o,

property (3) implies that C?()c: C? . On the other hand, in view of

property (6),
Vv v
G -GcG,-6,
Therefore
6C,=0 .1
Since flo is, in particular, separating, the positive elements
w of YY), are representable, i.e., are the M —> (x,Mx ) (x eol ).

The correspondence W —> x is one to many but if we work with (3’ instead

of 3¢ , then matters can be made precise: Given any positive element

W of YY) ., there exists a unique ?Q € O such that M) =< }m M }'w> .
And: The map b — Eajis a homeomorphism because
A 2
g - " el -l £ - T | i -
wy sz 1 2 W1 sz fwl §w2‘

Remark: This machinery can be used to establish that every auto-

morphism K of YY) is implementable by a unitary operator U(of ):

®M = U(eO)MU()™T 1 eM).



l6.

One can even arrange that

U )® =0 , Ju() = U(X)J.

In fact,

U(X)
S 1T

(X~

[Note: The assignment K — U(XK) is a representation of Aut YN

on Bf .

Let ¢ be a faithful normal state on Yr) , ( }Qk),-nud "glto) the

associated GNS data (so W (M) = < §7YD’ THQ(M)Sjkg > ) -- then

( TTQ)Qn),-glco) is a standard W*-algebra.

[Note: The normality of w implies that 11A(TY)) is a W*-algebra.

Of course, flq)is automatically cyclic for ﬁu>(7Y)). To see that

i i T = -
flcols also separating for T (YN), suppose that HQ(M)Slwo 0

then worm) = NImi ) Q2 (112 =0 =Dmwm =0 =>Wwutt = il 2 =0

=>M = 0.]
The preceding theory thus furnishes us with a modular operator

£>g) and by definition
V-1t -¥Y-1t

W _ -1
oL =T A T, M A )

is the modular automorphism group of the pair (YT),go).

[Note: Suppose that io(t:texgi' is a one parameter group of

automorphisms of YY) which satisfies the modular condition relative

to &) -- then it can be shown that ‘o(t = 6‘(;_:’ Vt.]
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1 " 4
THEQREM Suppose that ', w " are two faithful normal states

on“Yﬂ -~ then 3 a one parameter family of unitary operators Ut EM

such that
" 1 ...l
% M =Uu. ¢ Uy
_ w'
Uy = U O ¢ (T9).

It is customary to incorporate ', «) " into the notation and
write
(Dw":DC\Jl)(t) = Utl

the so-called Radon-Nikodym cocycle.

[{Note: We have

1

(D yuiD ) (£)77 = (D 2D u) (£).]

) Dor®
Since ', )" are faithful and normal, 3 cyclic and separating

unit vectors ', <« " such that

) = <M

MEY)) .
W " (M) = <Q"’MQII>

Defi onj te linear operator S w b
ne a conjuga in P QO vy

SQI o MQ' =M*Q" (Mém)-
r
As before, Silf o admits closure, hence there is a polar decomposition
r
— 1/2
SQ' ,Q“ = .JQI ’Qu Aﬂl ’Qn .

Definition: Per the triple (Y7M), £1', (2"), le',(l" is called
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the relative modular conjugation and lk:fl' ar is called the

relative modular operator.

Fact: We have

V-1t - V=Tt
(D wiD ) (£) = AQ.,O_.. AQ_.V .




Type IIT '(bis)’ It has been mentioned earlier that if YY) is a

type III factor, then one can attach to YY) a closed subgroup i (YY))

of R> 0° We shall now make matters more precise.
Va,

Assume: (N ,QO) is a standard W*-algebra, hence possesses

a modular theory.

Fact: If YY) is a type III factor and if Yy = CI, then
QO A
™ (M) = spec A - {0§ .

Furthermore, given an isolated element Aof spec A - {O} ' 3 a nonzero
M € YY) such that

v-1't V-1 t

N MO g = A MQO Yt.

LEMMA If mﬂo = CI and m ;évgl, then YY) is a factor of type III,.

[The hypotheses imply thatYY) is a factor of type III, thus the
strategy is to eliminate the cases A= 0 and 0< A< 1.

Ad A= 0: Here, spec A - {05 = 31} , hence either spec A= {1}

or spec A\ = {0,1} .
(i) spec A= {11 => b=1 =6 =1 V¥t =06 M =u VYt
§ ¥ M =M= Mo =» M) = CI, a contradiction.
0 ~
(ii) spec A= {O,ll => 3 xe}e: x#0 & A x = 0, contradicting
the invertibility of A .

Ad 0<A<1l: Fix M#0 in YY) :

Y-1T't V=1 ¢
N MY, = A MY, Vot



Since

V—l t V-1t -Y-1t
N MQ, = A MoOA (@
it follows that
Y -1 t -V-1t V-1+t
A M N = A M,

S)'O being separating for YY). Therefore

£y () = <Qu e, 80>
V-1t
= A QM >
and
fyy (£ +V-D =<Q N Q>
V-1t
= A < m2,> .
From the first relation,
Y-T'(t + V-1)
fy,n (E +¥Y=-T) = A Qg MN2 >
V-t -1
= A Qe >
=
V-1 t V-t - 1
A {Q,mm2,y = X {22, >
-

{2y M 205 = AL M 7 > -



On the other hand,

V-1t -V-1t -V-1t
A M* A = ?\ M*
=
V-1't - V-1"¢
AN M*M I\
V-1t -V-1't V-1t -V-1t
= A\ M* I\ AN M A\
= M*M
>
G, (M*M) = M*M YVt
=
M*M € on = CI
=

M*M = A\ T (3 4 >0).

The same argument applies to MM*:MM* = v I (3qi1> 0). Normalize M so

2

that M*M = I -- then (MM*) (MM%*) MM* =) u“ = v =) W =1, In other

words: M is unitary. Taking N = M* in the above then gives

LQogM* > = AL, MM
=
A=1,

a contradiction.]



(YY),KIO) and (Yl,_(}o) -- then the symbols

S ' J R R = G
mm Bm %
= &

S . P ’
n''mn’' S n

are to be assigned the obvious interpretations.

. - - . , . .
LEMMA Suppose that Yl ™m then the following are equivalent:
(a) =¥); (b) s, =8 ey A, =N ;7 (d) g =T .
YL =m n m n m m m

[The implications (a) =» (b) => (c) and (b) => (d) are obvious.

To prove that (d) => (a), note that

n =3 NI SIm I, =5ma =m

=7 m"=mcn'=7.

To finish, it suffices to show that (c) =—> (a) but I shall omit the
details.]

[Note: On general grounds, mn < YY) =» £>YY1 < nyq , SO

Dom C Dom and ¥V Y € pom KLY AL WD L
An Am AYI ™ > &
<Y, LAYCW > -1

Remark: Another useful fact is this. Suppose that
(M, 20 (my < @Bt

(M,, Q) (WM, < B(3¢,))



81,71

r

are standard with modular objects . Let U:¢f 1
52,72

be a unitary operator: UM;U* =Yn, & UK, =2, -- then

9} C;lU* =L,

UuJg,u* = J

1 2 °

- &QZ

Example: Take -- then JW)J=WW)' (J = J*), hence

NW}Z = W)

A =TAT =N

Jl

JJJ = J.

Asguming that Y] is a W*-subalgebra of ), put
| -Vt V-1t
Dm,n (t) = Am A'YL .

Then the function

D(t)= D
(t) = m.m (t)

has the following properties:

(1) D(0) = I;

(2) D(t) is unitary and strongly continuous in t;

(3) D(t) L2 5 =4

(4) D(t) has a bounded analytic continuation into the

fz:0<m z¢1/2};

strip

(5) D(t + ;1313 is unitary and strongly continuous in t;

2.



(6) D(s + £) = € F (D(s))D(t);
(7) D(t + JLgi)* JYY)D(t) = D(t)*waq D( t + Jéék) is independent
of t;
8) p(t)D(=L)y* yn) oip =)t e .
2 2
[Properties (1) - (3) are obvious, while (4) and (5) are variations

on the usual theme. As for (6), we have

- V=T (s + t) A V-T(s + t)

D(s + t) = CXWWW .Yl
N -V1't -Vl s YV-15s V-1t -V-1t V-1t
= ™m Lﬁ‘nn £>wl E‘WY) £>1q3 c;)q
-V-1't V-1t
= Am D(s) A‘Y‘n D(t)

-t
= Gh\qq (D(s))D(t).

The proof of (7) is based on the fact that

“'1) = J. D(t)J

D(t + 5 m n -

Thus ¥V N' € ',

D(t + - ’l)N‘_QO
2

- VT e+ X2h VT (e + Y21

7 7).
= By A N'C2
A V=T (£ + Y ‘2'1) VTt - 1/2

128! B A N'L2



- V-1(t + ———~“;l) V-T't

Bm L Iy S*N' €2
- VTt + —————“;l) V-1t
m " I FN')g

VT + YL - VT ¢
N

- VT (e + X1 N VT ¢

-VoT(t + Y2hy N V-T ¢

AT V=T (t + ——-—';l)‘ V-1t ; - VTt
- An (Jn N *JY\ ) l:n ,(10
-V-1 ¢ 1/2 V-T't - V-1't
LI
,Am A_m Qn (T N"*Tyq ) A‘Y\ €1,
-V-1 t 1/2 V-1t - VTt
Am J_me&m Iy (Tyy N'*Ty ) AN ﬂo
-VT ¢ V=T t- . A _VTLE
AW\ Jmsm bh (JY\_ N Jn) n QO
-V-1't V-T t -V-T t ,
™m Jm(ﬂn (J“N*JY\,) A“ )3Q0
-V-T t V=T ¢ -V-T t
™ T A“ (Tyy N'Ty ) A yA QO
-V-1t v-1 t
m Ty Dy In N L2,
-V-1t V-1t
M Lsm Ah Ty N O_O



Since the N' {) . are dense in ¢ , it follows that

0
=
D(t + X ) = »JmD(t)JY\_ .
Accordingly,
V-T *
D(t + 2) J.mD(,t)
= JY\. D(t) JYY\ Jm D(t) = JYL
and
) * ‘ .\,——I]._‘
D(t) JYY\D(t + N )
— * —
= D(t) JmeD(t)Jn = Jyy -
which implies (7). Finally,
vV -1
D = J J .
=7 " 9w I
Therefore conjugation by D(t)D( =1,* i conjugation by
2
-V-1t V-1t
&m &Y\ JY\_ Jm. But
V=T t - VTt
AY\ JY\ Jmm Jm I t;“
V-1t -V-1t
= . JYl-YY] Iy CBYR
- V-1t N -V-T t
AY.L I U3\ n
V-T't - V=-T't
= A



=YLCYn r

which proves (8).]

An operator valued function D(t) possessing properties (1) - (8)

is called a characteristic function of YN .

So, to each W*-subalgebra Y| C N admitting<f10 as a cyclic

vector, one can attach a characteristic function, viz. DYY) " And:
D = D = = . In fact,
Ny ™. N, > Yﬁl Y72 n fac
D (MH' = J J
™ 3 2 m- Ny
-V"'1'4
D Ty =
:> = - = .
J.Y\l an >Y11 N,

On the other hand, it can be shown that for any characteristic

function D(t), there is a W*-subalgebra Y} C YY) admittinguf)o as a

-V-1t V-1t
cyclic vector with D(t) = &n ™M [;.Yl .

LEMMA Suppose that (Yn'~f20) and (M, O) are standard

W*-algebras with Y| C YY)]. Assume: L;Yr)and D;chommute —-- then
YU =w/.
[We have
v /2 -1/2
D( 21) = Am i =9Iy -




Therefore
1/2 "1/2* *
(L\m AYL ) -—(JmJ.n) .
But
1/2 -1/2 -1/2 1/2
B Bno= A Ay,
=
1/2 -1/2 , [31/2 -1/2
([Lm An ) = ™m Ah
=
. J. ) =4
mn’ T I mIn
I.e
J J = J J

Now introduce

N o -Y-I't V-Tt o
F (t) = IM' A N
0 m AY\ 0>
_ -Vt Vit
F () =<<2 N AN Dy M'O) o> s

where M'€ W', N€ Y]l . Since T M=>M' < N ',

- V1t V=1 ¢

<M Dy, A N2,

-V-1 ¢t V-1 t -V-1t V-1t -V-1't
<Ly (N M'D MDA N Dy

V-1t -V-1Tt V-Tt -V-1't
)(an N I\

V-1 t -V-=1t V-1t - V-1t

VAN

=<, (N N O ) (N M' LN EOIND
0 0

mn Y1 ™m A2’

V-1't

n

Q>



-Vt V-1t

=<QOIN An AW\

M'Q0> ,

and so

Fr(t) = F(t).
Next,

V-1t - V1t cM
JY\AM M Qm T

V-1t -V-1t _;
T A“ N A“ Iy € m.

Therefore

_ v -V-1lt -1/2 172 V-1't
F(t-———z—l—)=<0_0.Nl>YL bYL AN A*n M'C)g S

V-T't -V-Tt V-1t -V-1't
=<2, By N By T By M Dy, Q>
, V-1i't -V-1't V-1t -V-Tt
Cor Ty By YAy Iy) T By, MO TS24

V-T t - V-1t V-1't - V-T t
(e @y By, M Dy T ) Ty By N By T ) €24 >

-V-1t V-1t
= <CLyM By J“Jm AY& N>

-V7 t V-T t
= <YM Dy I In By N o>

A A V-1't 1/2 V-T ¢t -1/2

NQ0>

V-1

F+(t + 5 ).

li




Applying the usual argument, we conclude that

FT(t) = F () = F(0)

=
-V-1t V-1+t
LM Q) Dy AN, NE2, D
- QN )
-
-V-1't VTt
By IANY N 2, = N2,
=
- V-T t V-1t
=1
Am An
=
V-1t V-1t
Am = AY\



The Fundamental Lemma Suppose given two standard W*-algebras

(M., Q) and (N, Q) -

Let W(t) € ® (¥{) (t€ R) be an indexed family of bounded
linear transformations with the following properties:

(1) W) €2 5 =24
(2) W(t) is unitary and strongly continuous in t;

(3) W(t) has a bounded analytic continuation into the strip
1z:0<Imz<1/2%;

V=T
2

(4) w(t + ) is unitary and strongly continuous in t;

(5) W)L wt)*C m

(6) W(t + ‘;l) YWt + ;l)*c m'.

Then the relations

V-1t -V-T ¢

EXYY) W(s) L;yl = W(s-t)

Jm W(t)Jn = W(t + 5 )

constitute the fundamental lemma.
Here is a sketch of the proof. Given N&¢Yl , M'e W', fix s

and define two functions of t:

V=T ¢ - V-1t

Fr(r) = <L ,m [N Wis + ) DN NS, D
_ V-1t -V-1't
F (t) =<2 4N B Wh(s + £) Dy M'S)4> -

From the assumptions, F+(t) has a bounded analytic continuation into



2.

the strip { zr0<(£g>z<'l/2} and F (t) has a bounded analytic
continuation into the strip { Z: = 1/2<(£m_z<’0_}. It is easy to

check that

Fr(e) = PT(e) and Fr(e + YZh) - pe - VL,

The data therefore produces, via periodicity, a bounded entire

function, which is thus a constant, so

V-1t - V-1t

<LLyom Dy, Wi+t A

=< MuEND >

=
V-1t - V-1t
b‘yyy W(s + t) C;wq = W(s)
=
V-1t - V-1t

This establishes the first relation. As for the second, its verification
proceeds along standard lines and can be omitted (see the preceding

section (proof of property (7))).

Example: Take YY) =7Y)]. Suppose that U(t) = EEE(‘V-I t H) (H>0)

is a one parameter unitary group which leaves (10 fixed with

vy M)t © Y (£ 20).

Then

V-1t - V=1t -27i t
AN U(s) I U(s e )

and

Ju(t)J

Uu(-t).




3.
2Tt . .
[Apply the above to W(t) = Ul(e ). This gives
V-1 t 2T s - V-1t 27is -2nt
'AN U(e ) N = U(e e )
2Tt 20t
JU (e YJ = U{- e ).
Here
VT 27 (& + Y55
W(t + > ) = U(e
21t T1iVv-l
= Ul(e e )
2T t
= U(- e ).
We now claim| that
V-1't 2T s -VY-1t 2Ts
N U( - e AN = U( - e e
In fact,
2T s 2ﬂ(s+‘v51)
JU (e YJ = U(e
=
V-1't 21 s - V-1t V-1t 2Ti s
AN JU (e )R ATAN = I\ U( - e )
=
V-1 t 2T s - V-1t V-1t 2Tl s
AN U( - e VAN = J I Ule
2Tis -27t
= J Ufe e ) J
271 (s-t)
= J Ule YJ
2T (s-t)
= U( - e )




= U(-e e ).
Hence the claim.]

[Note: |If instead

U(t)ym U(t)'l YY) (t<£0),
then
VT t -V-T t 21 t
AN U(s) In = Ul(se )
and
JU(t)J = U(-t).]
Remark: It is too much to require that
e UuE) Tcm VY .
Indeed:

oy = vy eMVY t Du@IMU-t) =M VY t.

spec U{)-spec U

Therefore U{t)JU(-t)

J = JU(t)J = U(t) =) U(t) = U(-t) => I = U(0)

= U(t-t) = U(t)U(-t)

U(t)u(t) = U(2t), i.e., U is trivial.

The machinery set forth above can be used to give another proof
that the translation representation associated with a weakly additive

PTV is unique.

1,4

Abbreviate U(I,a) to U(a) (aEJi' ).

LEMMA Let W be a wedge. Suppose that
Nt

0 # a_l_ev+ & W + a+c"w

0 # a_e-\-l—_ & W+ a_ CW.




Then

U(ta+)J = U(-ta+)

T ynw) (W)

I (w) U(ta_)Jd mw) " U(-ta_).
[Since

MW+ a,)

Ula,) MW U(-a,)

MW + a_) = U(a_) MN(WU(-a_),
the relevant one parameter unitary groups are

t —>U(ta))

t —7 U(-ta_).]

If, as usual,

WR={x€M:fx0f<xl}:

then we can take
a, ={1,1,0,...,0}

a_=3-1,1,0,...,0} .

