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ABSTRACT

These notes provide a systematic account of certain aspects of the
statistical structure of quantum theory. Here the all prevailing notion is
that of a completely positive map and Stinespring 's famous characterization
thereof. I have also included a systematic treatment of "quantum dynamical
semigroups", culminating in Lindblad's celebrated description of their gen-

erators.
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POSITIVITY

§1. OPERATORS

In what follows, H stands for a complex Hilbert space, the convention on
the inner product < , > being that it is conjugate linear in the first slot and
linear in the second slot.

Denote by B(H) the set of bounded linear operators on H.

® L,(H) is the x-ideal in B(H) consisting of the Hilbert-Schmidt operators.
e E]_(H) is the »-ideal in B(H) consisting of the trace class operators.
Recall that gz(H) is a Hilbert space while Ql(H) is a Banach space. More-

over, Ly (H) < L, (H) with

[ally = {all, > [1a]].
[Note: By definition,
— lally = tedah
_ llall, = cxdal®n 2

oL (H) is the norm closed *-ideal in B(H) consisting of the compact
operators.
N.B. We have

Ly (H) < Ly(H) < L_(H).

1.1 LEMMA Every closed ideal T < B(H) is necessarily a x—ideal.



1.2 REMARK If H is infinite dimensional and separable, then there is only

one proper norm closed ideal in B(H), viz. L, (H). In general, for each infinite

cardinal k¢ < dim H, let IK be the set of all elements of B(H) whose range does
not contain a norm closed subspace of dimension at least x —— then I'< is a proper
norm closed ideal in B(H) and any such has this form for some «.

[Note: Here, the term "dimension" is to be taken in the sense of Hilbert

space theory, i.e., the cardinality of an orthonormal basis.]

Write

]_'__.OO(H)* for the dual of EOO(H)

L, (H)* for the dual of _I_.l(H) .

1.3 THEOREM The arrow

Ly (H) > L (H)*

that sends T to A, (T € Ly (H)), where

XT(A) = tr (TA) (aeL (),
is an isometric isomorphism.
1.4 THEOREM The arrow
B(H) -~ Ll(H)*

that sends A to >\A (A € B(H)), where



M (T) = tr(aT) (T € L, (H)),

is an isometric isomorphism.

Topologies:

e The strong operator topology on B(H) is generated by the seminorms

all, = llax]| e h.

e The weak operator topology on B(H) 1is generated by the seminorms

[Ally,y = 2>l iy € H).

e The weak* operator topology on B{(H) is generated by the seminorms

| |a] IT = |tr(Ta)| (T € L, ().

N.B. The weak* operator topology coincides with the weak* topology on B(H)

when B(H) is viewed as the dual of El(H) via 1.4.

1.5 REMARK Each of these three topologies is weaker than the norm topology.
None are metrizable unless H is finite dimensional, in which case they all agree

with the norm topology.

Denote by U(H) the set of all unitary operators on H —— then U(H) is a group

under operator multiplication.

1.6 IEMMA The (relative) strong, weak, and weak* operator topologies

coincide on U(H) and make U(H) into a topological group.



1.7 REMARK The strong closure of U(H) in B(H) consists of all isometries.
On the other hand, the weak closure of U(H{) in B(H) is the entire closed unit
ball of B(H).

1.8 THEOREM Suppose that H is infinite dimensional -- then U(H) is

contractible in the norm topology, as well as in the weak and strong operator

topologies.

[Note: Needless to say, this is false if H is finite dimensional.]

Consider now the duals

(B(H) ,T)* (1 = SOM)
(B(H) 7, )* (1, = wom).

1.9 LEMMA We have

(BH) T * = (B(H) T )%

In other words, the set of SOT-continuous linear |functionals is identical

with the set of WOT-continuous linear functionals. Furthermore, given such a A,

it can be shown that 3

1’ n

€ H
Yyreset¥y

for which




n
AA) = T <y, > (A
k=1 k Axk

1.10 REMARK Given x,y € H, let

Px,y = <Y,— >X.
hen P and
T x,y € B(H)
1By ] = Il 11911
In fact, Px,y € I._-l(H) and
tr(Px'y) = <Y,%>.
Since any T € L, (H) of finite rank admits a represents
n
T= % P
k1 *k"7k
for certain
- XyreserX
€ H,
Yyreeer¥p

it follows that v A € B(H),

n
z <yk,Axk>= T tr(® )

k=1 k=1 Ay iy
n

= ¥ tr(ap )

k=1 Yy

tr (AT)

€ B(H)).

tion




= Ap@).