Picture:

To

5




Given X€ M, write

where y=(0,0,x2,...,xd). Since WR = WR+y, we have
Y () = U(y) W) uly) T
e
3 = U(y)J u(y) L
‘YY\(WR) 'YY)(WR)
=

J - U(y) = U(y)J .
m(wg) V) (W)

On the other hand, it is clear that a, and a_ span the 2-plane

e

X0€q + X184 In fact,

XA + X X - X
_{ %o 1 1 0
xoeo + xlel —(—-—2———— > a+ + ( 2—) a_ -

Therefore

J U(x) = J U(x.e, + x,e, + V)
(W) m (W) 0-0 171

xoJ’X1> ‘(Xl'x())
= J U( <—-———————— a,) UG{ ——— a ) U(y)
™ (W) 2 ¥ 2 -

X + Xy (xl - xo)
u( - _— a,) U(- — la )U(y)J ‘o
< 5 + 2 - m(WR)

= U(-x

e, -x.e., + vy)J .
070 171 WWNWR)
So, when y = 0,

U({x) = U(-x)J

J - .
V) (W) (W)




1,4
LEMMA % a€ R '™, 4 a wedge W_ such that

Ty V@) = Uy -

_ a _ . _ .
[Let a = (ao,ﬁj, fie&i . If\i,_ 0, then Wa = WR will work.

Suppose now that a # 0. Fix a rotation Ra:

R;l a = (aol li‘lol"’lo)'
and put
Wa = RaWR
Then
WMW) = YN(R W)
_ ‘ -1
= U(Ra,O)YY)(WR)U(Ra,O)
_ . -1
= U(Ra)'hﬂ(WR)U(Ra)
=
J = U(R_)J ur,) "t
“nn(wa) a ‘WYKWR) a
=
_ -1
Jm(wa) U(a) = U(Ra)J m(WR) U(Ra) U(a)
= U(R.)J u(r. )Y va)urHUR )L
a YY)(WR) a a a

1

-1 -
VR T ypy gy UORZT,0) (T,2) (R, 00)U(R)

-1 -1 -1
= U(Ra)J'Yn(Wk) U((Ra ,Ra a)(Ra,O))U(Ra)



- -1 -1
= U(Ra)J U(I,Ra a)U(Ra)

™)

_ -1 -1
= U(Ra)J U(Ra a)U(Ra)

Y (W)

-1

a 1
a

= U(R)U(- R, a) U(R)

T )

_ -1 -1 -1

= _ -1
U= RaRa ) Ty )

Application: We have

U(2a) = Jm(wa + a) Jm(wa).

[In fact,

= -1
J-\rn(Wal +a) = U(a)J.Yn(Wa) U(a)

=y

_ -1
J’hﬂ(Wa + a)J'Yn(Wa) = U(a)J“Wﬁ(Wa)U(a) J'Yn(Wa)

U T ymm) T )

UE@T@T )T mw )

2
Uu(2a)d = U(2a).]
WYKWa)

It therefore follows that the modular conjugations attached to the




wedges determines the translation representation of our weakly
additive PTV.

[Note: The assumption of weak additivity figures in the proof
of Reeh-Schlieder, which in turn implies that the (WTT(W),S)O) are
standard.]

Let (YY),ST)O) be a standard W¥*-algebra.

LEMMA Suppose that U: 3{ — §{¢ is a unitary operator which

fixes (), and has the property that UYY)U—1<:'TYY -- then the operator

valued function

V-1't -Y¥-1t
AN (UVAN
has a bounded analytic continuation into the strip {z: - %—(;;_z<(0}
with continuous boundary values at Im z = - %. Moreover,
V-1 z -V-1z
1I/AN VAN Il £ 1.

This lemma can be used to give a quick proof of the converse to
the claim of our basic example. Thus let U(t) = exp (Y-1t H) be

a one parameter unitary group subject to:
ule) 2, =2

UM UE)ICS N (£>0).

Assume:

V-1t -V-1t 27t
N U(s) A = U(se ).

Then



10.

[Taking s = 1, the operator valued function t — U(e—zr't), when
continued, admits the bound |l u(e™2m ZyIl £ 1. Now put z = - J—il

to. get

T VT _
Note 2 )1l = NU(Y=D)lt = lle 1£1.

But this implies that the spectrum of H is nonnegative, hence H is

> 0.1
[Note: We have
-H -H
0%£inf o (e ) = inf <%, x>
i xll<1
-H -H
£ sup {x,e x)=3sup o(e )£1.
Hxll4£1
And:
- -A
o (e )={e : %Eﬁmﬂ
=
-
e <1
=>
A2 o
=y



The Bisognano-Wichmann Property 1In this section we shall take

d = 3 and work invgf = Rl'3.

Ay

Example: Put

cosh 2Tit - sinh 217t 0 0
- sinh 217t cosh 217t 0 0
N(t) =
0 0 1 0
0 0 0 1

Then t —> A (t) is a one parameter group of boosts taking We into

itself. Obviously,

-2Tt

Adt)ai = e at .

On the other hand, the theory tells us that

V-1t -Y-1t -2 t
JAN Ulay) I = Ule a,) (s =1).
ma) T MWy =
. 4 .
leen‘xejay, write X = X0€0 + X1 + X5€5 + X3€4 and set y = X,e, + Rq€5 ==
then WR = WR + v, hence
MW = U(y) W) uly) ™t
=
V=Tt V-1t -1
AN = U(y) O U(y)

YNWL) W)(WR)



=
V-1t V-T't

AN =
Mmargy T T U A e

Therefore

V-1t -¥Y-1't
B ey T B )

V1 ¢ - V-1't
= I\ 'YY)(WR) U(xoeo + xje, + v) A TV)(WR)

V-1t (XO + X (xl - X -Y¥-1t
= I\ U(| —————)a )U(|{——}a)) I U(y)
(W) > > + 2 ) W)

U(/\(t)(xoe0 + xlel))U(Y)
= U(/\(t)(xoe0 + xlel))U(/\(t)y)

= U(AN(t)x).

For any wedge W €W, there is a one parameter group t—i>f\w(t)
of boosts which maps the wedge into itself.

Definition: A weakly additive PTV satisfies the Bisognano-

Wichmann (B-W) property if VW e W,

A V-1t
Wiy = TOA (e

[Note: Here,

U(AL(£)) = U(A,(£),0).



t;v -1t -V-1t
wma U A

-1
U(A (£), 00 U(I, ) UCA L (£) 77, 0)

UOA L (8) A (B TCAL ()7, 0)

U(I,I\W(t)x)

U(/\W(t)x).

In addition:

C;V -1t -V-1t
v O D vy
= -1
= U(A,(£)) TMIO)U(A ,(E))
= Wﬁﬂ(/\w(t)-O).]
THEOREM Suppose given a weakly additive PTV -- then the B-W
NAAAAAAA

property obtains iff the theory satisfies wedge duality and the

reality condition.
e e e - terasseeitne.
The proof of this theorem is lengthy so I am going to omit some
of it. However, let's at least get the definitions straight.

Ad Wedge Duality: It will be convenient to abuse notation and

A
write S when we really mean the interior of the causal complement



of S. By definition, V¥V W€l ,

™ (W) = U Yﬂ(o>>" .
oCw
Now
1 1
OCW =W C O
=> m(wj‘)CM(o‘L)
=> mot) c mmt)r.
But
™M) < Mol
-

U moc U meob cmel:
o<Cw - 0CW

=
( U YY)(O)>“ Cm(W-L)lll

oCw

= Yyt

MW < mmwt):.

Definition: A weakly additive PTV satisfies wedge duality if

VWwewS, Mmw =m wh)r.

Remark: Examples are known of theories which do not satisfy

wedge duality, hence do not satisfy the B-W property.



Observation: To verify wedge duality, it suffices to check that
(W) = WD) (= W) ")
R R L °

In fact, if weld , then W = (/\,a)-WR and

™MW =M ((A,2) W)

1

U(A,a) MIWL)U(A,a)”

1

U(A,a) MW" U(A,a)°

1

U(A ,a) MW ) ' U(A,a) ™

MM(Aa) W)

M.

Let K be a double cone centered at the origin and symmetric

w.r.t. the (xo,xl)—plane. Given A € YY)(K), put A(K,x) = U(xX)AU(-x).

[Note: Consider those x such that K + x(ZiWR -~ then

UW)(K + x)
X

generates 'Yn(WR), i.e., the A(K,x) are dense in 'Tn(WR).]

Notation: By (A we shall understand the set of all A € YM(K)

with the following properties:

(i) WV x: K + x C Wy, the function

UCA (L)) AK,x) )

has a bounded analytic continuation into the strip z;z: - %~<Em_z <0 }



with continuous boundary values at Im z = = % .

(ii) ¥ x: K + x C W, the function

U A(E))A* (K, x) (),

has a bounded analytic continuation into the strip { Ze 0<flm,z<j% 1

with continuous boundary values at Im z = % .

[Note: If K + xCWR, then K - x CWL. In fact,

K+xCWR:§—K—xC—WR=WL.

But K is symmetric, hence K = - K.]

THEOREM The condition
NNV AN

-— ]
m(Wg) = YY)(WL)
is equivalent to

(R) The set
{am,x) :a€e@, k+ xC W}
is dense in WWW(WR);

AND

(L) The set

fa,x) : AEQ* K+ xCwW ¢

is dense in 'YYKWL).

Rappel: Given a standard W*-algebra (YY),Q)_O), the function



t — A MQO M EM)

has a bounded analytic continuation into the strip {z: - %—<I§_2'<0}

with continuous boundary values at Im z = - % and the function
V-1t
t—7 A MO, ™Mewm"

has a bounded analytic continuation into the strip {z: 0<Im z <%_§
with continuous boundary values at Im z = % .

The B-W property implies that
—— ]
W) = (W) '

Indeed, in this situation, (I = T(K) = A * and R + L holds. For

suppose that K + x € Wy -- then YA€ M(EK), A(K,x) E ™M (W) and

UCA())AK,x) Y,

V=1 t

= BM(WR) A(KrX)QO

has the required continuation properties. Similar comments apply

if K + x(::WL. Therefore condition R is satisfied. Ditto for

condition L.

LEMMA Suppose that
\/\/\M—V K
(W) = M) .
N\
Then WA CEA & Vx: K + x CWR,3 A €@ * such that

NI N
VA= YS5)am,x) Q0 = AK,-x) ) -
2 '




Suppose that
YW) = (W)

Then the theory is said to satisfy the reality condition if

YV AEQA NQ * & ¥V x: K + xCW,

7~ N
A* (K, - x) = A(K, = x)*

and

{A(K,x)g‘)_oz AEQANQ * K+ xCW ¢

is dense in )@ .

A
[Note: Since Ae (U , it makes sense to consider A(K, - x). But

”~
Ae QQ *<&=>Aa*e Q. ., thus it also makes sense to consider A* (K, - x).]

Assume now that the B-W property obtains -~ then, as we have

seen above, Q.= WYK) = Q *. 1In addition,
mwg) = m(WL) .

Therefore the preceding lemma is applicable, hence

A Vv -
2 (K, -0, = UAG YA,
2

1/2
— *

1/2
= Ame) sa(K,x) Q) 0

1/2 1/2

= A’W)(WR) J ™M) Am(WR)A(K,x)Qo
1/2 -1/2

= AYY)(WR) A‘m(wR) J ™ () A(K,x) Qo



= JYn(WR) A(K'X)me(wR) (2,-

On the other hand,

FaN T
A(K, - x)*() = s*A(K, - x) L2

Tmurg & mauy 2 - ¥

-1/2 V=T
= Jm(wR) TN ™) UIN( - —;—))A(K,x)ﬂo

-1/2 1/2
= Ty D oy Bommy 2 £,

= J'hﬂ(WR) A(K,x)J.nn(WR)STIO.

From this, it follows that the reality condition is in force.

[Note: In making the calculation, we have used the fact that

g a2 o AT25

LEMMA Let s,t be real variables and let 6 , T be complex
WAAAAAA

+

F (s,t)
variables. Suppose given two bounded continuous functions
F  (s,t)
with F¥(s,t) = F (s,t) ¥V (s,t) e\gf. Assume:

(+) F+(s,t) can be analytically continued into
{0:0<ImG<1/2¢ x §T:-1/2¢ImT< O} ;

(-) F (s,t) can be analytically continued into



10.

{o:-1/2<me <0} X {t:0¢mT<1/2};

- “'l) - YV -1 _____V-—]_
2

(+) Frs + Y31,
Then 3 a function F holomorphic in

1 1
{ -5 <Img + Im T < 5 }

which analytically continues F' and F~. Moreover, Y z€C,

F(e.,T) F(og+z, T-2).

[Note: Therefore

F(s,t) = F(s + z, t - z)
=

F(s,t) = Fi{s + t,0) (z = t)
=

F(s, -s) = F(0,0) (t = -s).]

Suppose that the theory satisfies wedge duality and the reality
condition =-- then we claim that the B-W property obtains. Thus let

Ae AL nQ*, K+ x C Wy, and B € YN(W ). sSimplify notation and drop

the subscript YTNWR) from the modular objects. Put

— V-1 s
F (s,t) = <Qy, B A UCA(E)AK,x) L >
_ -Y¥-1s
F(s,t) = <SLy, A(KR)U(A(-E)) & BL2y> .
F' (s,t) (+)
It is easy to see that _ satisfies condition of the
- (F (s,t) (=)

lemma. Since ‘YH(WL) = WTNWR)'r
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F(s,t) ={{2y,B A UCA(ENAKK,x) 5>

V-1 s -V-1s V-1 s
=L M (N B A ) (UCAENDAER,KUIA(-E)NUA £)I,>

-¥-1 38 V-1 s
=<2, & B A ) (UOAEDAKXU(A(-))) £2,>

-¥Y=~1s -1 s

=820 (WA ENARXTIANGE)) A RAN 12>

-V-1s -
= <€2) AR, UIA(-E)) A B(2y > =F (s,t).

To apply the lemma, it remains to show

V-1 Y-T
2

(4) Frs + Y51 e - L) - e - XSL

Let's start with the LHS:

pt(s + Y21 o . M-,

2 2

V-1's -1/2
=<{£2;/B A UCAENUTCAG Y5 aEx) $2)>

=<<,,B A N U(AN(ENAK,-x) £2, >

VT s

1/s A
B* (g, AN UCAENDR(K,-x) £2 1>

N

-1/2 -1's A
={A =32, I UIAEDAR,-x) 2>

-1/2 ~1/2 -1's A
=& s B, A UIAEDAK -2 >



12,

=< mIQ A UAEDAKR-x S,

=(Q,TB*T A UCAERDAEK, =) QO > .

Turning to the RHS, proceed from

_ -Y-1 s
Fo(s,t) =02, A(K,X)U(A (-t)) I BS2, >
- V-1 s
= CUCA@DAKX)* Ly, A B, >
to
Fr(s - Y21, v+ 5h
- -V-1s -1/2
=<U(/\(t))U(/\(—Y;l-))A(K,x)*DO, AN o 8BS
— -V-1s -1/2
=<UCANTIA (- S5hakx* <, A A BO, D
A -V-I's ~-1/2
={UCAENA* (R, -x) €2, I N B, D
~ - VT's  -1/2
A - V-1"s -1/2
= {UNAE)AK,-x)* 10 DD a3 AN B2,
A - -1 s
= CUINENAR, - * Y0 AN Is*B 2y >
N - "l S
= {2y AE, - UIA-E)) A aB*3 20 > -
But

I MN(W)'T = (W) .
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I.e
I MW )J = ™ (W)
=>
JB*J G‘M(WR).
Therefore
F (s - —-———';l, £+ ;1)
A - V-1s
= <€2 4 UCAEND AR, -x)TIA(-E)) N gB*3 £, >
-1 s A - V-1l s
=<2, A UCA)AK, -x)U(A-t)) A IB*3 <2 >
V-1 s

N
= <£2,,3B*7 A\ UCARDAK, =)D -

Accordingly, condition (+) is satisfied, hence

F(S, ""S) = F(0,0)
=

V-1 s
<‘QOIB A U(/\(-S))A(KIX)QO>

= <€2,,BAK,x) 2> -
Since WYW(WL)STIO and { A(K,x)Sﬁlo}- are dense, we then conclude that

YV -1' s
JAN U(AN(-s)) =1 Vs,

which is equivalent to the B-W property.



Haag Duality Suppose given a weakly additive PTV,

open set O, -- then

0

meyc (Y Mo
010,

=( U Yﬂ(o))'.

0 _Lo0

On the other hand,

oy ) =( U, 'Yn(O)) "
O(:OO

(Y, mo)-

O.LO0

m(o‘oL)' = U m(O))"'

0lo,

=( U m(o)>'.

OJ.O0

Definition: O0 is dual if

_ Ly
™0y = Moy ).

Fix

a bounded

The theory is then said to satisfy Haag duality if each double

cone K is dual.

Fact: 1In the presence of Haag duality, V¥ double cone X,

M mmw = N mut):.

WIOK WOK




LEMMA Suppose that the theory satisfies Haag duality -- then
WA AN

the theory satisfies wedge duality.
[Fix WOGLJ . Choose an increasing sequence of double cones

o
K such that UJ R =W

i 0

o

Wo
K,

K,

I

Let ’J)n ={(/\,a):(/\,a)-WOD Kn} and put

o0
F = () fn = LA (N0 D g}

By the above, for n = 1,2,..., we have

) v = O mmwt)r.
WDKn W:)Kn

But ‘dwew, 3(/\,a)€6’,: : (/\,a)-W0 = W, hence

()Y MUA) W) = () AW )

J 4 A
=>

N N MUNa) W) = () ) MUAR) W)
1 1 -



=
O MUAR) W) = (NN ,a) W, ).
A Foo

But

(N ,2) 'WOD WO

=
T
(A,a) Wy < W,
=
MI((A2) Wy ) S W)
=
G )T YN Aa) W) )
= L L
MWMEG) T ) ICAR) W) !
Foo
= ) MCA2) W)
Ao

C YNy (1,00 = id € of ).

Since the opposite containment

(W) S YS!

is always true, it follows that wedge duality is satisfied.]



Half-Sided Modular Inclusions Suppose given a standard W*-algebra

(W), Q) ) -

Notation:

(1) hsmi(Yr)) is the set of W*-subalgebras Y)< YY) for which

()O is cyclic and

A‘\/——_i't -V-Tt

™" YIAm N (£40).

(2) hsmi(Y71)+ is the set of W*-subalgebras Y| C Yy} for which

,(10 is cyclic and

V-1 t -V-1't
Am Yl[;m YV (£20).

[Note: If Y] € hsmi(YV))I, then it is automatic that the pair

(Y ,<{),) is standard.]

Remark: The condition

V-1t -Y-1¢t
AN, Y’tam N VYVt
V=1t
™m

is a one parameter group of automorphisms of Y] satisfying the modular

implies that Y1=YY). 1Indeed, under these circumstances, A\

condition per Q)O, hence, as the proof of uniqueness shows,

A: => =YY).
= A TN =M
Example: Suppose that U(t) = exp( V-1't H) (H>0) is a one

parameter unitary group which leaves S)O fixed with

M uwe) Tt (£ >0).



Let

N, = usMu(s) L

Then V¥V s 20,
N, € hsmi (YY) .

[In fact, V¥ t2>0,

-V-T t V-1 t
AY‘f) Yls Am

-V-1lt V-1 t - V-1t V-1t -V-1t
=& Uuls) Iy, A m ANy, A

21U t - V=1t V-1t 2Tt
9]
(se ) A‘Yh

2T t 2Tt
U(s)U( (e -1)s) YWY U(-(e -1)s)U(~-s)

C uls) MNU(-s) = Y_.]

THEOREM Let Y] € hsmi (YY)~ -- then 3 a one parameter unitary

group U(t) = exp(VY -1 t H) (H> 0) which leaves QO fixed with

seyMuE)tem (£>0)

such that

Y1 = u(1)Nu(-1).

To see how U is going to be produced, assume the truth of the

theorem -~ then



And:

N\ = (1) !"Nu(-1)
&n = U(1) AmU(—l)
- V1T ¢ V-1t
Dm'n (t) = Am An
-V-1t V-1
= Am U(1) Am U(-1)
20 t
= U(e )U("l)
2Tt
= U(e -1).
(e + Y34
- JTY\DYYI m (t)JY\
211 t
= JYYWU(e —l)JYl
2Tt
= Jqu Ule _l)JYT\JYYlJY1
2Tt
= U(-e + l)JNT\JWW
20t
= U(-e + l)wawU(l)Jyy}U(—l)
2Tt
= U(-e + 1)U(-1)U(-1)
2Tt
= U(-e -1).



It is therefore a question of showing that this data can be used to
define a one parameter unitary group with the desired properties.

What we shall do is show that the characteristic function

D(t)= D )

t
mon
commutes for different values of the arguments:

D(t)D(t') = D(t')D(t).

This will prove that U is additive for positive arguments and the
rest will follow.

The key technical point is to apply the fundamental lemma to

1 21Tt
W(t) = D<—~— log (e + l)) ’
2T T

working, however, withfrlalone. Therefore one has to check assumptions
(1)-(6). .0Of these, assumptions (1l)-(4) are clear (being properties

of characteristic functions). Since Ylé’hsmi(TTI)—,

DN D(E)* C€ Y| V t20
=
W)Y W) * C Y Vi,
which verifies assumption‘(S). Next,

V-1

D(t + 5

) = JmD(t)J

.

JmD(t)Jn Y']'Jh D(t)*Jm

= t D(t)*J
JmD()Y] (t) m




< Jer)J_Yn =M cmn'’

V"l'| V:—l) '
Wit + =) "Wt + 5= o'y

which verifies assumption (6).

So:
A‘\/:_1’1: - V-1t
W(s) I\ = W(s-t)
n m
or still,
V-1t 1 27 s - V-1t
TAN D[ — log (e + l)) IN
n 21 T m
l Zn(s—t)
= Df — log (e + 1)) .
21
-Y-1 ¢t
Multiply this equation on the left by £§‘YT) and on the right by
-1t
AN -- then the LHS becomes
n
C;— Y-t V-1t - V-1t V-1 t'
m™m Ay By A“ ’
where
1 217 s
t' = — log(e + 1).
2T T

As for the RHS, write

1 2Tt
—— log e
2N

t =

and note that



1 2T (s-t) 2Tt
——— [log(e + 1) + log e ]
21

1 27T (s-t) 2Tt
= — log ((e + 1)e )
2T

We thus end up with

-V-T't V-1't =-V-T+¢  V-1'¢

B B By By
1 2T ¢ 2t
= D( — log(e + e -1)),
21 T

an expression which is symmetric in t and t'.

And:
2Tt 2Tit!
U(e -1)U(e -1)

= D(t)D(t")

1 20t 2nt!
= D(—— log (e + e -1))

2T
2T1(§%? log (e2Tit + e211t'—1))

=Uu (e - -1)

217t 211 t’
= Uf(e + e =-2).

This establishes additivity for positive arguments. Easy manipulations

then lead to additivity for arbitrary arguments.



Remark: The generator H is positive. 1Indeed, A

log A 2 109 Ay, . But
T -V-T't Y-TIt
H(fam AY\ ) =0

= Va1 (Tog Ay 7 199 Byy)

and H is the closure of

1
—— (log I - log A\ ).
2w N — T m

So

U(t) = exp( V-1 tH) (H 20)

is a one parameter unitary group which leaves QTZO fixed.

vwMNuwe e k0.

This is obvious if t=0. Suppose, therefore, that t'is positive -- then
21t 2Tt -1
U(e -1) Q Ul(e -1)
- V-1 ¢t N-1 t - Y=-1t V-1 t
= N

-V-1t V-1t

= . <
Dy, MO, mn,
JYl being by assumption in hsmi (YY)) . Consequently,
V-1t -V-1t =271t
AN U(s) A = U(se )

n mn

™ by Mbyv by

In addition,



and

I, = U(-t).
JY\ U(t) n (-t)
LEMMA We have
NANAAAS
V-1t V-1t '
NS Ay, UCD.
[Take s=1 to get
-1 t -V-1t -2Tit
Uu(l) & = U( )
£>Y1 n e
=
V-1 t -VY-1't =27t
Uu(-1) I Uu(l) I = U(-1)U( )
A2 n ©
-2Ti t
= Ule -1)
=>
A\/--1' t 2Tt AV-r t
U(-1) Yj U(l) = Ul(e -1) n
A\/’:—ft - V-1t V-T't
" Tw Bn by
V-1+t
= ™
=>
V-1t V-1t
lln U(l) Am U(-1).]
Let N€Y)| -- then W t
V-1t -V¥V-1t Y-1 t - V-1t —TYj
Am A'YI N A‘YI AYY\ c



I.e.: V t,
-21Tt -2T t
Ul(e ~1)NU(Ll - e )y €N
But
-20t =2iT t
lim U(e -1)NU(1 - e )
t—> + 0
= U(-1)NU(1) (weak operator topology)
-
U(-1)NU(1) € YT .
Therefore

N C u@mymMu(-1).
On the other hand, thanks to the lemma, the modular groups of (Yq_hfio)
and (U(l)\ﬂﬂU(—l),f)o) are one and the same, hence
Y\ = u@)m u(-1).
It remains to establish that

U Tt e (k0.

But
Lx— V—l t V-1t 21t
™ EXYW = Ul(e =-1)
-
2T t -Y-1t V-1t
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2
2Tt - V-1t V-1t
U(e ) = Doy Ah U(1)
=>
2Tt -2T t
U(e ) YY) U(e )
A—V:Tt V-1 t | -V=1't V-1t
= ™ A“ U(l) Y"yu(-1) Ah lkm
- V=-T' ¢ V-1't - VTt -1t
A_\FTtYl V-Tt -V-1"t V-1't
I o' Am CAyh ™m AN, =Y -

Observation: In the relation

D(t + ng) = J‘m D(t)Jh
take t = 0 to get
U (eziT(:Z§Z)-l> = J J
m M
I.e
u(-2) = JWﬂ\ JY)L

or still,
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LEMMA Suppose that Y] € hsmi(YY])i and Y| # YY1 -- then )3/

a type I factor o

NNk < mMm .

Example: Suppose given a weakly additive PTV -- then \d t20,
WWQ(WR + ta+1
= U(ta+) “YY)(WR)U(-ta+)
< N(W) .

Therefore (s=1)

YY\(WR + a+) € hsmi( ’YY)(WR)) .
Consequently, the inclusion
WWQ(WR + a+) ”—>'YTKWR)

is not split.



C*-Categories Let TY be a category.

Notation: Elements of ngf will be denoted by P rGrees and

elements of Morfy will be denoted by R,S,... .

Definition: :Y is a C*-category if the following conditions are

satisfied.
(1) The morphism sets are complex Banach spaces, composition

of arrows is bilinear, and

Hres I £ URIL - (ISl .

(2) There is a conjugate linear involutive contravariant
functor *: °J — 7 which is the identity on objects such that

HRr*oril = URII 2.

[Note: If R: ¢ —> 6 , then R*: o0 —> ¢ , thus it makes sense to

form R* oR.]

Example: A C*-category with a single object is just a C*-algebra.
Remark: In general, ¥ g€ Ob 7J , Mor(p ,p ) is a unital C*-algebra.
[Note: It is also necessary to postulate that VR, R*©R is a

positive element of Mor(g ,p ), so R¥*OR = X*oX for some X€Mor(p ,p ).]

Suppose that °7J is a C*-category -- then

(i) 9 is said to have subobjects if given a projection

E€Mor(p ,p ) there is a veg_ag;(o",()):

* = * =
V¥ oV 16' & VoV E.

(ii) %J is said to have finite direct sums if given

P, c€0b Y there are VEMor(p,T), WeMor( ¢, T):



V* oV

Lp
& VOV*¥ + WOW* = l-c .

W¥oW 1

6

Suppose that ff is a C*-category =-=- then Y is said to be a

strict monoidal C*-category if there is an associative bilinear

bifunctor @ : ff x T — TT which commutes with * and admits a unit

1€ ob 7.

In detail: Associativity means that the functors

RPxL): (I xT) xT =7
® 1x®@): Tx (T xT)—> T

are equal, while the condition on the unit translates to

®(’Lxl)=:_tg,J =®@1 x71),
where
1 xl: 7 — T xT 1x1 : J—= F x7T
P —>(1.,9) p — (P, 1) .

Bifunctoriality says that 1 & 1 and

1
P S PR

(R®S)o(R"@s")

(ROR') @ (S 08")

whenever the composites RoOR' and S©S' are defined.
[Note: The bifunctor X) assigns to each pair of objects p , o

an object ¢ ® 6 and to each pair of arrows R: ¢ —¢, R': p' — ¢ '



an arrow R@R': P ® ¢' — ¢ @6 with

RAR' = (1 @ R') 0(RAL _,)
o P

or still,
RAR' = (R@lc,) O(lP @ R").

The bilinear operation (X) is associative on both objects and arrows.

In addition,

PO 1=1Q@pP=¢
1, ®R=R@1, =R.

Finally,

(R @R')* = R*Q@R'*.]

Remark: Mor(7,7 ) is an abelian C*-algebra. In fact, if

R,R'€ Mor(7 , 1), then

RA®R' = (11 ® R') o(R@lL) = R'oR
R®R' = (R®11 ) o(lloR') = R oR!
=

R'oR = ROR'.

[Note: Mor( ¢ ,o ) has the structure of a Mor(1 ,1 )-bimodule

o
and{ ® are Mor(? ,71 ) compatible maps.]

Example: Let 01 be a unital C*-algebra -- then by End Ol we
shall understand the C*-category whose objects are the unital endo-

morphisms e : Ol — O and whose arrows p — o are the intertwiners,



i.e.,

Mor(p,q) =§ TeOl: Tp(a) =c(A)T Vae OL} .

Here, the composition of arrows, when defined, is given by the product

= 1

in 01 and 10_(6 Mor (¢, p) serves as the identity: lp oL -
Now End 01, in and of itself, is a semigroup: ( P o ¢ ) (A) = P( 6 (A)).
On the other hand, if R€Mor(p, p') and S€Mor( ¢, '), then

Rp(s) ( =p'(S)R) € Mor( p o6, £' o ¢')- 1In fact,

Rpe(s) p(o(a)) = Re(So(A))

P'(s o(n))R
= P'(o'(A)S)R
= p'(c'(n)) p'(S)R.

Agreeing to write RX S = R p(S), put

P R@®o= poo

RQ@QS

RXS

Then it is clear that with these operations, End 0( is a strict
monoidal C*-category.
[Note: By definition, Mor(l,l) = { T€Ol: TA = AT VaeOL{ ,

i.e., Moxr(l1,1) =12

op SMer(p.,p) Ve .l

Suppose that Y is a strict monoidal C*-category -- then a

permutation structure on TY is a function which assigns to each pair




(e,6) G_Ql_)”jx(_)g':)’ a unitary element &(p,c )€ Mor(QP @6, 0o @F )

such that
Eloiploelp o) =1,
€E(v,p) = €lp,1) =1, ,
Elp®c,T) = (e(p,TI® 1L )o0(l, @ e(6,1)),
E(p',6') o(R®S) = (SR) o €( @, 6),

where in the last line ReMor(p,p '), S€Mor(o, o).

[Note: The conditions

1

*

r ﬂ( I * l
E(p,g) o E(p,0) ¢ @

are tantamount to the unitarity of E&(p,s).]

Remark: A braided structure on i} is defined by a similar set

of axioms except the requirement

’ s ’ =1
Elg,p) o &(p,0) 0 @

is dropped and the assumption
Elp, 6 @T) = (lo_®€(P,‘C))O(E((’,0‘)®lt )
is added to the list.

Suppose that 7J is a strict monoidal C*-category which admits

a permutation structure -- then a conjugation structure on J is an

ob J — 0b 7y

PP

assignment together with arrows



R,€ Mor(1l, p®@p)

R_€ Mor(1, p@@ ),

P
where
RP= E(P,(’)ORP,
subject to
=, _
(Rf)@lP)O(lP@RP) lP

|
=
|
-

(R’;)®l§ )o(lF®RP) =

the conjugate equations.

[Note: One calls'F a conjugate for p .l

LEMMA Suppose that ¢ € Ob “J -- then there are natural iso-
morphisms

Mor( p ®ov T)—> Mor(o,p @ T)
Mor (o @@, 1) — Mor(o, T@p ),
viz.
S—%(lFQ)S)o(RP@lG)
with inverse
' —> (R 1 1 s'
S >(RP® ’C)O(P® )
and

T — (T ®1F )o(l(y@ RP)

with inverse

T' 7 (1. ®R’(‘J ) 0(T'®1P ).



[Consider, e.g., the first assertion:

15® ((R; @i ) e, ®S'))o R, @1g)

= (1_ ®@R* ®1_) o (1 — S') o(R 1
e ¢ T P®€® (P@’f’

=(IF®R’;®1.[)O(1 ?@FORP)®(S'OIO’)

(lp ®R’; ®l_c) O(R‘,@S')

- '
1z ®RP®1.C) oR, @lgzgq) o, @S

(1? ®R"(; ®1_.L ) O(RP @15 ®1T.)OS"

By hypothesis,

* — — DR = 1—
(R @1(3)0(1P @RP) 1P

¢
=
R * * )k = 1% = 7 _
(1F®RP) O(RP®lP) l?’ lP
p—
R* R = —
(l_‘_;(Z()RP )O(RP®lP) lP
((lF@)R; ) o (R, ®1?)>® (1 oly) =15 @1,
=>

- _* - = — .
(lP®RP®lT)O(R?®lP®lt) 1P®_C

Therefore, upon precomposing with S', we end up with

R oS8S' = 38',
P DT



Ditto for the other direction.]

[Note: This lemma admits an obvious interpretation in terms

of adjoint functors.]

It follows that

Mor(p ,p )2 Mor(2 , p@p ) X Mor(1, P @@ ) Moxr(p,p ).
[In the relation

Mor( P @ o; 1) =X Mor(o, P @T)

take 0 =2 and T=¢ to get

Mor(p ,p)ooMor(,p @ P ),

hence, by symmetry,

Mor(p, Pl Mor( 1, p@p ).
But from

Mor(c ® ¢, T) X Mor(o, T® P )
with 6 =1 and T = p » we also have

Mor(p ,p )X Mor( 1, P ® ¢ ).]

LEMMA Fix @ € 0Ob °y . Assume: ﬂRleMor(?_,pl®p) such that

RI®@1, ) o (1, ®R)) =1,
(R, = €( Py, p) oRy).

* 1 R,) =1



Then there is a unique unitary U€ Mor ( ?} pl) with

e
|

)
I

1 (l':,®U)oRP .

[This is an easy consequence of the preceding lemma.]



Dimension Theory Let T be a strictly monoidal C*-category

having subobjects and finite direct sums as well as a permutation

structure and a conjugation structure.

Assumption: Mor(l1 ,uU ) = Sl1 .

[Note: This implies that W p€0b J, Mor(g ,p ) is finite
dimensional.]
Definition: Let g € Ob ) -- then by the dimension of p ,

written d(¢ ), we understand the complex number

R* R _ € Mor ) .
PO e (lr_l. .

P>P®?

[Note: Recall that R? o RP is the composite 1

*
R

> 1 . Observe too that the definition is independent of the

choice of R() : V¥ unitary U€ Mor (p . f1)

HU@lP)oRP)*<>HU®lP)oRP)

R"; o (U<X>lP ) * O(U®lP ) oRP

= R’& °(U*®l, ) o (TR, ) °Rg

= RY o [(UTFo) @ 1,D1p)]0R,

= R? o (16 D lP )oRP

= R* 1 R
o o F@p °Rq

= R? o RP .1



The dimension function

d:0b Y — C
— g
has the following properties:

(1) a(p) 20;

(2) d(p) = da(p);

(3) d(p @) = dlp)d(s);

(4) d(p, @p,) = d(py) +dl(P,).

Remark: It is a fact that the set of unitary equivalence

classes of objects in “) with d(p) =1 form an abelian group under

the monoidal product, the Picard group of 3 .

Let P be the strict symmetric monoidal category whose objects
wwW

are the nonnegative integers, its morphisms being

Mor (n,n) = Pn (ggE(0,0) = 10)
Mor (m,n) = § (m#n) .

Here the monoidal structure on objects is defined by addition (i.e.,
morphisms

m@n = m+n), while onxoixjextxx it is given by

1 2...m m+l ... m+n gpeEPm
pP®g =
P(1) p(2)...P(m) m+g(l) ... m+g(n) q€P .

The symmetry T:P — P is the natural isomorphism
“wy v

: m+n —r m+n
Tﬁ'n 7

specified by the permutation



2...Mm m+1 m+2,..m+n
(m,n) =
n+l n+2...n+m 1 2...n
Fix now an object ¢ € Ob T -- then there is one and only one
strict monoidal functor €

0 P — T with €, (1) =p such that

Ep(Tm,n) = T

Epm), &, (n)
= E(€, (m, €,(n)
=&(e™, pM.

First, Ep is uniquely defined on objects since we must have
€p(0) =7 and g,(n) = €, (1®--@L) = ¢ D--- @ ¢ = p".

Obviously, EF(lO) = 1, and

EP(ll) = l? . Moreover, gp is
uniquely defined on“gz. In fact, & (12)

) = 1l,pand  €,(T) 1)

must
P
preserve the symmetry.

Next, for a given pej%l (n>2), there are two possibilities,
viz:

(1) p(l) =1 and p =

llqu', where p'ewgn_l;
(2) p(l) # 1 and p = (1;@pP") o((1,1)P1__,) °(1,®q") .,
where p',q'€P_ ;.

to set

Accordingly, if EP has been defined onvgn_l, then it is necessary

- =1 '
EP(p) P®&P(p )



or

E?(p) = U, ® Q‘P(p'))’O( E(p.p )®1Pn_2) o, @ aP(q'))

as the case may be. 8So, granted existence, uniqueness follows.