Therefore the SOT—-dual ( = the WOT-dual) can be identified with the set of

finite rank operators equipped with the trace norm.

Let

B(H), = (A € B(H):A = 0.

Then a linear map ¢:B(H) - B(H) is said to be positive

O(B(H) ) < B(f{)+.
[Note: Positive maps are necessarily bounded.]
N.B. ILet

B(H)SA = {A € B(H) :A* = A}.

CID(B(H)SA) c B(H)SA

if ¢ is positive, hence for all A in B(H),
o(Aa*) = ¢(A)*.
Given A,B € B(H), put

A°B

1
5(AB+BA).

Then the operation
o:B(H) x B(H) - B(H)

is called the Jordan product, a Jordan morphism being

such that Vv A,B,

if

a linear map ®:B(H) - B(H)



®(A o B) = o(Aa) o 3(B).
A linear map ¢:B(H) -~ B(H) is unital provided &(I) = I.

e An order iscomorphism is a unital linear bijection ¢:B(H) -+ B(H) such

that

S(B(H),) = B(H) .

e A Jordan isomorphism is a unital linear bijection ®:B(H) - B(H) such

that v A,B,

o(A ° B} = ¢(a) ° 2(B).

1.11 IEMMA Suppose that ¢:B(H) - B(H) is a unital linear bijection -- then

¢ is an order isomorphism iff ¢ is a Jordan isomorphism.

let ¢:B(H) - B(H) be a unital linear map.
® is a *-morphism if ¢(A*) = ¢{(A)* and ¢(AB) = ¢(A)d(B)

¢ is a *—antimorphism if ¢(A*) = ¢(A)* and ®(AB) = d(B)d(A).

Assign to the terms *-isomorphism and *-antiisomorphism the obvious sig-

nificance —— then both are Jordan isomorphisms.

1.12 THEOREM If ¢:B(H) ~ B(H) is a Jordan isomorphism, then ¢ is either a

*-igsomorphism or a *-—antiiscmorphism.

1.13 IEMMA Every order isamorphism (or, equivalently, Jordan isomorphism

(ef. 1.11)) is weak* continuous.




82. STATES

The weak* continuous linear functionals on B(H) occupy a special position

in the theory.

2.1 LEMMA A bounded linear functional X:B(H) - |C is weak* continuocus iff

there are sequences {xk}, {yk} in H with

2_
illxkll

2,
z [y !

such that

AB) =T <y Ax> (A€ B(H).
k

[Note: The operator

T=5P
k *kYk

is trace class (the RHS being a trace norm convergent sum) and

(D) = L <%0
k

2.2 LEMMA A bounded linear functional X:B(H) - C is weak* continuous iff

there is a trace class operator T such that )\ = )‘T

Write B(H), for the norm closed subspace of B(H)* consisting of the weak*

continuous linear functionals on B(H) — then B(H), is called the predual of B(H).



2.3 THEOREM B(#), is isometrically isomorphic to L, (H) tAp <> T.
[Note: In view of 1.4,

(B(H) ) * = 1__1(H)* = B(H).]

A linear functional X:B(H) - C is said to be positive if
A>0=>)@A) 2 0.

[Note: Positive linear functionals are necessarily bounded. ]

2.4 LEMMA A positive linear functional A:B(H) - C is weak* continuous iff

there is an orthogonal sequence {xk} in H with
2
z = |[A
g /1% = 11

such that

A(A) = X <Xk,AXk> (A € B(H)).
k

2.5 LEMMA A positive linear functional A:B(H) - C is weak* continuous iff

there is a positive trace class operator T such that )\ = >‘T‘

A positive linear functional X:B(H) - C is said to be completely additive

if for every collection {Pi:i € I} of mutually orthogonal projections,

AT P.) = I AP.).
jer ¥ der 1

[Note: Iet F 2I be the set of finite subsets of I -— then I Pi is the
i€T



strong limit of the

P = 5 P. (Fer
F icF i
while
)X A(Pi) = sup I )\(Pi).]

i€T PEF i€F

2.6 THEOREM A positive linear functional A:B(H) + C is weak* continuous

iff it is completely additive.

2.7 REMARK Suppose that A:B(H) -~ C is a positive linear functional with

the following property: For any bounded increasing net {Ai:i € I} in B(H) 4

Asup A;) = lim A(a,).
i€l i€r

Then A is completely additive, hence is weak* continuous.

A state on B(H) is a positive linear functional w:B(H) - C such that w(I) = 1.