To establish existence, we shall use these formulas to define

E? inductively and claim:

(a)n € is welldefined onmgn;

¢

(b)n EP(p) oa(,(q) = EP (poq) (P.qe}zn):

(c) EP(p®q) = EP(p)@)EP(q) (p@a €P, )

(d) &

n

P((r,s)) = Ep(pr,ps) (r+s = n).

[Note: 1In succession, (b)n says that E‘, is a functor, (c)n says

that & _ is monoidal, and (d)n says that &£ _ preserves the symmetry.]

¢ (4

These statements are proved by induction. They are, of course,
trivial for n = 1,2. Suppose that they have been verified for
k<n (n» 2). It is clear that (a)n is valid on llclgn-l' Assume

then that

(1,@p") ©((1,1)@1,_,) o(1,;®q")

= (1;®P") o ((1,1H@1__,) o(1,®a"),

] " n : ny — 1
where p',p",q',qg €P _;. Multiply on the left by (llQ9p ) and

on the right by (llQQq')_l. Changing the notation, we are thus

reduced to showing that

1,®p = ((L,LL _,) o(1,®x1 (1L, H®L__,)



)

Lo @&, = (E(p,pI@L ;) 00p @ Ep(@)o(E(p,PI@L, ;5.

Here, p,9€ P _; and it 'is easy to check that actually p=q with

p(l) = g(1) =1, so q=1169q' (q'€P _,). Therefore

(g(e.C )®1Pn—2) Q(lP ® SP(q)) o(E(e,P)(g)]_Pn_z)

(E(p.p )®1Pn’2) ol ®L, ® g,la")) °(€(P’P)®lpn—2)»

(ECP PIDL ;5) o, DefaNolelp, pI@L )

]

(E(p PIDL , p)o L,

oE(FIP))@( ap(q') Oan_z)]

(E((J,p)oe((%p))@(l()n_2 °© &,(qa'))

¢

1 (a')
02 @ €old

1P® 1o @ e(,<q')

=1P ®€P(q)

le ® EF(P)-

Consequently, EP is welldefined. The proofs of the other properties

are similar and will be omitted.

Remark: By construction, €& |“g = E(n) is a representation

e n

by unitary elements in Mor ( Fn, pn).



Define now a linear map

ot Mor(p® e — mor(e™h, P (21

¥

by the prescription

T — (R*P ®]‘pn—l) o (1_P_® T )o(RP ®lpn-l)'

Example: We have
_\if(l()n) = (R*P @1 Pn"l) o(l F)_Qz)lfn)o (RP®an_l)

= * 1 1
Ry @1 np) 0 1o o n oFp @1 )

=R @ ) oR, @1 )

i

(R OR )@ (L ol

(% ()n-l’)

i

atp) 1, @ L -1

ace) 1

P n-1°

Example: We have

Tl, @ THOToOo (1, ® T)) = T o Wp(T) © T,

14

. i . S
LEMMA EEF is positive: V¥V T, T{,( T™ o T )2 0.

[In fact,
T THo T) = (Rl @1 ) 1l @( T o T)) oR,®L )
= ®,®L )0l @ T el ® 1) o Ry @ )



and

(A @m0 ®y@L ;)"

(RP® an'l)* o (1F®T)‘*

(Rp @1 ,pp) 0 Lz @]

Iteration

n-1

Mor(p®, p™ — Mor(p™™h, p™TH — ... Mor(p ,p ) —> Mor(2 1)

then leads to a positive linear map

B morce™, ™ > Mor( 1, ).

Since 5‘) is a functor with E,P(n) = Pn, of necessity

(n)
P

n

EP(D_dp_l_:(n,n))cb_@g;(Pn, p™M), i.e., & (P,) C Mor( e7 P .

n)

P

It turns out that one can compute SQP(EJ (P)) V PER . Indeed,

d(p) g (;1—1)@.) (p(1)=1)

¥, (€ ‘Pn’ (p)) =

€ ‘Pn‘l’ (p') (p(1)#1).

Here p'évfn—l and p = llﬁpp' if p(l) = 1 while if p(l) # 1, then p'

is that element ofvgn obtained by dropping the number 1 in the

-1
decomposition of p into cycles and replacing the remaining k by
k-1 (k#1).

To illustrate, consider the first possibility:



(n) (n-1)
( (p)) = 1 '
‘:IZF Ev p) ':EP<P®£P (p"))

Il

: (n-1) , ,
T, @ Ep POl 0l @1 )

€L py o TP (1 o

e gn l(;n—l
(n-1) v
€ teheatel

=d(p) € (Pn'l)(p').

One may attach to €(n) two canonical projections, namely

¢

s _ L ¥
€ Mor(pe", p™)
a1 > eqnp E(H)(P)r
P n! PEPR. - e

the symmetric and antisymmetric projections, respectively.

Rappel: For any real number 4,

(i) = d(d-1)--- (d-n+1)

2z

n{

Z sgn p .dm(p)
€P

where m(p) is the number of cycles in p.

Since

T, e‘?n’(p)) = acp)™®),




it follows that

(n) ,, (n)
“_ZP (A? )
- L sgn p- T P (g™ (p)
n! pew}?'n - f e
nl peB,

(d(?)
. .
(n)

¢ is a positive element of Mor ( en, Pn) » hence _:E(g) (A(Pn))

is a positive element of Mor(1 ,1 ). In other words: Y n>1,

But A

d(g)(@(g)-1).--(d(p)-n+l) > 0,

which is possible only if d4(¢@) is a nonnegative integer.



DHR Theory Suppose given a weakly additive PTV with a unique

vacuum which satisfies Haag duality. Let Ol be the quasilocal algebra
of the theory, YY) the global algebra of the theory -- then = OL",
i.e., @ (¥P) = OU ", hence OU' = CI =>z(n = CI.

VA,
[Note: Recall that Haag duality means that each double cone K
is dual, i.e., (K = MK )'.]

1,4

Notation: WV open subset G Of,ﬁ,' (bounded or unbounded), put

0L(G) =C*( U TY)(O)) .

ocCaG
Then
oL@G)" = MI(G).
[Note: So, for a double cone K, "M (K) = Ot(gt)yrr = OI(KJ')'.]
Consider now Egg 0Ol , the unital endomorphisms of Ol -- then,

as has been seen earlier, End 01 carries the structure of a strict
monoidal C¥*-category.

[Note: A unital endomorphism p : 0t— 0L is necessarily
injective. Proof: The kernel of @ is a closed ideal and Ol is simple.

Accordingly, W A€ 0L, [le@Il = WAl .1

Definition: Objects ¢, ¢ €,End.01 are said to be unitarily

equivalent if 3 a unitary U€Mor( ¢,0 ).

[Note: U is unitary if U*U = 101 = UU*.,]

This notion splits the objects of End 01l into equivalence classes
[P].
Example: U€Mor(1,e) => UA = (AU VY A e 0t =>UAU’l =

P (a) Y a¢€ 0Ol , so [ 1] consists of the inner automorphisms of O



corresponding to the unitary elements in O1.

We shall now single out a full C*-subcategory “J < End Ol with

the following prdperties:
1e0n
proc € 00T =Y pog€0LT

PeobT =y [plcobT.

In particular, therefore, :T is strict monoidal.

Definition: A unital endomorphism p of Ol is said to be localizable

if 3(30: P(a) = A VAE OL(Oé ), in which case P is localized in O

0°

[Note: Accordingly, ¢ is also localizable in O if O,c O, thus

0

a localizable P can always be localized in a double cone KO.]

Definition: A unital endomorphism @ of Ol is said to be

transportable if VY O G| Po€lPl: Py is localized in O

0*

A DHR endomorphism is a unital P which is localizable and

transportable.

Example: The unit 7 is DHR.

Remark: Let 7y, be the vacuum representation of Cﬂ_(110(A) =

A YA € 0 which, up to unitary equivalence, is the GNS representation

attached to the vacuum state u)o) -- then by DHR(ITO) we understand

the set whose elements are those representations T1i of 0 such that

Y double cone K, ﬂ'lOl(Kl‘) is unitarily equivalent to L \ Olﬂ(l)



or still, those representations T1 of 1 such that 3 a DHR endomorphism
¢ with the property that 71 is unitarily equivalent to Ti g°fP -

Notation: ’3' is the full subcategory of End Ol whose objects

are the DHR endomorphisms.

LEMMA Ob 7 is closed w.r.t. products: @ ,6 € Ob J =»

Poce ob7J .

[Suppose that P is localized in K and ¢~ is localized in L.
Choose a double cone D: DD KUL -- then ot < K'L N .t and
ol ) < 0L xk*) N Ol@L), thus ¥ a € OL(DY), (poc)(a) =
(o6 (n)) = P(A) = A, so Pog is localized in D. It remains to
prove that P o¢ is transportable. For this purpose, let KO be an

arbitrary double cone and let ¢ 06 tel, 34 € [6] be localized in

1 -1

KO. Write PO = UoPUo r Og = Vo.crvo (UO’VO unitary) -- then

1
V aelblgR, ), (pgoo () =@ (5,(A)) = py(B) = A, hence

o © 0o is localized in K On the other hand, ¥ A€ 0O,

0

(Po 00 (B) = Pyloy(a)

it

€0 W o‘(A)Val)

1

i

Uy V) (@ oo )(B)(U,p (V)

PO OGOG[ Poﬁ—]l

U0 e (Vo) being unitary.]



[Note: Maintaining the above notation, assume in addition that

KLL -- then P o6 =6 of .]

Observation: Let p ,¢ € 0b % and let T€Mor(p,¢) -- then
1 K:T €M (K).

[Suppose that @ is localized in O and 6 is localized in P.

Since ¥V A€0l, Te(A) = 6(A)T, it follows that WV A € Otlot) N

Ol(P'L), TA = AT => T €( OL(c™) N 0L ))'. Fix a double cone

K: OUPC K =YK+ C ot N P'L = OI(KJ') < UL‘(o") N owet) =
1 1 1 - 1

(Ol " )yNO0l(p™))' < OL(KRT)' =>T € OL(RK™)"' =TN(KR).]

[Note: This argument does not require that TE€01l: It is

valid for any T € P () with T p(A) = C(A)T Vv Aae0l.]

Fact: 7) is closed w.r.t. the formation of subobjects.
[Let E€Mor(f +f ) be a projection: E @(A) = P(A)E YV ae 0.
Choose K: E € YY)(K) -- then, thanks to the Borchers property,

3 1. DK and a partial isometry V € YY)(L) such that V*V = 1. &

1
VV* = E. Define ¢ by

6 (A)

V* P (B)V.

Since VV* = E =>V = VV*V = EV, V¥V A, B € D(, we have

G (AB) = V* p(AB)V

V* p(A) P (B)V

V* @ () P (B)EV

V* P (A)E P (B)V



V* P(A)V-V* P (B)V

= 6 (A) 6 (B).
And:
G‘(IOL) = V* P(,ll)t JAY
= V*y
=‘lDL .

Therefore ¢ is a unital endomorphism of (. But

G(A) = V* p(A)V

=
V G(A) = VV* p(A)V
= E P(A)V
= P(A)EV = P(A)V
=7

VeMor( o, p).
So, to complete the proof, one has to check that 6 is DHR. First,
6 is localized in L. 1In fact, L'L crd = UI(LJ') c O’L(K'L),

thus V A € O’L(L’L ).

G(A) = V* p (A)V = V*AV = V*VA = A,

because V€ YN(L) and “YYKL)' = ~YY)(L"L ) D CTL(L“'L ). Second, ¢ is

transportable. To see this, given KO' choose K':

K' C KO .and (i{is(K',fl:‘~ KO) >0.



Since e is transportable, du: e' = U(DU—l is localized in K'. Put

E' = UEU-l -~ then another appeal to the Borchers property produces

a double cone L': K'C L' C X and a partial isometry V'€ M (L'):

VARAANE IS |

ol & V'V'* = E', TLet

c'(a) =v'*pr(av' (Ae0l).

Then ¢' is a unital endomorphism of Ol which is localized in L',

hence in K,- Moreover, Vv aeltl,

1

' (a) V'*U P(A)U V!

= V'*y P(A)U'IE'V'

1 1

= V'*y p(A)U “UEU "V

= V'*U p(A)EU"lv'

= V'*U P(A)EEU'lv'

= V'*UE P(A)EU‘lv'

= V'*UvuVv* P(A)VV*U_lV'

1

= V'*UV S(A)V*U V',

Finally, V'*UV is unitary:

lV' = V'*UEU_lV' = Y'*E'W' = y'*y' = ]

V' *UVVAU-
(318

1

V*U V'V AUV 1

V*U "E'UV = V*EV = V*V = 1
oL

0

=)
g'eclagl.

Therefore ¢ is transportable.]



Fact: J is closed w.r.t. the formation of finite direct sums.

Rappel: Given RE€Mor(p, p') and S€Mor( o ,5 '), by definition

RXS =Re(s) (=¢'(8)R)

is the monoidal operation on arrows (on objects, ® is simply

composition of unital endomorphisms).

l,d

Remark: Suppose that d22 ( = dim R >3) -- then VY double

L
cone K, K is path connected. This said, assume that

f is localized in K 6 is localized in L
and
' is localized in K' 6' is localized in L'.
¢
Then if
K1LL and K'1 L',
we have

RXS = SXR.

Our next objective is to equip 7J with a permutation structure,

i.e., to construct a function £& which assigns to each pair (p ,0 )

€ 0b°Yy x Ob’Y a unitary element € (p ,c )E Mor(pP oo, 6 op )
satisfying the usual conditions. To this end, it will be necessary
to slightly restrict the generality.

Convention: Assume henceforth that 4> 2.

Suppose given DHR endomorphisms @ andg . Choose double cones

KPO, LO__O: KPO.L Lo_O and choose POE[P], (;06[6‘]: Py is

localized in K and g 5 is localized in L (= ooy =0 ,0Pn) -
£ o 0 7o Po 2o 0°Ffo

Choose unitary elements UP € Mor(e, PO) r Uy € Mor( g, 6‘0) .



Definition: Put

- * *
€(P,6) = (UX X UL) (U, xU_)

€ Mor(P oo, cop ).

[Note: This makes sense. In fact,
UP x U_ € Mor(poo , P00 )

Ut X U;‘) € Mor(gyopyr0o0p)
and Py 063 = Ggopg-]

It is a formality to check that E(¢,¢ ) is independent of

the choice of PO"Tb' UP ’ qw_ within the given restrictions.

LEMMA & defines a permutation structure on 7} .
NAAA

[This is established by straightforward manipulations. When
d = 1, the definition of € (p,s ) is different and it is no longer

necessarily true that

r =l 14
Elg,e) & (p,o) e oo

i.e., in this case, the monodromy is nontrivial.]

Consequently,'\/f96£9§ Y , there is a unitary representation

e((r;) of «\Bn on the Hilbert space ¥ of the vacuum representation

T, of ol .

(n) n _n
[Note: Recall that ¢ 0 (P)) CMoxr(p™, p).1



Remark: Suppose that e OE[P] and let U€ Mor ( e PO) be

unitary -- then
(n) (n) - (n) (-n)
= U £ U '
o0 ¢
where
v —ux...xve Mor (e, p o) -

(n)
4

This shows that the equivalence class of g depends only on the

equivalence class of p .
3 A 3 0
Notation: P_ is the unitary dual of P_.
wv wvll

Since“Bn is compact, E() is discretely decomposable:

(n) = GD n_D,

SO

o

Il

@, R,

nef,
with isotypic projection ED:){-—b }QD.

[Note: On general grounds, the nonzero E_. generate the center

D
(n) "
of & P an) .
LEMMA Suppose that @ is localized in K -- then WV D, ED€E777(K).

[ ¥ p€P_, we have
vl

(n)
e

3 (peMoxr(p”, p™



10.

E
e‘;" (@) f @) = pPa) e((‘}’ (0) (a€OL)
=
s(;’ (p)A = A &.(?“’ (p) (A€ OL(XKT))
=
e‘g’ (p) € OL&Y)' = M (x).
Therefore
(n) "
e @y cmm
—

Ep E€E MI(K).]

It follows from the lemma that if ED is nonzero, then ng is
infinite. In fact, thanks to the Borchers property, 3 LDK and a
partial isometry VvV € TN(L) : V*V = 101 & VV* = Ey, thus in YN (L),

ED is equivalent to the identity, so the dimension of b{'D is infinite.

We shall now take up dimension theory. Here, it will be best
to proceed directly, putting aside any consideration of a conjugation
structure until later.

Definition: A DHR endomorphism e is irreducible if Mor (¢ ' P ) =Mg1

e

[Note: A sector of the theory is the unitary equivalence class

of an irreducible TTE:DHR(TTO). In view of the correspondence

TT€—>'n0 of ., sectors are parameterized by the [¢ 1, where P is

irreducible. Example: [l ] picks off the vacuum sector.]
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Suppose that @ is irreducible -- then one can attach to ¢ an

omitted). It depends only on [ ].

A

"~
e = 0: In this case, every Déign occurs in the decomposition

E(n)=€9 n D,

D
P pef
i.e., VW D, nD#O.
’>\?7£0: Put
1
a_ = —=
? I Nl

Then it turns out thatdP €~Jg, a fact which places an a priori

L] . A . 3 3 »
restriction on those D€5Pn which can occur in the decomposition of
W

(n)

£ , hamely:
¢
(i) If 9\P= al— , then nD#O iff the lengths of the columns
?
of the Young diagram attached to D are £ d? .
(ii) 1If 7\9 = - El“ , then nD#O iff the lengths of the rows
g
of the Young diagram attached to D are £ d? .
Remark: [¢] is a so-called irreducible sector of the theory.
There is

infinite statistics if '%P== 0,

para-Bose statistics if 7\P= al— ,
4

para-Fermi statistics if f%P = - ak—

C
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An irreducible ¢ is said to be finite if %F’ #0.

Definition: Let p € Ob‘J be arbitrary -- then ¢ is said to be
finite if it can be written as a finite direct sum of finite irreducibles.

Denote by fo the full C*-subcategory of J whose objects are

the finite ¢ -- then
1€ ob j’f
p:. €0 T, =y poce€ b T,

PEO T, = [pl< 0b T, .
In particular, therefore, “J £ is strict monoidal. As such, it
inherits a permutation structure from g .

[Note: By contrast with 7y , 3'f can also be equipped with a

conjugation structure (cf. infra).]

Fact: J ¢ is closed w.r.t. the formation of subobjects.
Fact: j'f is closed w.r.t. the formation of finite direct sums.
Suppose that @ is finite -- then Mor(¢ ,¢ ) is finite dimensional.