Iet S(B(H)) be the state space of B(H) (meaning the set of states on B(H)) -—-
then S(B(H)) is a convex set and its elements are continuous of norm 1.
[Note: The extreme points of S(B(H)) are called pure states.]

E.g.: Each unit vector x € H gives rise to a state W, r viz.
wx(A) = <x,Ax> (A € B(H)).

If c €C and |c| = 1, then

w__ (A) = <cx,Acx> = Ec<x,Ax> = w_(4).
cxX X



[Note: Let P be the orthogonal projection onto Cx -- then

w B = tr(PA) (A € B(H).]

2.8 REMARK The w  (||x[[| = 1) are pure states but when H is infinite

dimensional, there are many others.

2.9 LEMMA Iet w € S(B(H)) = then

w(@A*) = w(A)
|w(A*B) |2 < w(A*A) w(B*B) .

Denote by Sn(B(H)) the subset of S(B(H)) consisting of those w which are
weak* continuous or, equivalently, completely additive (cf. 2.6).

[Note: An element of Sn(B(H)) is termed normal.]

N.B. In the quantum mechanics literature, Sn(B(H)) is usually abbreviated
to S(H), its elements then being referred to as states on H.

A density operator is a positive trace class operator W with tr(W) = 1.

Iet W(H) be the set of density operators ~- then W(H) is a closed convex

subset of Ly (#) and the arrow

W(H) - S(H)

Wy



is bijective.
[Note: By definition,

AW(A) = tr(WA) (A e B(H)).

In particular:

p =w,  (Ix]] = 1.1
X

2.10 EXAMPIE Take H = 92 —— then relative to an orthonormal basis, the

matrix representing a given W € {/(H) has the form

1+ z x-V1y —

N =

(lelz E B_) 14

x+ /-1y 1-12z

where x2 + y2 + 22 < 1. Therefore W(H) can be identified with the closed unit

ball in 3_3, its boundary x2 + y2 + 22 = 1 parameterizing the rank one orthogonal
projections.
[Note: Let
-0 1 0 -/ -1 0o
o, = , O = , O = .
X Yy z
1 0 _ /1 0o _ _ 0 -1
Then
T 14z x=-v/-1y —

™|

x+ /1y l1-2z



N|

(I‘2 + xo + yoy + zoz) ]

2.11 IEMVA TIf {wn} is a sequence of nonnegative real numbers such that

Lw, = 1 and if {Wn} is a sequence of density operators, then {wan} is summable
n

w.r.t. the trace norm topology and its sum

W=ZwW
nn
n
is a density operator.
Iet W € W(H) —— then by a decomposition of W, we understand a collection

{wi:i € ]‘W} of positive real mumbers subject to T w, = 1 and a collection

1EIW

{Pi:i € Iw} of rank one orthogonal projections such that

[Note: The index set IW is at most countable.]

2.12 LEMMA Every W € W(H) admits a decomposition.

PROOF Fix an orthonormal basis {ei:i € I} — then

1= trWw)

r <e,,We.>
jer %

T <Me.,, Me.>,
. i i
1eT



= {iEI:HW—V—eiH z 0}

is at most countable. Given i € Ty put

_ 2
w = || ATe |
and
. - l/W—ei
> ’
AL
i
from which
W= ¢ w.P .
i€r, L%
In fact, v X € H,
<x,Wx> = <M x, AW x>

= & |<e; M|
i€l

= 5 | Wep|?
iE]’W
On the other hand,
<x, L w.P_ x>

i€T, x5

= I w.<x,P_x>
X,

iEIW 1 i

L w.<x,<X, ,x>X,>
i i

i€T, 1



w, | <x,x >|2
ity

X
iEIW

M e, 5
X w.l|<x, 1 |
iEIW e

1

z ]<x,u/W_ei>|2.

iEIW
[Note: In general, W will have many different decompositions (as can be
seen already when H = 92) and it may very well happen that PX = Px for distinct

i 3
i,j € Il

2.13 IEMMA The extreme points of @W(H) are the rank one orthogonal projections.

PROOF Consider a W ¢ W(H) such that W2 #z W — then W has an eigenvalue

A € 10,1[ corresponding to a rank one orthogonal projection E. This said, write

W= )E + (1-)) W= )E
1~
to see that W is not an extreme point of ((f). Conversely, suppose that W2 =W
and W = >\Wl + (l—}\)W2 for same ) € ]10,1[. Fix a unit vector xO:on = X5 == then
. 2 3 2
<x,Wlx> = <x,W2x> =0 if x 1 Xg- But <x,Wlx> = H,/WI x||” and <x,W2x> = ||/W£ x| %

thus vﬁqx=@x=0ifx1xo, which implies that W;x = W,x = 0 if x L x,.

Since Wl and W2 are selfadjoint, 3 Cqy1Cy € C:W, =c,W, W, =c

1 1 W. And: tr(W

2 2 =

tr(Wz)=l=>cl=c2=l=>Wl=W2=W.



2.14 REMARK Iet W € W(H) —— then

tr@?) < | |W]|tr@) = ||W]] < tean) =1

and W2 = W iff trW?) = 1.

By Ab(S(H)) we shall understand the set of real valued bounded affine
functions on S(H) equipped with pointwise ordering and the supremum norm.

N.B. Each A € B(H)SA gives rise to an element Ac Ab(S(H)), viz.

ix(AW) =20 @Weu).

[Note: ﬁ is real valued. In fact,

AA(W) = tr (AW) = tr (A*W) = tr(AW) = AA(W)-]

2.15 IEMMA The arrow

B(H)SA — Ab(S(H))

A > A

is an order and norm preserving linear isomorphism.

PROOF Iet F EAb(S(H)) - thenF=ClF -C2F2, where C, 2 0, C, > 0 are

1 1

2

constants and F]_,F2 are elements of Ab(S(H)) whose range is contained in [0,1].

Accordingly, one might just as well assume outright that F is an affine mapping
from S(H) to [0,11. But such an F can be uniquely extended to a positive linear

functional AF:_L_l(H) + C (cf. infra). Since j\F is positive, it is bounded:



10.

Am € Ly(H)*. S0 3 A € B(H):

AF = A (cf. 1.4).

And A is necessarily selfadijoint:

tr (AW) = tr(A*W) v W € W(H)

A

A* (cf. 7.4).

[Note: Here is a sketch of the extension procedure (a detailed rendition
is given in §4). Thus put AF(O) = 0 and for each positive trace class operator

T = 0, set

. T
Mo (T) = tr(T)F(—Er—(,f.—)—) .

The fact that F is affine implies that

AF(Tl + T2) = AF(Tl) + AF(Tz) .

Next, extend /\F to the selfadjoint T € gl(H) via the prescription

Mp(D) = A (1) = A(T)
and then to arbitrary T € I__.l(H) by

AF(T) = AF(Re T) + /-1 I\F(Im T).]

2.16 THEOREM There is a one-to-one correspondence between the order iso-
morphisms B(H) -+ B(H) and the affine bijections S(H) - S(H).
PROOF If ¢:B(H) -+ B(H) is an order isomorphism, then ¢ is weak* continuous

(cf. 1.13) and the restriction of ¢*:B(H)* -~ B(H)* to S(H) is an affine bijection.



11.

In the other direction, suppose that :S(H) -+ S(H) is an affine bijection. Define

F A (S(H) > A (S(H)

by the rule FC(f) = f o r — then FC can be regarded as an arrow

B(H)SA—> B(H)SA (cf. 2.15).

Extend Fz; to all of B(H) by sending A to

FC(Re A) + /=1 FC(Im A)

to get an order isomorphism QE:B(H) - B(H) such that @2:8(;‘{)* > B({H)* restricts
to g:

* =
@C|S(H) z

or, spelled out, Vv w € S(H),

w(CDC(A)) = (zw) (A) (A € B(H)).

Write P(H) for the set of rank one orthogonal projections. Define a map

P(H) x P(H) > C
by

(Pl'PZ) > tr(Ple) .

2.17 LEMMA VPl,P € P(H),

2

0 < tr(PlP < 1.

2)

PROOF Assure that Pl 2 P2 and choose unit vectors Xy ¥yt



12.

Then

1
R
g
&

tr (P1P,)) x.x

<xl ’ Px2Xl>

= <Xy <Ky X PXo>

= <X, Xy ><Kq ,Xy>

= l<xl,x2>!2

A

g 112 11yl 12 = 10

Keeping to the preceding notation, let A =P, — P, and let P be the

1 2

orthogonal projection onto the subspace spanned by Xy and x, —— then

2

— a¥*
AAXl

(1- tr(Ple) )xl

A*Ax

(1 - tr(PlPZ) )X2

A*A = (1 - tr(Ple))P.



13.