Its center is generated by minimal central projections Ei (i=1,...,n),

hence
n
el =D mlp,l (m; € N),
i=1
where Pj_<;> Ei and
£ =3
Mor(Pi,Pj) =

0 (i#3) .
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LEMMA Let p —7 m (@) be a complex valued function on the finite
NAAAAAY
irreducibles which is an equivalence class invariant. Extend a« to

arbitrary finite ¢ by writing

n

A(P) =2 ~(PE; (€ Mor(p,p)).

i=1

Then W (’l,PZGQ_@_ ojf,

Tal( @) = M(P,T (TEMOr( P, p,)).

Example: Given a finite irreducible { , put

1L

dF %

Then for arbitrary finite ¢ ,

W(p) =E(p) - E_(p),

where
E (p) = Z B
AR
E (@) = > E, .
_(p v, Za B
Therefore
W(p)® =1, & %(p)* = a(p).
One calls @ bosonic if E_(¢) = 0, fermionic if E _ (P) = 0. Of

course, if ¢ is a finite irreducible, then { is either bosonic or

fermionic. In general, ¢ can be expressed as the direct sum of a
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bosonic and a fermionic endomorphism:
P=¢,.,Dp._
with

e L E(P)
€ Mor(eg,p)
P _€YE_(P) .
[Note: W respects composition in the sense that MW ( Pl.c’ez) =
)&(E’l) Xl Fz)-]

Definition: The statistical dimension of a @ € Ob fff is

1

n
a(e) = Zz:lmidP .

It is easy to see that the statistical dimension is additive on

finite direct sums. Furthermore, d( Pl o Pz) = d((’l)d((72).

Fact: Suppose that p is finite -- then ¢ is an automorphism
iff d(g) = 1.
We have yet to consider the existence of a conjugation structure.

In point of fact, there is an assignment -

% T -7 0b Ty

P —p

together with arrows
R, € Moxr(l, p op )

R, € Mor(1,pop)
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such that
(RY% %1,) (1g % E(e,p)) (Ryx1,) = XK(P)
(R X 15) (1p x E(F,f)) (Rox1lg) =mlp)
or still,
R*‘;E(e(e,p))RP = ()
E*?p(a((?,?))'ﬁ? = (p)

These, however, are not the conjugate equations.

[Note: Actually, the conjugate equations are valid. What
breaks down is the relation —I{P = g( ?,P ) oRP , which is wvalid iff
¢ is bosonic.]

Remark: Return for the moment to the abstract picture -- then

!
=

* ==
(R(»@lP Jo(ls @ Elp.p)) @o(R,Q1,)

(R;;@l-‘;)o 1o ® €(p,p))o(R,PLs) =15

For example, let us derive the first relation, starting from the

conjugate equation

(R’;‘) ®1P ) o(lP®RP) =1lp -
Thus

E(llf’) =l?

(R?®l?)°(lp®RP)° €(2,p) =1,.



l6.

But
1 Mor (p , ()
p € Moxlp.p
Ry, € Mor(1,p ®P)
=>
(lP®RP)08(1,P) = E(P AP, PIOR, DL, ).
And
Ro = e(‘e',e)oR?.
Therefore
1, =((e(?,e)oRF)*@uP)og(?@p,e)o(RP®l‘,)
= ((RE o g(p,pPN®@1p) °©E(P @P,P)O(R,PLp).
But
E(P®@e, p) = (E(F,p)RL,) ol @ ele,p))
=>
((RY, o &lp,pN®@1y) © E(p @prp)
= ((RY °© Elp, p)N)@L, ) 0(E(P,PIVL,) 015 @ E(P,P)).
And

((R% 0 & (p.p @) 0 E(F,PIRLp)

(|

(R*, © E(p.,p)o E(P PN, 01,

i

* 1 — 1
® °lsge  @le

R*P®1P.

il
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Consequently,

l(’ = (R*P @19)0(15 X ele,rp)) O(RP®1P)’
as claimed.

The escape from this difficulty is simple: Alter the given
permutation structure on j'f in such a way that in the new permutation
structure a legitimate conjugation structure can be defined, thereby
paving the way for an application of dimension theory. Fortunately,
no ambiguities arise: The two potential meanings of d({ ) are the

same.

Definition: Given ¢ ,¢ € 0b 'J'f, put
S(P.o) =5 ogx 1o +1p xMle) + X(PIXx1 o - X (p) x W (a))

€ Mor(p oG, Poc).

Properties:

(1) E(p,6)S(p, o)

d(o,p) E(p,o);

(2) d(p,6)S(p,o) =1

OL;
N |
(3) d(P oo ,T) —7(1leo_x1t
+ H(())xldxlt +lPX10‘ X X(T)

= X(e) XL o XM (T)) (1‘, X 3 (o, T)).

Definition: Given p,o € 0b j'f, put

E(p.o) = €lp,o)S(P, o).

A
LEMMA & defines a permutation structure on :Sf.
NNy
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[The verification is purely computational.]

A
Remark: The passage & — &€ is called a Klein transformation.

A
To see that ( fo,s ) admits a conjugation structure, it suffices

to modify R? , leaving RP as is:

R, = R
O
_’: ~ N
R(J = ¢ (e . P)RP .
A 2
We then claim that the pair (RG"RP ) satisfies the conjugate equations,
i.e.,
A* A 1
X1 1 R =
(R? ?)(PX P) e

N A
* — -
(RP XlP )(lP X R? ) ?

u
|
I

or still,

2oon
A )

R? (R?) = lF'

To illustrate, consider the first relation. On general grounds,
we have '

TR (@) = W(PHT

So, since M (1) = lL ,

(TEMor (P4, P,))-

(W (P) X M (PR, =

M(P 0o pIRp =Rp 2 (1) = Rp.
But

M (p) X M(p) s XM (P)) (M(p)X1y)
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-
(L5 XM(P N OAPIX1, IR, = R,
=>
(M (pIX1, )R, = (15 XMU(P)IRy
=
Fa
Ro = €lp. PRy

= €(p,pP) O(P.PIRp

4

=3 8 (L +1g XX(p) + M(PIx1, =~ M(Pop)) Ry

F ’ P l—- x f R .
A

— \
(R*Xle)(lPxRP)

Il

(( E(p.p) Ly X MIPNREI*X15) (1, XR,)

(my e xwieIne(F pMxlp) Ay xm,)

((R;; (15 XM(p)) €lp, FNX1, ) (1,%xR,)

(R*) x1_ )(l= X W(p)x1

(p.,p) X1, (1 R, ).
0 P 0 J(E(p ., p P X

e ¢ e
But

'lPxRP = €(p op,pIRy

E(p.pIE(Pop,p) =P (E(P.pP)).
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Therefore
_':*X A
(RP 1o )(lQXRP)
= RS e (PN Elp,p) &L ‘p'op,me
=R’{; e Oxle))p(ECP,P)IRp
= R’é ¢ Oclp)elp, PR, .
But
e(pl,pz)(lplxu(Pz)) = (x((’Z)XIPl)E(pl,pz)
=2
H(P)YE(p,p) = (M(p)XlP) E(p.p)
=&(p/p) 1y XM (P))
=&(e,p)p(m(p)).
Therefore

"

- AN
*
(RPXlP )(lPx RP)

RY, plLECe, P plp((pPINRy

1l

* —
(RP le )(lP X E(P'F))(IF XP(M(P)))(RPle)
= (R*;,xlP )(lFX a(().p))(l?,-xlP X KPPV (R X14)

R* X 1 1 . 1 _ X )) (R 1
'(P f,)(ng(p (:))(POP (P)(f’xf’)

*
(R X 15 ) (L x &P, 1) (R X (p))
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(R* le)(l‘-,- xg(e.p))(Rle (1, x wm(p))

P

(R*P X1l

i

P L

)(l‘;- X g(e,p))(R?xlp)M(P)

il

WPIU(P)

il

u<e)2=1p.



The Field Algebra  Suppose given a weakly additive PTV with a

unique vacuum which satisfies Haag duality. Maintain the convention
that d2 2 and append a subzero to the Hilbert space underlying the

vacuum representation of Dl : I.e., write }?0 in place of ¥¢.
Finally, let Y be the set of double cones KCM.

The ingredients underlying the theory of the field algebra are

the following entities.

(a) A representation TV of Dl on a Hilbert space 14 containing

i, as a subrepresentation on }fo C ¥ -

(b) A compact group G and a faithful unitary representation

U of G on 3¢ leaving }{0 pointwise fixed.

(c) An inclusion preserving map K — 7F (K) from )& to the
W*-algebras on §{ .

THEN:

(1) There is a one-to=-one correspondence

p——

rr ')Jf/N &~ C/;\

[9]64>}
between the sectors of the theory and the unitary dual of G with

d(p) = d(%).

(2) There is an orthogonal decomposition

¥ -9 ¥ oo a3

T€q
(3) U operates on ¢¥f as

ue) = D 1@us(e) (o€,
TE€G



where, ¥ X , UE is an irreducible unitary representation of G of

dimension d(¥) and distinct § give inequivalent U§ .

(4) TT operates on §¢ as

Tm = @, Tl @aeodt),
JEG

where WV %, 11}. is an irreducible DHR representation of (L

( ﬂt’s‘ &> Tig op under [pl14> 5 ) and distinct § give inequivalent

T1§ .
5) VKeEXK &« Yoeg,

Ule) F (RU(e) ™t = F(x).

(6) ¥ K€ A, @fG(K) ( = F(K)NU(G)') leaves each H?
invariant and
G _
F (K)‘}(’}- = T OL(K)).

In particular:

FEw | ¥, = Olx).

(7) VRE K, F K o Spans a dense subspace of of.

(8) If K and L are spacelike separated, then the elements of

¥ (K) commute with the elements of T11( Ul(L)).

Remark: The left regular representation of G on LZ(G) is

unitarily equivalent to

D azrug .
s€e8 3



On the other hand, by the above,

AN seh ($)T¢ -

The field algebra ?}'of a particle theory is the norm closure

of U ZFwx).
K

One has

F'=Cr=THOO'N F,

where

THCOL) !

i

u(G)".

Remark: Let Yy € Aut.?F -~ then ¥ = Ad U(og) for some G € G

iff ¥ acts trivially on 11 (O1).

There is an additional element of structure that reflects the

Bose-Fermi alternative, namely 3 an element T € Z. (the center of G):

G

2 e, which controls the commutativity relation in 8: .

5

Thus let [’ = U(3), so

r2 -1, P=r1-px,

[Note: One can be precise. Indeed, U'f () =N hence

<

- @ :
I Sed 1 Xy

Traditionally, X _ is referred to as the stat

K




Put

1 -1
X, =7 (X & [XCT).

Definition: X is bosonic if F‘X!"—l = X, fermionic if {‘Xf“—l = =X.
[Note: X, is bosonic, X_ is fermionic, and X = X, + X .]

+ + -

Fact: If K and L are spacelike separated, then

X € 7} (K)
Y € 7(L)
=
X, Y, = ¥ X,
X, Y_ =YX & XY =YX_
XY +YX =0.

[Note: 1In suggestive notation, this says that
%F+(K) commutes with % (L)
§%+(L) commutes with <F (K)
¥ _(K) anticommutes with F _(L).]

Now set
X~ = 72XZ*,

where

1. 2
Z = —— (id +V-I'T")y (==zc=0").
1+v=T = ot



Then
xt=x_+ VI Tx.

Put

FEE®) = 2 F (k)2

Then twisted Haag duality obtains:

F Pk = Fxh).
[Note: It is not difficult to check that
Ftx <%«

For, by definition, ¥ (kT is generated by the % (L) with K.L1L.

So fix such an L and consider [X,Y] (X € F(XK), Y € 5F (L)) -- then
[x%,v] = [x, + V-IT'x_, v, + ¥_]
= V=1 (Irx_,y] + [M"x_,¥_1).
And:
[rx_,y.l=0Xy -Y IX_

2
Pxy - My "x_

Fxy - [ry rx_

My - ry rx))

Mx_y -YXx)

"o = 0.



By the same token,

[Px_,¥_1] MX_Y_-TY_Ix)

"X Y_ + Y X))
= 70 =0.]

Remark: Recall that Haag duality => wedge duality. Here,

twisted Haag duality =) twisted wedge duality: V W€ W ,

A
FEmw = Fwt) .
By definition, our PTV comes equipped with a unitary representation

U, of 6’+ on }Qo such that

Uy (R ,2) M (01U, (K,a) ™ = M((R,a)-0),
where
spec(U0 |“3'd)C: G;.

It remains to incorporate this fact into the theory of the field
algebra.
Definition: Suppose that ¢ is finite -- then p is said to be

covariant if 3 a unitary representation U‘, of O’I on 3{0 such that

P (Uy(N,2)au,(K,a)™h) =

~ ~ -1
UP (AN,a) P(A)UP (/N,a) .

[Note: It can be shown that

1l,d o
“ sEec(UP]_& ) C:V+.]
Example: The unit 1 is covariant.

[Simply take U =0

1 0]



LEMMA Suppose that ¢ , p' are covariant and let R€Mor (e, gy -~

then ¥V (‘/\( ,a),

RU, (K, a) V(AN ,a)R.

=U
e
[Define an action X of _:_ron Mor( @ ,pP ') by the prescription
~ N\ NS
A(A,a)R = U (,.(/\,a)RUP (N ,a)*.

This makes sense, i.e.,

~o L ad *
U P.(/\,al)RU? (N a)* p(a)

= p' (AU ,,(R,a)RU, (N ,a)*

or still,

U?.(/\.a)RU?

(N,a)* p(R)UG (A ,a)
= ' (AU, (K,a)R.
Indeed, the LHS equals

U o (K,a)R p(UO(K,a)*AUO(X,a))

I

Upy (Rsa) ' (05 (R,2)*a0, (A,a))R

U (Ria)u o (Rja)% pt (U o, ¢ ~,a)R

p'(a)U P.('/V\,a)R,

which is the RHS. But Mor(? ,p‘) admits an inner product with the
property that the c((?f,a) are unitary. Since Mor ( g p') is finite

dimensional, it follows that \1(7(,&), X (/A\,a) = I, hence the lemma.]

Application: U is unique.

P




[In the lemma, take p = g' and R = 1? o]

[Note: Another corollary is the containment
v (0D < pove.
7 +
In fact,
Mor(g ,p ) = ¢ (OO
and the U‘,(7<,a) commute with the elements of_ggf(p (P ), sO

Y (Ria), Uy (R,a) € pO)".]

Denote by Tyc the full C*-subcategory of S'f whose objects are

covariant -- then
1e b Y,
prcE0 J, => Pos € 0b T
peod Y, = Ip1C b T .

Fact: ffc is closed w.r.t. the formation of subobjects.

Fact: iyc is closed w.r.t. the formation of finite direct sums.

In addition, it can be shown that

peob Y, =>peop T,
Therefore tyc has the same structure as tTf.

Remark: It is conceivable that every finite p is covariant but

this is an open question.

The theory of the field algebra can then be written in terms of

ffc as opposed to tff. Of course, in this situation,

AN
Irr °y c /<7 G

[p1<—> 5 .



But there is also a new ingredient, viz. a unitary representation

U of G’I on b? with the following properties:
(1) 0(K,a) Qg =2y
- : 1,d oy
(ii) sEec(Ulfg YT Vv

(ii1) @t < TTIOL "

1

(iv) U(K,a) FKU(K,a) " = F((X,a)K).

Remark: Per the orthogonal decomposition

¥ = D RN, 000,
TEG -

we have

u(R,a = @ v (R,a®i,
se6 3

where U gwé% U, under [p ]¢< % , thus

¢

1 1

Ug(R,a) Ty MU (Noa) ™ = Tig (0 (R, )80 (K,2) ™).

[Note: The symbol U has two meanings:
. N
(1) U is a unitary representation of 6’+ on ¥ ;
(2) U is a unitary representation of G on K.

Obviously,

U(N,a)U(6) = U(G)IU(AN,a).]



The Statistics Theorem Suppose

with a unique vacuum which satisfies

given a weakly additive PTV

Haag duality, where d2 2.

Assumption: The inner symmetry group of the theory is compact,

i.e., satisfies the gauge condition.
For any wedge WE L) , there is a reflection j (W) in the char-
acteristic two-plane of the wedge which leaves the apex of the wedge

unchanged. For example,

j(WR)(xo,xl,xz,...,xd) (-xo,—xl,xz,...,xd).

Remark: Jj(W)€ 6)+ (but j(W)¢ G)t). Moreover,

N o (E) = j(W)f\W(t)j(W) =f\w(—t).
W

Definition: A weakly additive PTV satisfies the modular con-

jugation principle (MCP) if VWE W,

Inan M KT = MEW K (K€K ).

[Note: It can be shown that the B-W property implies the MCP.]

We shall assume that the MCP is in force throughout the remainder

of this section.

The adjoint action Ad(j(W)) of j (W) on 6’I has a unique lift

to a homomorphism gé(j(W)) of CYIE
N«~ ~
P, e > @)
4 ‘0
\€+ > Oj'l'

Ad (3 (w))



LEMMA We have
NIAAAA/
Topean Vo (A1) Ty = Uo (RA(I (M) (A,2)) .

[The prescription

L %4

b

defines a unitary representation of 6’+ on ¢, that leaves(}w)

0
invariant. In addition, ¥ K€ X ,

~ ~ . . -~ -1
Tonowy Bo (BE(3 (W) (A L2)) T yyypy YNK) Ty 10y U (A (5N (A ,2)) " Ty

. ~ . N ud -1
Tyn(wy Yo (AL (3 (W) (A,a)) 1M (5 (W) -K) UG (AA (5 (W) (A, a)) "3y

B J‘W)(W)‘W) (A (F(W)) (A ,a)F (W) 'K)J;m(w)

=N (F (WA (F (W) (A ,a) ] (W) +K)

=M (Ad (5 W2 (A,a)-K)

=M((A,a)K) = M(A,a) "K) .
So, on the basis of the gauge condition,

Ug (R12) = Ty 0y Up B3G5 W) (K ,2)) Iy
from which the lemma. ]

. Ry . .
There is a homomorphlsmyg} —> CPi embedd1ng\§} as the group of

rotations in the 1-2 plane. Let gxp:R-—?\§} be the covering map --




then the diagram

admits a filler ri§,—4> (¢’ , which is a homomorphism of groups.

+

Given O € [0,2T1 ], let W.(8®) be the image of Wy under the

rotation by the angle © in the 1-2 plane ( = Wy = Wg(m)). Put

Ry(t) = Ug(r(t)) (t€R).

Then

Ry (8) MW R, (-0) = TN(W(8))

=

Ro (@) Immp R =) = Iyw (o))
=

J J

Mg (8 /2))7 M)

A 2
Ry (©/2)U (Ad (3 (W) ¥ (= ©/2)) Ty

RO(9/2)RO(G /2)

RO(B).



Example: We have

i

Ro (2T = Iy () Tmg)

J J
™) MWL)

J J
maw,) ~mwg)

= id .
}QO
[Note: 1In general, JYT)= JTH" Bear in mind that Haag duality
=> wedge duality,-hence‘Yn(WR)' = Yﬁ(WL).]

The statistics theorem is the assertion that in the covariant
situation,

u(r(2mi)) =1,
Y irreducible

thus - FEQQTCI
Uo (r(211))®1 = 1.6931?
= UP (r(21)) = )(? ig-b(?

[Note: This agrees with the preceding deduction: Take £ =1,

so U 0 = Uy -- then Uo(r(zrr)) =W ;g_}{o (')(l = +1).]

Facts:

1) ¥ W€w , 7{5: w), <2 O) is a standard W*-algebra;
(2) ¥ WEW s I g g 1 3o = Ty

3) Y weld,

T 1T AT gy = T v 27 myy) B €00);



(4) WV weld,

I VR 2)T o gy = UAAG ) (R,a)).

LEMMA VY welS,

23 oy = Ty a2t

[Put T = J g w " then
—_— _
2] = ——=——— (id + V-I'MJg.
1 +Y-1 =
But
Frgwr = Fgwmr L
=u(s) g wu(s)t
= % (W)
=
Frar=ag
=
Na=Jr.
Therefore
23 = —L (3 + V=T o)
1 +Y-1
= J( —1  ja. - VI
1 -v=T ~ f

Jz*.]




Observation: Recall that here twisted wedge duality obtains:

VvV weld,

Ftw = F @)

or still,
\ 7k — -L ]
z F(wyz* = Fwr).
Since Z is unitary, it follows that
* = J =

axw? =gty T gwh)-
In particular:

ZzJ 2% = J .

F (Wg) F (W)
Proceeding as before, we find that
T % wg(e/2)) 7 Fmy T UEO).

Consequently,

CEET) =T g wnn T F my

J J
F W) T F (W)

= 2J VAN
¥ (W) F (W)

= ZZJ J
F (W) 7 F (WR)
2 .2
=Z Jd
F(Wg)
2



To interpret the statistics theorem, specialize

U (R,a) Te@U (A,a) 70 = Tig (U (R,a)A00 (R, a) )
to
-1 -1
UL (E2T) Tig MU (@217 = Ty (@1 )auy 2T 7
or still,
1

Ug(r(Z‘lT)) TFxS—(A)UE(r(Z'ﬁ)) Tx(a).

Since TT3 is irreducible, it follows that -
U (r(27)) = s_ id '

where S? is a complex number of modulus one.

Definition: The spin of the sector represented by T‘|§ is s}_ .

In this terminology, we have therefore proved that the spin S.§

is precisely the statistics phase M§ .



Normality Suppose given a weakly additive PTV with a unique
vacuum which satisfies Haag duality.
Fix:

(1) An increasing sequence {Ong of double cones such that

cQ
Rl’d = U On;

N l
(2) A sequence {Knk of double cones such that ¥ n, K 1O .
Then VK€ )4 , I N(K): n2 N(K) => KL1K .

(- h ' . + => K1
[Choose N(K) :K 0 ence K C ON(K) C K K KN(K) .

N(K)' N (K)

Since n > N(K) => OnD ON(K) , it follows that K_LKn as well.]

LEMMA Suppose that ¢ is a DHR endomorphism which is localized
NAAAAN

in K€ A -- thend a unitary U €0t :
pa) = tmu™t (M €M (K)).
[Choose ?nc— [P1: P n is localized in Kn’ say pP n = Un-p 'Ur-11'

where Uneb_fl_o_r( (e n) is unitary -- then ¥ n 2N(K), we have

- 1
K_LKn => K C Kn

= MK < l)uKl;L )

= p M) =M

- -1 _
=> U, PMU "~ =M

— _ -1
=>  pPM) = U " MU_.

And, as we know, the U, e 0l .]



[Note: By definition, 0l is the norm closure of UYM(0) , where
0]

0 ranges over X . From the above, it follows that WM €& YNY0),

pn(M) = M eventually. If now A €0l is arbitrary, then I a sequence
M €\YY7(Ok):

lin |l M - Al =o0.

k—>00

Fix €& > 0 and choose k(& ):

M, - All<E  (k2k(E)).

Choose N = N(E& ):

CPntMece)) = Mgy P29
Then ¥ n >N,
e, @ - all
= He,(A) - PoMee)) * PnMe(g)y) - af\
Slhe a-m i+ e 04y -all
=Ha-m 0 sl o, - AN < 28
Therefore
lim || p (&) - &l} = o.
n —> o0

This implies that @ is the strong pointwise limit of DHR inner

automorphisms, viz.:



Lim |le@ -y @l =0,
n—> 00

where

-1
Wn(A) = U~ AU (A€eD1).]

Remark: 3 a double cone LD K and a unitary U € YN (L) :

1

p(M) = UMy~ (M € YN(K)) .

[From the preceding considerations,

e = vt Mo, MeMEX).

n

Choose a double cone L:L D KL)Kn -- then Y A€ D’L(L’L ),

P(A) = A
Pn(A) = A
=
-1 _ -1
[%1P(A)Un = U AUn = A
=
U A = AU
n n
= N
v, €0l@ )" = M),
so we can take U = U;l.]

A left inverse for P is a bounded linear map P : 0L — &)

with the following properties:



(i) §(1m_) = i_qN;
(ii) A 20 => PB(a)>0;
(iii) P (A*) = $H(A)*;

(iv) F( P(A)B) = A P (B).

One then shows without difficulty that @ (01)c O and

Bor(p?, ™ < Mor (™, pP ) (n=1,2,...).

[Note: By definition,

N®Ill= sup Ha@l .
all£1
Therefore
NS >1 ¢ N2 I = Widy,ll = D
and we claim that “ Pl] = 1. Using the positivity of 3 , one checks
that

Da*a) 2 P @) Ao

HFaal > ) 3@* 3@l = Hasmil 2.
This said, to get a contradiction assume that 3 a: il A‘l £1 &

Il 3@yl > 1 —- then |} a*al}l = Nall 2¢1

=
HZN > 3@l 2.

Proceed from here by iteration, replacing A by B = A*A:



2> 3@l 2

> 13N 2.
So, ¥ n>0,

Nl > @il 22,

an impossibility.]

To establish the existence of a left inverse for f . introduce
the set L (0L, B(3¥)) of all bounded linear maps T: 0l —7 (D (€ )
and let B = iT: Nrll & l} . Equip £ (01, ((d¢)) with the pointwise

06 -weak topology, thus a net {Ti} converges to T if Ti (A)—7 T(A) in
the @ -weak topology WA € 0T -- then in this topology, 3 is compact.
. ~1 -1 -1 _» -1 :
Consider now the sequence | ¥ o } : Y, (A) = U AU => ¥ n cL( 0L, D).
. . . v s -1 -1
Since Un is unitary, it is clear that 512;' n }C\E, [=]e] {}{ n S has a
limit point . Any such limit point is a left inverse for @ .

Remark: The significance of the existence of a left inverse &

for P is simply this: Take P irreducible -- then

DCECP, L)) € Moxr(p,pP) =Sl
is a scalar which turns out to be independent of the choice of §and

is in fact the statistics parameter ?\F .

Review:

mk) = Wwykl):

olx+) " = mxd)
=

OLxkY) ¢ oLty



=YY1(KJ“)
=mx*+ )"
="Y(K)".

Suppose that @ is a DHR endomorphism which is localized in

K€K ~-- then @ (M (K)) is contained in YN(K). Thus let
M € M(K)
{ m'e OL (k).
Then
M = P (M) P (M')
= p(MM")
= P(M'M)
= QM) p (M)
= M' Q(M).
Therefore

(M) € OL(kL)Y =mMEx).
e

Now fix a wedge W:KC W -- then it follows that P (01 (W)) is
contained in QU (W).
[Note: Bear in mind that if 07D K, then P is necessarily localized

in 0.]

LEMMA 1 a unitary UE€ DL :
NAAAAAG

1

() = UAU ~ (A € OLmW)).



1 1

[Choose LE A : LCW™ ( = WCL ) -- then 16 € [pl:c is

localized in L, hence 3 a unitary VEOl: ¢ =v-p v, since
OLW € oL@, Vv a€0tw:

0(a) =A

\4 P(A)V-l = A

L w=vh.

P(A) = UAU™

Rappel: If YY) andY)| are W*-algebras, then a morphism 4) t Y —
YU of the underlying C*-algebras is said to be normal if it is
0 -weakly continuous. When this is so, the image CP (YN) is a
W*-subalgebra of n.

Since by the lemma, the restriction @ | OUw) is unitarily
implementable, it extends to a normal endomorphism of YTJU(W), call

it P w' thus p W(')fY)(W)) is a W*-subalgebra of YY)}W).
[Note: To check continuity in the (¢ -weak sense, simply observe
that V T € B, (3{ ),

1 1

TUU

| EE(UAU—]'T)I | tr (uau™ )

= |tr(av tTO) |

and U tTU € M, (30 ). BAccordingly, if A, —> M ¢-weakly (a, € OLW),

1 1

M € Y)(W)), then UAiU— — UMU — ¢ -weakly, hence, via extension by

continuity, p (M) = oMot VM€ M) L]

LEMMA The pair (pw(m(W)) ,UQO) is a standard W*-algebra.




[U(l0 is cyclic for PW(YY')(W)). Proof: Given Y € ¥, choose

M € 1M (W) M) g7 U-l\}’ -- then UMnU_l-U QO —> Yy .

UQO is separating for Q W()’Y)(W)) . Proof: For UMU Y-U QO =0

1

= ML, =0 DM, =0=rM=0= UMy = 0.]

LEMMA 0 W(YY)(W)) is a factor.

[Suppose that 20, M) =@ (M3 V¥ M € IY)(W), where 2 is in the

center of ()W("YY)(W)). Write Z = PW(MO) -~ then

P Mg P (M) = P (1) p (M)

=

C M) = @y (M)

Since this is true for all M € TM(W) and M)(W) is a factor, it follows

that M, = CI (3c) = P(My) = CI.]

Rappel: Multiplication on the left or right by a fixed element
of () defines a map PH (3¢ ) —2 P (I ) which is continuous in
the ¢ -~weak topology.

Notation: Put

Mor(p ., py) ={T€ MW:Tp (M) =p (MT VM EMmw?S .

LEMMA We have
NS



Mor (g ,p ) C Moxr(p v pi) -
[Let T€EEQ£(G),P ) == then by definition, T P(A) =€9(A)T
¥V A€0( , hence in particular, T P(A) = P(A)T Y A € OLW). I.e.:

Y ae Olw,

1 1

TUAU — = UAU "T.
So, if A, =y M ¢ -weakly (A; € Olw), M € IM)(W)), then

1 1

TUAiU- —> TUMU~

1 1

UAiU" T —> UMU T

TPM =P, MT VME MW .

Therefdre
Mor (@ , ) C Mor (@ v 0

as contended.]

Fact: Suppose that p is finite -- then

Mor(p ,p) = Mor(p ., p.)-

Remark: When e is finite, one can attach to the inclusion

P W(YY)(W))-4>177(W) a nonnegative real number Ind(@ ), the Jones index.
On general grounds,

md(p)€ § 4 cos®(-T): k€N, k233 U [4, +o0l.



10.

But, in the case at hand, Longo has made matters precise:

Ind(p) = d(p)?,

where, as usual, d(@ ) is the statistical dimension of { .



Some Results of Longo 1In this section we shall take d = 3 and

work in R4 = R1’3.
W

VAN
Suppose given a weakly additive PTV with a unique vacuum which
satisfies Haag duality and has the B-W property. In a change of

notation, put

cosh t sinh t 0 0
sinh t cosh t 0 0
N(t) =
0 0 1 0
0 0 0 1
Then
b\l——l‘t=u(/\(-2ﬂt)) (N= A )
= m(WR) .

[Note: Since the field algebra is not going to play a role,

there is no need to append a subzero to U.]
Now fix a DHR endomorphism @ which is localized in KC:WR. Assume:

(i) ¢ is finite;

(ii) p is covariant.

LEMMA Put
NAAAANY

Z o (t) = UP (N(E))U(AN (-1)).

Then

Z o (t) € Mwy) .



[To begin with,

U(A)IMU(A(-E))E M (W) (M E WMN(W))

UCNE)IMOCAG-E)) € W) ' (M' € (W) ') .

In addition, KC WR = W‘L = WL - K"L

R r SO P is the identity on

Ot (WL) C()’L(K‘L) . This persists to O’[(WL)" = TY')(WL), i.e., to

Y)(Wp) ' (wedge duality). Therefore

PUIN)IMUIA(-t))) = UCA(L)IM'U(AN(-t)).
But

C(UIANA®)IM'U(N(-t)))

Uo (NA(t)) P(M')UP(/\(-—t))

U e (AN (t))M'U P(/\(—t))

U(NE)IM'U(AN(-t)) = UP(/\(t))M'U (N(-t))

14
=

Ul AE))TE Up (A(£)) € M) " = M) .

Replacing t by -t and taking adjoints serves to complete the proof.]

— SR S—

Application: The prescription

o EON = U CAENMU  (AG-£)) (1 € M(HR))

defines a one parameter group of automorphisms of m (WR) .



But

[One has only to observe that

P ’ 7 - -—
X (MN(WL)) Z o ()TN YN (W) UEA t))ZP (-t)

z ¢ () M (WR)Z ¢ (-t)

m (W) .1

Define HP by writing

U‘, (N(t)) = exp( ¥V-1 ¢t HP ).

THEOREM We have
NVAAANANANY

_2ﬁHP
are) =<2, e Q>

Example: Let's run a reality check and take P =7 ~-- then
V-1 ¢
AN = exp( ¥-1 t log IN\)
= U(N(-2T1t))
= exp( Y-1'(-21 t)H‘L )
=
log A = =271 H?.
=
log A -2TH
e Q,=e :
0 0
gn log 1



=> 21
- H_l
o Q, -0,
=
-'ZTTH‘I
<Q0,e Qo>=<00IQO>=lI

which agrees with the fact that d(71) = 1.

LEMMA The formula
NN

-TH - TH
Cp(x*Y) = I (e PxQo,e PYQO>
a(e)

determines a faithful normal state on m(WR) such that

. - ¥-1t
. = d - .
(DC«)P DOOO) (t) (¢ ZP( 21 t)
[Note: The modular automorphism group of the pair (M) (WR) ’ Q)P )
can be explicated:
wW _ -1
o e M) = Ut ts‘t(M)Ut
V-T t - V-1t .
= (D QP :DWg) (£) A M AN (Dco(, :DW ) (t)
-V-1t V-1t -V-I't Y-Tt
=UP(/\(—2nt))A AN M A AN UP(/\(Z‘nt))
= UP ( /\(-2TTt))MUP (AN(2T1T1t))
- (M) .1



Choose a cyclic and separating unit vector §)$)such that

Wo) =< Ly 82,5 (€ M)

P P
Then
Y-T t -Y-Tt
(DCOP :DQ)O) () =A QO,QP &QO (AQO =IN).
But
V-1 t
Z o (=21 t) = d(p) (Dp :DW) (t)
=
VTt Va1t -V-1t¢
UP (N (-2TiE))U(A(2TIE)) = d(p) AQO,QP AOO
=
V-1t V-1't
U, (A(-2TiE)) = alp) AQO’QP
=
V-1t V-1't
S_}_{_E( Y -1 (—21‘it)HP) = d(p) AQO,QP
=
= - - log 4 .
2TTH? log [¥:§20,§2p og d(g)

Definition: The free energy of @, relative to Wy is

P

F((QPlQ)O)=<QP , (H )QP>.

1
+ — log A

P



Therefore

1 |
Fla, | @) -<Q2, ,(;ﬂd(p))ﬂp>

- L log da(p).
20

Consequently, the possible values of F( Q) ‘QJO) are quantized:

¢

1 .
F(w W) - - log n:n=1,2,...¢ .
P ‘ 0 6 9 1_\_ { fndngh- 4 b4 }

Remark: Recall that g determines an endomorphism Cw of
R

7Y7(WR), thus one can introduce the conditional entropy of Pw :SC(P),
R

which, by the Pimsner-Popa theorem, is

log Ind(p)

or still,

2 log d(p).



Past and Future In all that follows, (M,g) denotes a space-time.

So:
(1) M is a connected C® manifold of dimension 1 + d (d2>1);

(2) g is a lorentzian metric of signature (1,d) (+,

—'-oo,-);
(3) M is time orientable, i.e., admits a timelike vector field.

Remark: The tangent space Mx at a given x€M is Minkowski
space-time. Therefore a vector XG&MX is timelike if g(X,X)> O,
lightlike if g(X,X) = 0, and spacelike if g(X,X) < 0. The complement

in Mx of the closure of the spacelike points has two components

("timecones") and there is no intrinsic way to distinguish them. If
one of these cones is singled out and called the future cone V+(x),
then Mx is said to be time oriented. A timelike or lightlike vector

in®t on V+(x) is said to be future directed. The other cone is

denoted by V_(x). A timelike or lightlike vector in°T on V_(x) is

said to be past directed.

[Note: If T is a timelike vector field, then Mx can be time

oriented by specifying the timecone containing ‘tx.]

Remark: Suppose that g,,9, are lorentzian metrics on M. Assume:

Y x€M & VXGMX,

g, (X,X) = 0 iff g,(X,X) = 0.

Then 3 a c®® function fl:M-—>v§ such that

>0
g9, =S1q;.

A curve in M is timelike, lightlike, or spacelike if its tangent

vectors are timelike, lightlike, or spacelike.



[Note: If ¥ is a geodesic, then g(i’,z') is a constant, hence
a geodesic which is timelike, lightlike, or spacelike for some value
of its parameter is timelike, lightlike, or spacelike for all values

of its parameter.]

A curve in M is causal if its tangent vectors are timelike or

lightlike. A causal curve is future directed (past directed) if its

tangent vectors have this property.

A future directed causal curve ¥ :I—> M is said to have a

future endpoint (past endpoint) if ¥ (t) converges to some point in

Mas tfTsup I (t}inf I).

A past directed causal curve ¥ :I —> M is said to have a

past endpoint (future endpoint) if ¥ (t) converges to some point in

Mas tTsup I (tJ})inf I).

A future (past) directed causal curve ¢ is said to start at a

point p€ M provided that p is the past (future) endpoint of ¥ .