2.18 LEMMA V P/, € P(H),

_ _ _ 1/2
‘ ‘Pl P2| I - (l tr(PlPZ) )
_ _ _ 1/2
[ley - 2,01, =72 A - tr(epy))
_ _ _ 1/2
B [lpy =2, l1] =2 - trep,)) 77
PROOF All assertions are trivial if P1 = P2, so assume that Pl # P2 ~— then

from the above,

[|a*a[| = (1 - tr(PP,)) | [P]]
or still,
2 _
[al]" = @ - tr(eP,))
=>
- 1/2
[Py = Pyf = (1 = tx(®Py)) ™"
Next,
2,,1/2
B, = Byll, = (ex([al®n?
= (tr(a%a)) /2

1/2

(tr((1 - tr(P,P,))P))

A - @p)? wen’/?

1/2-

V2 (1 - tr (P P,))



14.

Finally,

e = tr(a))

1~ By

= tr((A*p) 1/ 2)

1/2
tr((l - tr(Ple)) P)

1/2

tr(P) (1 - tr (P P,))

1/2
2(1 - tr(®P,)) "%

2.19 REMARK A transition probability space is a pair (P,p), where P is

a nonempty set and p:P x P > [0,1] is a function such that

p(o,T) = p(T1,0)

plo,7) = 1 <=> ¢ = T.

E.g.: Let p(o,T) = 601' Or, what is germane, take P = P(H) and let
p(Pl'PZ) = tr(Ple) .

Put HX= H - {0} and set

X X

P(H) = C\H".

Then H' carries the topology induced by the metric and we shall agree to equip

P(H) with the quotient topology.



15.

2.20 LEMMA P(H) is a Hausdorff space and the projection

H + B(H)

is open and continuous.

[Note: P(H) is second countable if H is separable.]

2.21 REMARK It can be shown that P(H) is simply connected.

The transition topology on P(H) is the initial topology determined by the

functions fy:P(H) +~>C (y € HX) , where

£, = [xy? (x| = D.

2.22 IEMWMA Equip P(H) with the transition topology —- then the canonical
arrow P(H) > P(H) is a homeomorphism.
[The canonical arrow is certainly bijective and continuous, thus one has only

to prove that it is open, an elementary if tedious exercise.]



§3. EFFECTS

An effect is a positive operator E which is bounded above by the identity
I:0 <E < 1I.
let E(H) be the set of effects — then E(H) is convex and partially ordered

(but E(H) is not a lattice unless H = C}. In addition, there is an arrow

1:E(H) ~ E(H) that sends E to E- = I - E. Obviously, E' =Eand E < F => F < E'.

[Note: For use below,

EE€E(H =0<E"<Ex<I

= E° € E(H).]

Write L(H) for the set of orthogonal projections —— then L(H) is a lattice

which is contained in E(H).

3.1 LEMMA L(H) is the set of extreme points of E(H).

PROOF Consider an E ¢ E(H) such that E2 z E — then

I-(E-E)=(1-E2ectH

2E - B2 € E(H).

But

E = E2+%(2E—E2),

N

thus E is not an extreme point of E(H). Conversely, let P € L(H) and suppose



that there are effects El’EZ such that

P

il

>\El+(l—}\)E2 (0 < A <1).
If Px = 0, then

0 = <x,Px> = >\<x,Elx> + (1 - M) <x,E.x>

2

"

)\<x,Elx> >0

0 = <x,Ex> = </E:I x,;/'E:_l x>
=> /E_lx=o=>Elx=0.
Analogously,
I—P=>\(I—El) + (l-)\)(I—EZ),
so

N
|

X => E.X = X.

Therefore El =P=F

Given E € E(H) and a unit vector x, let
ME(P)) = sup {X € R:IP_ < E}.

Then )\(E,Px) is called the strength of E along PX.

[Note: Obviously,

0 < )\(E,PX) < 1,

but, in general, the function A(—,PX) :E(H) ~ [0,1] is not affine.]



3.2 1LEMMA We have

ME’Px)Px < E.

PROOF Choose a sequence X\

n:Xan < E and >‘n > )\(E,Px) — then Vy € H,

AV /PY> < <Y, Ey>

A(E,PX) <y,PXy> < <y,By>

AE,P_)P_ < E.
XX

EAP_ = A(E,P)P,.

For by construction,

IA
o

A (E,Px) Px

IA

K(E,PX) PX E.

If now F SPX (FeE(H)), then F = AFPX O‘F < 1) and F < E forces >‘F < A(E,PX).

3.3 LEMMA 3 a unit vector X and a real mumber A:AP_ < E and
X

A<x,P_x> = <x,Ex>.
X

PROOF If <x,Ex> = 0, then we can take X = x and A= 0. On the other hand,



if <x,Ex> = 0, then we can take

&2
d

X =

| 1Ex} <X, Ex>

3.4 IEFMA Iet E,F € E(H) =~ then E < F iff

A (E,PX) <A (F,Px)

for all unit vectors x.