A future (past) directed causal curve ¥ is said to be future (past)

inextendible if it possesses ro future (past) endpoint.

Notation: V¥ p#q in M,
p << g: F a future directed timelike curve from p to q.
p <g: H a future directed causal curve from p to q.

[Note: Obviously, p<< g = pg. Write p<£q if either p«gq
or p = q.]

Definition: The chronological future of p is

I"(p) = {a:p<< q}



and the causal future of p is

atp) ={arpeal.

The chronological past of p is

I (p) ={q:q << p}

and the causal past of p is

J7(p) = {a:qsp}.
[Note: For a nonempty subset S T M, the sets Ii'(S) ' Ji(S) are

defined analogously. E.g.: I+(S) = {q:p << g (dpes) and

J+(S) ={q:p_4_q (Fpes)y . Obviously, I+(S); = U I+(p) and
pPE S
sty = U 5Yp). Purthermore, 3¥(s)> suit(s).]

pPE S

LEMMA If x<< y and y<4£z or if x4y and y << z, then x << z.

Application: We have

17(s) = 1T(1¥s) = 17(37s)

]

gtrts) < atats) = 3t (s).

It

Rappel: An open subset C of M is geodesically convex provided

C is a normal neighborhood of each of its points. Accordingly,
given q',q" ee , 3 a unique geodesic segment ¥ :[0,11—> M such that
Y0) = q', ¥(1) = g" with Y[0,1] € € . Furthermore, it can be shown

that q' << gq" iff ¥ is future directed and timelike.



iNote: C is a space~time in its own right. And, in obvious

notation,

(1) qe17(p,C ) <=>q

_e_:_:_pp(x) , wWhere XC-;V+(p) :

(2) g€ T (p, C ) <=>gq E’pr(x)' where X€V, (p).

It then follows that I+(p,e } is open and J+(p,(‘3 ) = I+(p,e ). ]
LEMMA If p << g, then A neighborhoods Np of p and Nq of g such
that
1]
N
p € D

=> p'<< q'.

1
N
qéq

[Suppose that ¥ :[a,bl —> M is a future directed timelike curve
with J(a) = p & Y (b) = g. Choose a geodesically convex neighborhood

e g of g and fix a point g € C g °" ¥ before gq: q << g. Choose

a geodesically convex neighborhood Cp of p and fix p+ G Cp on ¥
between p and g : p << pt << 9 . Now put Np =1 (", C p) and
]
= N
p'e D

N =1'q, C ) => p' << pi<c a << q .]

9 9

'EéN
qu

Application: ¥ p€M, I'(p) is open.
[Note: It is obvious that I+(p) is nonempty and connected.]

Facts: WV pEM,

(1) int I7(p) = 17(p);



2) Hp) = {x:1v ) c 1t ¥
(3) £r T7(p) = fx:xg17 (@) & T"(x) C' 1T ()} .

In Minkowski space-time, Jf(p) is closed but this fails to be

1,1

true in general. For example, let M =\§;’ with the point (1,1)

deleted and take for p the origin:

() s

~—Delete

No causal curve from p can reach points on the dotted line, thus J+(p)

consists of I+(p) together with the lightlike geodesic rays «(and f§ .

In particular: J+(p) is a proper subset of I+(p),

LEMMA If ¥ is a future directed causal curve from S to a point
AN
<IGJ*(S) - I+(S), then ¥ is a lightlike geodesic that does not meet

1t(9).

Facts: W S CM,

(1) int 37(s) = 17(8);

2) sy 1ts).

Definition: A space-time (M,g) is said to be chronological if

M contains no closed timelike curves, i.e., ¥V p, p¢I+(p).

LEMMA A compact space-time (M,g) contains a closed timelike curve,
NAAAAN : :

hence is not chronological.



[Since the I+(p) are open and M = EgM I+(P). '3 points Pyree-sPy
P

such that M = I+(pl)U BRNTY! I+(pn). and: 3 i(1): p€ I+(pi(l))
(1 4i(1)<4n), J i(2): pi(l)ez'*(p.l'(z)) (L £i(2) 4 n) etc. This leads
to an infinite sequence ... <K Pi (k+1) << P; (k) L e LKL P - Since n

is finite, there are a finite number of distinct pi(k)' so there are
repetitions:

+ . . . .
pi(kmé’I (pi(k))' which means that (M,g) contains a closed timelike

curve., ]

Definition: A space-time (M,g) is said to be causal if M contains
no closed causal curves.
Of course, "causal" => "chronological®™ (but the converse is false).

Definition: A space-time (M,g) is said to be strongly causal at p

if given any neighborhood O of p 3 a neighborhood 0' C 0 of p such

that every causal curve segment with endpoints in O' lies entirely in O.
If (M,g) is strongly causal at p, then there does not exist a

causal curve segment Y :[a,b] —> M with ¥ (a) = p = ¥ (b). Thus choose

1%)€[a,b]: 'K(to) # p and O: "Z(to)ﬁg 0. Take O' per the definition --

then Y ([a,bl] C 0, a contradiction.
Fact: The set of points at which (M,g) is strongly causal is open.

Definition: A space-time (M,g) is said to be strongly causal if

it is strongly causal at every point.

Example: Suppose that (M,g) is strongly causal and X CM is



compact. Let ¥ :[0, +90[ —> M be a causal curve with image in K --

then
lim ¥ (t)
t —7 +2X
exists.
[By the compactness of K, we can assume that lim P, =P exists,
where p_ =7 (n). Claim: Llim Y (t) = p. Suppose false, so J a

t—> + o0

neighborhood O of p such that Vto, B t>ty: ¥ (1) /G/O. Choose a

neighborhood O' of p per strong causality. Fix n, >0 O:IIZnO =>

p, = ¥(n)€O0' -- then I t>n,: ¥e)go. But Im>t & Y(me o',

n

thus Y [ny,m] C 0, a contradiction.]

Remark: Suppose that (M,g) is strongly causal -- then the

()N 17(q) (p,g€M) are a basis for the topology on M.



Globally Hyperbolic Space-Times A space-time (M,g) is said to

be globally hyperbolic if it is strongly causal and V p,g€M, the set

J+(p)(\J—(q) is compact.
[Note: This implies that J+(K)()J_(L) is compact whenever

K and L are compact.]

LEMMA If (M,g) is globally hyperbolic, then Y p, J+(p) is closed.

[To get a contradiction, let us suppose that _;{q€J+(p) - J+(p).

Choose a sequence {qng ‘- J+(p):qn-—9 g and fix an x€1I'(q). So:

p_l-_qn & g << x.
Since g€I (x) and I (x) is open, it follows that I N:n>N => q, € I (x).

But q¢J+(p) = q¢J+(p)ﬁ J (x). On the other hand, q,€ J+(p) (by

assumption) and q € I (x)< J (x) (if n>N), hence Y n2N,
€ 3t (p) 37 (x), which implies that g€ J (p) NI (x), an impossibility.]

[Note: More generally, K compact ::>J+(K) closed.]

The following space-times are globally hyperbolic: Minkowski,
Robertson-Walker, Schwarzschild-Kruskal.
Example: Let (M,g) be an arbitrary space-time. Suppose given

a subset S of M -- then the future development D+(S) of S is the set

of p€M such that every past inextendible causal curve starting at p
meets S ( => S(C‘D+(S)C: J+(S)). Assume now that S is achronal, i.e.,
no timelike curve meets S more than once -- then int D(S), if nonempty,

is globally hyperbolic.



[Note: The definition of D (S) is dual. The union D(S) =

DY (s)UD (S) is the domain of dependence of S.]

Definition: A Cauchy surface is a closed, connected hypersurface

2. C M which is intersected exactly once by each inexXtendible causal

curve in M,
So, e.g., in\B}’d, the hyperplanes Xg = constant are Cauchy
surfaces.
Remark: Let = CM be a Cauchy surface. Fix a timelike vector
field X on M -- then the trajectories of X partition M, soV peM,
the trajectory of X through p meets Z at a unique point r(p) (trajectories
are necessarily inextendible). Using Brouwer's theorem on invariance
of domain, one can show that r:M — 3> is a continuous open map which
leaves 7 pointwise fixed. Consequently, any two Cauchy surfaces in

M are homeomorphic (if E?l,jiz are Cauchy and if r,,r, are the

corresponding retractions, then ry IEZl, rlIEZZ are mutually inverse).

[Note: It is clear that D(Z) = M, hence M = int D(Z) is

globally hyperbolic.]

TRUCTURE THEOREM Suppose that (M,g) is globally hyperbolic =--
then there exists a d-dimensional manifold > and a diffeomorphism
' :R X Z —> M such that V¥V t, Zt =F (It X =) is a Cauchy surface

in M, hence

m= 1l 5,
t

. . ©0 .
is foliated by a C -family { Eft_§ of Cauchy surfaces.




Addendum: Y 6 € 2 , the map t — ¥ (t,6") is a future directed

timelike inextendible curve. Accordingly, if > 0 C M is a Cauchy

surface, then ¥ (t,6 ) intersects ZO exactly once at the parameter

value £t = T (). We call : —> R the time level function
=, o T %0 z— R

of 'ZO. It is Cooand Zo={'}_’2( T (6'),0‘):0“6‘2}. Moreover,
0

=

if 21,22 are Cauchy, then the map Zl—-> ZZ defined by the rule

Y (T (),oo)—> (T (o) ,0)
Z1

Z2
is a diffeomorphism.
e t——————
LEMMA A globally hyperbolic space-time (M,g) admits a time
function, i.e., a c ®© function T:M%vnghose gradient is a future

directed timelike vector field.



Gordon
Klein- Let (M,g) be a globally hyperbolic space-time.

Notation:

(L) O 2 is the d'Alembertian on M per g, thus in a coordinate

neighborhood U,

1
kR 2

where

lGl=]det(g; )} -

(2) A is the positive measure on M determined by g, thus in

a coordinate neighborhood U,

1
A (E) = S £lo|? ax.

U
THEOREM Fix m >0 -- then 3 continuous linear maps
VAANAA W
i o0 o0
E : Cg (M) ~—> C (M)
such that
+
E'([j2 + md)f = f
+
(1% + m?)E” £ = £,
Furthermore,

¥ *
spt E £CJ (spt f).




+
It turns out that E are integral operators:

* T
E f(x) = Sﬂ E (x,y)E(y)daly).
M

Let
E(x,y) = E+(x,y) - E (x,Y).
Then
Ef (x) =S E(x,y) f(y)daly)
M
and
+ +

spt E £ CJ (spt f)

spt Ef C J(spt f).
Remark: Take M = MRKRARSIEKXSHIMEEXXKIXKX Rl'3. In this setting
Ny
it is then customary to deal with the
causal Green's function ES
retarded Green's function E+
advanced Green's function E
as well as the
+

positive frequency function D

negative frequency function D .



The connections between them are:

E+ = EC + D+
E =E° - D
=
et - = pt +p° =E.
Here
+ \/ _1' V-1 <p,x)
D (x) = - 3 e Q/*m(P)
(2 1)
X
m
- \( _l' - V—l <Plx>
D (x) = d (p)
(211)3 ‘AMm
X
m
=
O Vo1 J ( - ¥-1<p,x-y> V-1 <p,x—y>>d )
X,y) = e -e o)
(21 3 "
X
m
or still,
E(x,y) = 7—273 y sindp )X"Y)d/km(p).
2 Ti
A X
m
Let
C(£,,£,) = S j £, (R E(x,¥) £, (¥) dan(x)d i ly) .
M M

Then G 1is a nondegenerate alternating bilinear form on CgQ(M;R)/ker E.
WAy e——

[Note: It is a fact that



E(x,y) = -E(y,X).

Accordingly,

o(£,,£)) = g S £, (X)E(x,Y) ] (¥)dm(x)danly)
M M

S yf2(y)E(y.x)fl(x)d/«(y)d/wx)
M M

- S Sfl(x)E(x,y)f2(y)d/««(x)d/«(y) = - o (f5,£5).]
M M

Definition: The Klein-~-Gordon algebra of the pair (M,qg) is

Ot, = CCR(CS°(M;R) /ker E, & ).

There is an evident assignment
0—> 01, (0) = c*{ W(lf]): spt £C O}

from the bounded open subsets of M to subalgebras of Olg and

= (%
0, = c*C ot 0.
0
Ig: Suppose that Ol is contained in O2 -— then (}(g(ol) is
contained in Olg(oz).
IIg: Suppose that 0l

and O2 are spacelike separated). Let

is contained in M—J(Oz) (meaning that Ol



o0
flecc (M;“Ii). ?.Ii: f.C O

£,€ CS° (M;R) : spt £, € O

2 2°

Then

st.e = Sfl(x)E(x.y)fz(y)d,v\(x)d/««(Y)

M M

5 £, (%) Ef, (x)dan(x)

M
= 0.
In this connection, recall that
spt Ef, C J (spt £, (<= J(0,)).
Therefore the elements of Otg(ol) commute with the elements of Oig(oz).

IIIg: Suppose that P is contained in the domain of dependence

of O -- then U(g(P) is contained in GTg(O). To see this, take a
) % .

Y & C. (P;\B’) -~ then 3 $ € C. (O;R) : Ed= EVY (proof omitted),

hence $ -V € ker E = [$] = [ Y11= Ww(ld]) =w(lV¥y 1) =

P o).
Ot 4(®) < 01 4(0)
IVg: Suppose that § :M ~> M is a diffeomorphism -- then ¥ defines
a symplectic isomorphism
(Eglcg) '—> (E'-S*gl 6_‘5 *g)l

viz. [f1—> [f ©3 ]. Here we have put



— %0 (m. —
Eg = Cc (M,\E)/ker E, o*g =6 etc.

So, by Bogolubov, 3 an isomorphism

such that
o(.S(W[f]) = W[f o3 1.

It is not difficult to check that V¥ O, °<‘S sends O‘Lg(o) to

Ot (3 Loy

T*g

THEOREM Suppose that 7Z € M is a Cauchy surface. Fix
NMNANAANAVNY

u,u'GCgO(Z) ~- then there is a unique fGCOO(M) such that

(0% + m?)f = 0 and

- C0f _
f'z—u, ﬁ'-u-

[Note: Tacitly, > is spacelike, i.e., g | T,Z X T_Z is

is defined using the

negative definite VY o € Z. 1In addition, gn

future directed unit normal along Z .]




Quasifree States Let E#0 be a real linear space equipped with

a nondegenerate alternating bilinear form 6 .

Notation: Given a state @ on CCR(E,o¢ ), put

P (£) = @ (W(£) (£€E).

LEMMA Suppose given a complex valued function ¢ on E -- then
AAAAAAN
4>=4>w for some state cy)on CCR(E,6 ) if ¢(0) =1, A— <i>('?\f)

(A€ R) is continuous, and
W

— V-1
2 ziEj exp( - S5 O£ E)) PUE - £)20.
i, j=1
Example:

Let < » > be a real valued inner product on E with

'G-(f:g) ‘ < <f,f> 172 <grg> 1/2 (f,g€E).

Then the assignment
1 A
f—>exp( -7 <£,£> )

satisfies the conditions of the lemma so 3 a state ¢ on CCR(E, 6 )

such that

W(W(E)) = exp( - %‘— CEE> ).

[Note: States of this form are said to be quasifree.]

Notation: IP(E,q") is the set of real valued inner products . on

E which dominate ¢ in the sense that

fo(£,9) 1 2 £ m(f,£f) M (g,9) (f,9€E).



Accordingly, there is a one-to-one correspondence a4 —> CQAA

between the elements of IP(E, ¢ ) and the gquasifree states on CCR(E,c ).

Given m & IF(E, n), let pr\ be the completion of E w.r.t. the

topology induced by s and denote by ¢

R the a4 —continuous extension

of g-to }F€u~—— then there exists a unique bounded linear operator

A/“.: b{/“_-—> b{;w such that

o, (X,¥)= Am(x,A y) (x,y € H/M ).
It is easy to check that

* = - L
Ax A HAMH < 1.

[Note: In general, A, E& E.]

Example: Take for E a complex Hilbert space, view E as a real

linear space via restriction of scalars, and let

olx,y) = Im{x,v) .
Then
A(x,y) = Re {x,¥>

is a real valued inner product on E. Moreover

b <x,v>1¢ Nl - lyl)

’ 0_(le) ‘2 f M(XIX)M(YIY) .

In addition,

{x,y O = EE <x, vy + V———J-'}_{!} <Xry.>



<x, VT y>= VT Reuyy - In (xvd

- I_{§<X'V_'_1,Y> = Re {x, 'V:TY>-

Im <x,y)

o (x,¥)= m(x, - ¥-1y).

Therefore A/M is multiplication by - V-1.

i e ate iff A is injective.
LEMMA q;A i1s nondegenerat £ ., 1s 1inj ct

[Note: Suppose that G,

.. is nondegenerate -- then the range of

A is dense (M(x,AAy) =0 Ny = o‘h(x,y) = 0Vy = x = 0), hence

A is densely defined (but possibly unbounded).]

Let
A = J A
s . x - _ .
be the polar decomposition. of AL - Since A)* A}A, A, is normal,

hence J, and lA/«‘ commute. In addition,

A:A =IA%4‘€:\ =-A, = -3, ial
=
J [A\J*=—J2|Al
AA A A AA VAL -

But| J |A>4|QIi is positive, so the uniqueness of the polar decomposition

gives




Definition: Let m € IP(E,qg ) -- then ai is said to be pure

if Y f €E,

A(£,£) = sup lo(£,9)1 2
g€ E- {0{ Ax(g,q)

Example: Consider again the case where E is a complex Hilbert

space, SO

6(x,y) = Im <XIY>

A(x,y) = Re {x,¥) .

Then VY x#0,

G (x, V- %) = (%, (- Y=T) V=T x) = ax,x) = ||xl} 2
=
lo(x, VT x)1 2 Wt N
= = X .
A (V-1"x, V-1' x) hx 2

Therefore aa is pure.

LEMMA _aais pure iff lAM I= I.

[Note: It follows that if aa is pure, then ¢, is nondegenerate.]

“AA
Remark: Suppose that ¢3 is quasifree: wo = W, -- then W, is
pure iff s is pure.

[Note: Recall that the GNS representation Tr(d associated with
AN

W is irreducible iff ch is pure.]

Fact: Given A€ IP(E, ¢ ), put

/\«p(f.g) = A(£, |AA| g).




Then/\,‘p &IP(E, 6”) is pure.

[Note:,Mp is called the purification of « .]

Example: Consider again the case where E is a complex Hilbert

space, soO

f 6(x,y) = Im<x,¥>

1M(X!Y) = B_? <XIY> .