PROOF The direct implication is trivial:

<
)x(E,PX)Px <E<F

=> }\(E,Px) < A(F,Px) .
To discuss the converse, choose X and A per E (cf. 3.3)

X < A(E,P_) < A(F,P)
X

]

=>‘):P_SF
X

<x,EBEx>

A<x,P x>
X

<X, AP x>
X

A

<x,Fx>.

Therefore E < F, x being arbitrary.

-- then



3.5 THEOREM V E € E(H),
E = v{AEP)P :||x|| = 1}.

PROOF First, of course, V x

AE,P_)P_ < E.
X' 'x

Next, if F € E(H) and )\(E,PX)PX < F for all x, then A(E,Px) < MF,PX) for all x,

which implies that E < F (cf. 3.4).

3.6 REMARK According to 3.1, L(H) is the set of extreme points of E(H).
Here is another characterization: An effect E is an orthogonal projection iff

vV X, )\(E,Px) e {0,1}.

3.7 RAPPEL If A € B(H) is selfadjoint, then

H = Ker A ® Ran A.
In particular:

Ran A = H{ => A invertible.

3.8 THEOREM Iet E € E(H) and suppose that El/‘2 is surjective -- then Vv x,

-1/2 -2
/2|

MEP)) = | E
PROOF To begin with, we claim that

EY %%, < E.



-1/2

Thus put £ = E x —then vye€H,

ol B 5] = (8] [Peyye
= el ey, o, pxo
= [le]| ey, w2, y' %>
= |1e]| ey 5 2o 2,y
= |lel |22y, eo<, 8 %>
= el 2eY2y,p, 2% (e 1.10)
< el 1 115212
= [lel 17| |g] | %<y, mp>
= <y,Ey>.

Therefore

| |E'l/2x| 1_213 < E,
X

as claimed. Matters are thus reduced to proving that

But Vy € H,



or still,

1/2 2 1/2 2
A<EY 2,y < |12V )]

1

or still,

1/2

2
v>| 2

| |EY %y

A

A|<E,E
Now take y = E /%,
M<gse>]? < 18]
=>
4 2
Allell™ < [1ef]

-2 -1/2 =2
A< g7 = [ 1EY 272

[Note: If El/2 is surjective, then E is surjective, hence invertible.

Proof: V vy € H, El/zy = E(E—l/zy). Consequently,
1 = 1 = 1 == —-_l__ ]
| IE'l/ % H 2 xEle tr (PXE—]') W, &™)

3.9 REMARK Fix E € E(H) — then it can be shown that

A > O:XPx < E <=> x € Ran El/z.
So, in general

- l]E_l/lel—z if x € Ran B2

AE,P)
X

0 if x € Ran El/z.



3.10 EXAMPLE Suppose given >‘0:O < A, < 1. Assume: V X, A(E,Px) = A, —

0 0
then E = )‘OI' To see this, observe that El/2 must be surjective (cf. 3.9), hence
VY X,

<x,E_lx> = g\'— = %—'—— <X, X> <X, —)\l—— Ix>
0 0 0
=>EF = XOI.

3.11 IEMMA Iet x be a unit vector and E an effect -—- then

A(E,Px) < <x,Ex>

)\(E,PX) = <x,Bx> <=> Ex = )\(E,Px)x.

Recall that by 3.1, L(H) is the set of extreme points of E(H). In addition:

3.12 ILFMMA Suppose that H is infinite dimensional —— then the weak closure
of L(H) in B(H) is E(H).



§4. AUTOMORPHISMS

Let U(H) denote the set of all antiunitary operators on H. Put

Aut H = U(H) v U(H).

Then Aut H is a topological group in any of the three topologies figuring in
1.6 and U(H) is its identity component.
[Note: Recall that the product of two antiunitary operators is unitary

while the product of a unitary operator and an antiunitary operator is antiunitary.]

N.B. The quotient

L(H) = {zI:

z| = 1}\Aut H

is called the symmetry group of H.

4.1 ILEMMA If U € U(H), then the map
-1
A->TUAU ~ (A € B(H))

is a »-isomorphism, call it oy. On the other hand, if U € U(H), then the map

A > Tav T

is a »-antiisomorphism, call it o_.

U

4.2 EXAMPLE Take H = C and let K be the camplex conjugation -- then

L(H) = {I,K}. Here B(H) = {Tz:z € C}, where T, W = ZW, thus T; = T_ and T,

is unitary iff |z| = 1.



I
H
N*—i
SH
1
I
3

.

Q

3
i

-1
*
TzK w TZKTW(TZK)

w 2z

I.e.: O is the identity map

If z € Card |z| = 1, then

E.g.: VX EH,

TKTKT =TTT =T .
z = z'w

- W

on B(H).

Oy (U € U))
o_ (U e TUMW).
g

(20) A% (z0) Lx

20T L7k
ZUA* zﬁ—lx

zﬁzA*[Tlx

ZZ0A%T 1x



=TT
= 0_AX.
U
Given
U € U(H)
_ U e,
write
~[ul
€ Z(H)
_ [0
for its equivalence class.
4,3 LEMVMA If
T U T U
e U(H) or e U(H)
v v
and if
g.,=0q,0r 0_=0_,
U v g 7
then

[l = (V] or [U] = [V].

PROOF It will be enough to deal with the unitary case and for this it can

be assumed that H = C (cf. 4.2). If o,y(A) = o,(a) for all A € B(H), then in

particular oU(P) = oV(P) for all P € P(H), hence v unit vector x € H,



-1 -1
UPXU = VPXV
or still,
PUx = PVx’

which implies that Ux = z(x)Vx (z(x) € C, |2(x)| = 1), the claim being that z(x)

is a constant independent of x. Take two unit vectors Xy r¥qe

Case 1: <xl,x2> z 0 = then

<xl,x2> = <le,Ux2>

[

<z (xl) Vxl, z (xz)Vx2>

It

z (xl) z (XZ) <Vxl,Vx2>

I

Z (xl) z (x2) <xl,x2>

z(xl)z(xz) =1 = z(xl) = z(xz) .

Case 2: <xl,x2> = 0 - then

X. + X

<X1, ____1‘..__..2_ >z 0
HX1+X2H
=>
xl+x2
z(xl) = z( ) (cf. Case 1)
[, + %, |
=>
Ux

+
3
I
c
3
=
+
X
Nv



X, + X

HX]_"'XzH

X, + x x, + X
= ||, + %) |20 ——2—yy(—L 2

iy + 50| Ll + %]

= z(xl)Vxl + z(xl)Vx2

I

le + z (xl)sz

Ux2 = z(xl)Vx2 => z(xl) = z(x2) .

N.B. The proof shows that ¢

y ©F 9 is determined by its restriction to P(H).

U

4.4 IEMMA If U € U(H) and U € U(H), then o

g * 0. provided dim H > 1.

U

PROOF To get a contradiction, suppose that Oy = O_- Proceeding as in 4.3,
U

v unit vector x € H, 3 z(x) € C of absolute value 1 such that Ux = z(x)Ux. This

said, consider a pair Xy 1%, of orthogonal unit vectors —- then

U(xl + x2) = Ux, + Ux

1 2

z (Xl)le + z (x2)Ux

x
Meanwhile
B X, + X%,
Uxy + x5) = ||%; + %,[|U0(
I|X1+X2H
X, + X X, + X
= [lxy + %, |20 —2—2—)T( —+—2—)
1 2
|lxl+X2H HX]_+X2II



X, t x X, +x

1 2 ) O + z( 1 2

B ISR
1 2

= z( )I_sz.
=y + %,

But 5xl and ﬁxz are linearly independent. Therefore

X, + x
Z (%) =z(———l———i) = z2(x,).
' 1% + %, 2
1 2
Now repeat the computation using instead
X, + /:l_x2
[1%; + /=1 x,]|
to conclude that
B x) + ;/--_l'x2 B X, + /:Ix2
Z(xl) = z( ), z(xz) = - z( )
|1 + VT %, | |1, + /T %, |

from which the sought for contradiction.

[Note: It is to be emphasized that 4.4 is false if dim H = 1 (cf. 4.2).]

Write Aut B(H) for the group of Jordan isacmorphisms.

4.5 ILEMMA Every ® € Aut B(H) is an isometry: V A € B(H),

[le@) |] = ||a]] (A € B(H)).

So, in view of 1.12, every *—isamorphism and every *-antiisomorphism is an
isometry.

[Note: For this, 1.12 can be obviated: One need only quote standard



C*-algebra generalities.]

4.6 THEOREM Every *-isomorphism ¢:B8(H) - B(H) can be implemented by a
Ue ui), i.e.,

o(A) = AU T (& € U(H)).

PROOF Fix a unit vector x € H and determine a unit vector v € H by Py

¢ (). Bearing in mind that y is cyclic for B(H), let

UAY = 6(A)x (A € B(H)).