Fix A>1 -- then ¥ = Zm € IP(E,§). But
C(x,y) = A(x, - V-I'y) = Asalx,> “7:1 y) = v(x,> 'ﬁ‘l ¥)
=
-Y-1 1
A'U = ~ I = ]AU) = ——T}\—' I.

Therefore

hp(x,y) = v(x,—}?—\— y) = Aan(x,Y).

Assuming that a« is pure, put
C
W= + V-1

and extend 6/—\« ' A to all of }Q/\S by taking them conjugate linear in

the first variable, linear in the second variable. Viewing gu~ as

an element of B(H S ), write
A

Mﬁ= B-e-l- @M—r
where
of * {x:JﬁA x = +VY-1 x }.

Let Pi be the associated orthogonal projection. Define a real linear



map K:E—Av‘}f+ by setting

K = pT|E.
C . C
Call < ,>w the complex inner product on}?w -- then Vf,ge E, we
/A A
have
+ +
KRE,RKgPX = <ptE,pTg>E
AA Pan
+ +
= ~(P £,P q)
S+ +
= (P £, = J/\_\P g)
1

+ +
= —— m(P'E,3, Py

V-

.+
- -1 O_/V\(P £,P g)
N+

C
But VXG}(’; '

x = PTx + P x
=>

J x=J P'x+3 p”

PSP s b X

+ -
= Y-1Px -V-1P x
=>
+ J/Ax + V-1 x
P x = .

2Y -1
Therefore

¢ (V-1 2'g,p'g)



7.

I E+V-T'f 3 g+V-Tg

AA
= 6 (V-1 ) )
™~ 2V-1" 2V-1
1
= RV 6;“KJ>“f + V-1 £, J.9 + V-1 g)
1., . .
= . V:T( G“M(JMf,JMg) +V-1 6,0, £f,9) -V-1 6 (£,7,9) + 6,..(f,9))

= 7 (Ca T £09) = S (£,309)) (0, (3, £,3,,9) +0(£,9)).

4 V-1
Since

ST 00 ) = AT (£, T 9) = (£, 9)

G;V\(JMfrg) M(JMf;JMg) /\'\(frg)

O"M(frJMg) M(frJAJMg) - M(frg)l

it follows that

.

<Kf,Kg">\g - ~~£,9) , o(f,9)
~

2 2 V-1

Accordingly, K is one-to-one (Kf = 0 => A(f,f) = 0 =>f = 0). Finally,

KE is dense in }€+. Indeed, E is dense in’}{M», thus it need only be

shown that P+2ﬁ;« is dense in<&€+. So fix y éf}€+ and suppose that
+ C +
<P'x,y7E =0 Vxe¥, --then 0 =<x,2Ty>E = xydE =>
C
y LY =vil = =y=0.
AN S

[Note: One could equally well have used P . This would give

14

<Kf,Kg >£ =/\i(.£_'_9_..)___ + v:_l-' G(f,g)
Vo 2 ) 2



which is actually more convenient in the applications.]

Summary: Let s € IP(E,g ) be pure -- then 4 a complex Hilbert
space (¥ , <> ) and a real linear map K:E-—>Jf such that

(1) K is one~to-one and has a dense range;

(2) ¥ f,9€ E,

CKE,RgD> = 22E.9) pyrmatE,g) |
2 2

[Note: It is not necessary to assume that aa is pure, the only
change in the statement being that the complexified range KE +V -1 KE
of K is dense in 3f (the proof is an elaboration on the preceding

theme) .]

Remark: If (K',(3¥2', <,> ")) has the same properties, then 3
a unitary U: of{ — 3¢ ' such that UoK = K'.

[Put of = KECH , f' = K'E <} ' and define T: 2 —» 2f ' by

the prescription T(Kf) = K'f -- then V x,ye.}f? ’

<{Tx,Ty>' = <{x,¥>.
Therefore T extends to a unitary U: 3{ —7 o€ ' such that UeK = K'.]

Maintaining the assumption that A€ IP(E, ¢ ) is pure, consider
?}’s(}-‘( ) -- then, as we know, a CCR realization of (J{ ,Im<,>) is

the C*-subalgebra of (3 ( ’5:8(}6 )) generated by the W(x) (x €¢f ), where

W(x) = exp(V-1 D (x))

———

and

§S (x) =

X) +£(x)).

L (aq



9.

P ————————————r—

LEMMA The assignment

AV Ve Ve el

W(f) —> exp(V-1 (a(Kf) + c(Kf)))
defines a representation of CCR(E,s ) on g:s()?).

[In fact,

W(£)W(g) = exp (— y-i o‘(f,g)) W(f+g) .
2

On the other hand,

exp(V-T(a(Kf) + c(Kf))) exp(V-I(a(Kg) + c(Kg)))

= exp (— y-r {_111(\/ 2'KEf,V 2 Kg>> exp(V—l'(a(K(f+g) + c(K(f+g))))
2 ——— WA N

= exp

—

(- v -l GTf,g)> exp( V-1 (a(K(f+g)) + c(K(f+g)))).
2 - — b
The assertion 1s therefore manifest.

[Note: It is not difficult to see that this representation is

equivalent to the GNS representation TQO associated with the state
/A

W .1

Letujkl,/wz CIP(E, ¢°) be pure and let Tfl,‘nz be the representations

of CCR(E,G ) constructed above.
Problem: Determine conditions under which 3 a unitary U: %:5(34 l)

—-??Ys(é()z) such that Unlu"l = “2'

First, it is easy to see that there is no such U unless,a\l,AAZ

are equivalent, i.e., 1 ¢ >0, D>0: V f€ E,



10..

Therefore ¥¥ = 3. , label it }{N\. Define a linear map

M Mo

Q: MN—’MN by

/\«l(X,QY) =M, (x,y) —,Ml(x,y) .

Then Ty and ﬁ’z are unitarily equivalent iff Q is of the trace class.

[Note: To explicate Q, observe that A a~1
/"\l/"\

linear operator on >{M.. And:

-1 B

Mo (x,A

=
-1

A (%, (T - A A }y)
1 Aq My

=/\Al(XIY) - A 2 (le)

2

~extends to a bounded



Hadamard States Let (M,g) be a globally hyperbolic space-time.

Fix m> 0 and consider the associated Klein-Gordon algebra DIg -~ then
the issue is to isolate a physically relevant class of states on Ulg.

Since it is a question of states on
CCR(CZO(M;R)/ker E, ),

the generalities from the previous section are applicable, thus we
shall restrict our attention to those states which are quasifree.
Suppose that <) is a quasifree state on 0( . Given f.,f,eC® (M;R),
Vo g 1’72 c fioy
put

ACLEL ], [£,]1) o ([£41, [£,])

+ V-1 .

2 2

/X~$fl,f2) =

Then /\~\is a complex valued separately continuous bilinear form on
c®® (M;R) .
c v

Definition: A separately continuous bilinear form

L] w . m . ———
N\ :C, (M,“I}')XCC (M;R)—> C

satisfies the Hadamard condition if

N(£y,£5) = lim y /\E(p,q)fl(p)fz(q)d/u\(p')d/««(q).
glo  MxmMm ]

[Note: Here the ﬁ\E are certain kernels whose exact form we shall

not insist upon at present ( A = G + H, where G is singular
& & &

ard depends on (M,g) while H is smooth and depends on A ).]

A guasifree state cgﬁ\on Btg is said to be a Hadamard state

provided f\w\satisfies the Hadamard condition.



It is a fact that pure quasifree Hadamard states exist.

[Note: Such a state is sometimes called a Hadamard vacuum. ]

LEMMA The set of quasifree Hadamard states on Ulg spans an
NAAAAA

infinite dimensional vector subspace of the topological dual of DTg.

Rappel: Given a C*-algebra Ol, representations Ti, and Ti, of

1 2

0l are said to be quasiequivalent if every subrepresentation of Til

contains a representation which is unitarily equivalent to a sub-

representation of T,

[Note: Equivalent conditions are:

(1) § an isomorphism ¢ :T[l(()'( I~ 112(0'()" such that
d(my ) =T, Vaelbl;

(2) 4 a cardinal number n such that n iy is unitarily equiv-

alent to nITz.]

Rappel: Given a C*-algebra Ol , let 171 be a representation of
O on ¥y -- then the folium of T] is the set of states on O of the
form
A—=—tr(Tm(A)W),
where W is a densify operator on % .
[Note: The folium of a faithful representation of O is weak*

dense in the set of all states on Ol.]

Fact: The folium of Ti determines its quasiequivalence class.

R i e

gﬁEOREM Let WirwW, be quasifree Hadamard states on 01g -- then

N A




b ded oCM, - i i i
Y bounded open OCM, TTQJl\ Olg(o) is quasiequivalent to 'n(dz |01g(0).

[Note: Aas usual,TTﬁo_(i=l,2) is the GNS representation associated
i

with Q)i (i=1,2).]

Another point is this. Suppose that C%Nkis a quasifree Hadamard

state on mg -- then WV pEM,

() 1.0, (0" = cI.
0p « 9 .

Appendix

The precise formulation of the Hadamard condition is complicated.
So, for simplicity, we shall restrict ourselves to the case when
dim M = 4.

Convention: All Cauchy surfaces are assumed to be spacelike.

Definition: Let T TM be a Cauchy surface -- then an open set

NCM containing ¥ is said to be a causal normal neighborhood of % if

N p,QaEN: qu+(p) =5 d a geodesically convex set € € M such that

e IT@cC.

[Note: It can be shown that every Cauchy surface admits a
causal normal neighborhood.]
Notation: Let C CM be geodesically convex -- then for p,g €¢C ,

6 (p,q) is the signed square of the geodesic distance from p to q:

b . ) 1/2 2
c(p,q) = + < 5 g ¥(t) (¥ ), 3Nl dt-> ( ¥(a)=p, ¥Y(b)=q),
a



the plus sign being taken if ¥ is spacelike and the minus sign being

1'3

taken if ¥ is timelike. E.g.: When M = R , o {p,q) = - (p—q)z.
VAl

Notation: JC MXM is the set of causally related points (p,q)
and 8 C J is the set of causally related points (p,q) such that
It )N I (q) and 3 (p) I7(q) are contained in a geodesically convex

subset of M.

LEMMA There is a neighborhood U of 3 on which ¢ is welldefined
AAAnAAANA B

and smooth.
[It suffices to let

- U

Uy = C x C
§ ey @@

(prq)’

where 63( is a geodesically convex subset of M containing

p,q)
J+(p)(\J_(q) or J—(p)r\J+(q) (whichever is not empty) ard thus

containing p and qg.]

Let T be a Cauchy surface. Fix a causal normal neighborhood

NDS .

LEMMA In NXN, there is an open set 0. D JN(NXN) such that
NAAANAAAN N

the closurelaﬁ of ON in NXN is contained in U, N (N XN).

d

[Using the definitions, it is easy to check that J N(N XN)C Ub
is closed in N XN. Accordingly, there is an open subset ON of NXN
for which

J M (NXN) C ON(: ON<: UB M (NXN).]




Fix a ¢ function X :NXN —> [0,1] such that

X (p,q)

1 ((p,q) € Oy)

X(p,q) = 0 ((p,q) £ LPYRE
Given a time func;tion T:M —> VR, for each ne‘y‘ and € > 0, define

a function Gg'n on Ub by

1/2
GTE,n P q) = 1 - D(p,q) + ) (p,q) log( e (p,q)) .
(271) o (PrQ) '“

Here
o (p,@) = o(p,a) +2 V-I' E(T(p) - T(@) + € 2.

In addition, A is the Van Vleck-Morette determinant and

(n) = k
v (p,q) = ZO v (Pr@) (6 (p,a)),
| k=

the Vi being expressible in terms of the Hadamard recursion relations.
Definition: A separately continuous bilinear form

N (3R x CP(M;R) —> ¢

satisfies the Hadamard condition if for some choice of ¥ ,N, X, and

T, there is a sequence of functions Hne Cn(NXN) such that ¥ n and

A4 fl,fze‘éZD(Nkﬂ), we have

A(Ey,£y) = Lim 5 AT () £ (P E, (@A m(p)dan(@),
edo XK
where
T,n

AT (p,q) = X(p,q)G

14 +H r .
. ¢ (p,q) a (Ped)



n

[Note: "X is zero off of UB ;, hence /\TE' is defined on all of

N X N.]

T T'
Remark: If (3 ,N) is fixed and {'X, is changed to {7‘" , then

the condition is still valid (the changes are compensated for by

choosing another sequence Hr'1 € Cn(NXN) ). On the other hand, if A

satisfies the condition per one choice of ( = ,N), then it satisfies

the condition per any other choice ( 2 ',N').



The Vacuum Let 3 be a Hilbert space -- then, as we know, the

C*-subalgebra of 6}(%}55(&€ )) generated by the W(f) is a CCR

realization of ( &P, Im<,>).
Definition: The vacuum is the state W, on CCR( 3¢ ,Im <0 D)

characterized by
W W(E)) = exp( = 3 IL£IL ?).

[Note: Therefore coo is quasifree, and, in addition, pure.]

LEMMA We have
NAAAAAY
W) =<2 W)L D .

[Note: It is this result which justifies the terminology.]

To prove the lemma, a preliminary will be needed.

Exponential Construction: Given x & §¥, put

= 1 e 1 v o ¢ o .
exp x = 1®x P = x@Dx P ® \[E?:XGD Dx D c ?}s(bf )

Then

X, Y
<§.>32xr§z<fy>=e<

and the set exp of is total in "%S(B{’).

Using the definitions, one now finds that

W(flexp x = exp - 7 Nl 2 - —1—5 (f,x>} exp ( ~j—_2,+ x) -

Sincev‘glo = exp 0, it follows that

<Qyr WEIL o>



1 2 £
=(exp 0, exp( - & H£l} °) exp(—)
(exp 0, exp( - & exp(E >

2

1 £
exp(- = HEIl °) fexp 0, exp(—)

exp( - 7 NENl %) = o w(n).

1,3

Example: Take for M the Minkowski space—timevli and fix m >0 --

then the associated Klein-Gordon algebra (JU sits in
CCR(L2 (X ), Im < L)
mrMm r LA r ’

hence ¢y , determines by restriction a state on 0 which will also be

0
referred to as the vacuum. Explicitly: Av4 fC-Cé>° (\,131’3;"1\3) '

A 2
Wyme) =exp S- U EIx N2 .

[Note: We shall see later that ). is a Hadamard state.]

0



The Wave Front Set Let T be a distribution on \B\,n -- then a

point (x, ¥ ) Evlin x\:liln is called a reqular directed point for T if
3¢EC§°(\§I) with << (x)#0 such that VN BCN>0:
1T (391 £ ¢+ 15 1)
for all T' in a conic neighborhood V'C:,éf of § .
[Note: As usual,\é? =~§$ - %0} . To say that [ is conic means:
s'el = tx'el ¥Ye>o.]

The wave front set of T, denoted WF(T), is the complement in

‘5? xé? of the set of regular directed points of T.

[Note: Accordingly, WF(T) consists of the pairs (x,¥% ) such that
the Fourier transform of 4’T is not rapidly decreasing in the direction
§ no matter how closely 4>is concentrated at x (bear in mind,
however, that since 4>T is compactly supported, its Fourier transform

Q:% is necessarily a slowly increasing function). One interprets

x as a "singularity" of T and § as a "direction of propagation" of
this singularity.]

Rappel: Let T be a compactly supported distribution on‘gf -
then T is a C® function iff its Fourier transform Q‘is a rapidly

decreasing function, i.e., Y N QCN'>O:
N~ -
LTzl £ cga@ + 1317
for all EE‘E’

Let T be a distribution on\ﬁ? -- then a point.><€J§? is called a

regular point for T if da neighborhood U of x and a function F G-COO(U)




such that

T(£f)

jf(x)F(x)dx VE£: spt £ C U.

The singular support of T, denoted by sing spt T, is the

complement in»ﬁ? of the set of regular points of T.

Remark: The singular support of T is the complement of the
largest open set on which T is c® or still, is the projection of
WF(T) onto the first variable. Therefore the wave front set of a
Cco function is empty.

Example: We have

WF(S) = {(0,3): I#0}.

[In fact

em) ™2 5 (4o VNI

$(0),

which is not rapidly decreasing in any direction.]

/N
$5(F)

Example: Consider &(x-y), the distribution on\Bn>g§? which

sends f(x,y) to S“f(u,u)du -~ then

/N _
$80x-y) (3,M) = @M™ Sx-y) (e VICEWATMI>

(z.n)-n J#,(u,u) e "\/—_]_1<u, §+-w7.> du

P (F+7Y) ( $w) = P(u,uw)).

Therefore the singular support of &(x-y) is the diagonal x=y and the
directions in the wave front set of & (x-y) are subject to the

restriction ¥ +‘7 = 0.



Properties of WF:
(1) WF(T) is a closed subset of‘§F><é?;
(2) VY differential operator D, WF(DT) C WF(T);
(3) ¥V compactly supported c °© function f, WF(fT) C WF(T);

(4) WF(T + S) is contained in WF(T) + WF(S),

Let S :RT— 3? be a diffeomorphism ~- then by definition

<smey = (25 o @) arw,
where J - (x) = det d5 , the Jacobian of 5 at x. Define 3*:\5?X;§?

——?\5 X R~ by

S, F) = (3(x), d3x(%)).

Fact: We have
WF(3T) = J,.WF(T).

It is clear that all of the preceding discussion can be carried
over to distributions on open subsets of\gf. This, in conjunction
with the last fact, then allows the theory to be written for dis-

tributions T on a C¢® manifold M, thus now

WE (T) & T* (M),

where T*M is the cotangent bundle of M with the zero section removed.



The Theorem of Radzikowski Suppose that (M,g) is a globally

hyperbolic space-time with dim M = 4. Let

Q= (xr3i%,-FHETHMXM : (x, T)~(x,,5) )
where
(xll ?l)’\l(xz)?z)
is defined as follows.

(i) When Xy # Xy there is a future directed lightlike geodesic

YiE) = x, T (k) € ¥,
&
‘X(tz) = X, i’(tz)éa—} §2 .

(ii) When Xy = Xo, ‘El and ‘§2 are lightlike, equal, and in

Now fix m >0 and consider the associated Klein-Gordon algebra
Glg. Let Q;M~be a quasifree state on Otg -- then the theorem in
question says that /\M satisfies the Hadamard condition iff WF( /\M 1= .

Example: Take for M the Minkowski space-time Rl'3. Consider

Vv

the vacuum Wq ~- then WF( ﬁ\o) equals

{(x, 51y, -~ )€ T*H(M XM) ;

x #y,x-9)° = 0, S(x-y), 3,50}

U

L, 3ix, -Tremrmxm: 3% =0,3,>0}.

Therefore WF( ﬁ\o) has the required form, thus QJO is a Hadamard state.