Then
[layl] = [|aR,yl| = | |28, ]
= [Jow) || = [s@oe,) || = |lsae,||
= llo@ex|| = [le@x|| = ||oy]|.

Therefore U is welldefined and isometric. Since the range of U is B(H)x, it

follows that U is unitary. Finally, for all A,B € B(H),

uau lBx = el (B)y
= oas 1 (B))x
= $(A)Bx
=>
T = o).

4.7 THEOREM Every *-antiisomorphism ¢:B(H) - B(H) can be implemented by a



TeUm, i.e.,

1

®(A) = UA*U (A € B(H)).

PROOF Fix a conjugation K, thus K € U(A) and K> = I. Define ¥:B(H) - B(H)

by

Y(A) = & (KA*K) (A € B(H)).

The map A -~ KA*K is a *-antiisamorphism, so Y is a *-isomorphism. Using 4.6,

choose U € U(H):

y@a) =uart (€ B(H).
Then
K(KA*K) *K = A
=>
d(A) = ¢ (K(KA*K)*K)
= Y (KA*K)
= UKA* (UK) -1
And
U=UK € UH.

4.8 REMARK Neither U nor U is unique but rather is unique up to phase:

® ~ [U] € Z(H)

® <> [T] € T(H).

4.9 SCHOLIUM The canonical arrow

L(H) -~ Aut B(H)



is surjective and is bijective if dim H > 1.

Write Aut W(H) for the set of affine bijections z:W(H) - W(H) —— then

Aut W(H) is a group and there is a bijective arrow

Aut B(H) - Aut W(H)
of restriction (cf. 2.16).
[Note: Vv g € Aut W(H),
c(P(H)) = P(H).]

N.B. Fix W e W(H).

ey U e U(H),

Y - rommut

AW(UAU’ )

tr (U"1WUA)

(A) .

A
v o
ev U € UMY,

xw(ﬁA*ﬁ’l) = tr WOA*T )

tr (T Waax)

1

PN X))
g

A (a).
i

Write Aut P(H) for the set of those bijections p:P(H) - P(H) with the



10.

property that
tr(o(P))p(P,)) = tr(P,P,)

v Pl,P2 € P(H).

[Note: Aut P(H) is a group.]

4.10 LEMMA Given ; € Aut W(H), put p = ¢|P(H) — then p € Aut P(H).
PROOF Iet @C € Aut B(H) be the order isomorphism corresponding to g -- then

either ¢_ = oy (3 U0U€e UH)) (cE. 4.6) or &

4 =o_ (30 e€UM) (cf. 4.7), from

5 g
which the assertion.

Consequently, there is an injective arrow

Aut W(H) » Aut P(H)

of restriction.

4.11 LEMMA Every p € Aut P(H) admits a unique extension to an element
z € Aut W(H).

PROOF Iet W € W(H), consider a decamposition of W,
W= 1% w.P. (cf. 2.12),
. ii

and define ¢z (W) by

cW) = I w.o(P,) -

J.EIW
To check that ¢ is welldefined, suppose that

W= % ijj
JEJW
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is another decomposition of W. Given a unit vector x € H, choose y:

O(Py) =P (llyl]l = D.

Then

<x,2w.lp (Pi)x - ijp(Pj)x>

Zwi<x, o (Pi) X> - ij <X,p (Pj )x>

I

Zwitr (Pxp (Pi) ) - ijt:c (PXO (Pj) )

2w, tr (o (Py) p(P:)) = ijtr(p (Py) 0 (Pj) )

IW. PP.) - w.tr(P P.
18 (ByPy) = Dwytr (B oPy)

tr (Py(ij_P:.L - ijPj) )

tr(Py(W - W))

i

0.

Therefore

z w.o(P.) = I w.p(P.).
. i i . j 3j
1EIW jEJW

The verification that 7 is an affine bijection is straightforward.

The arrow

Aut W(H) »> Aut P(H)

of restriction is thus bijective and V p € Aut P(H), 3 U € U(H) or 3 U € U(H)
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such that
o = oy|P(H) or p = a_|P(H).
8]
To recapitulate:
Aut B(H) = aut W(H) = Aut P(H).

[Note: When H = C, each of these three groups consists of {OI} alone,

vhereas T (#{) = {I,K} (cf. 4.2).]

Write Aut E(H) for the set of those bijections y:E(H) - E(H) such that
v E,F € E(H),

E+ F € E(H) <=> v(E) + Y(F) € E(H)

E+F €Ll =>Yv(E+F =v(E) +v(F).
Then Aut E(H) is a group and there is an injective arrow

Aut B(H) - Aut E(H)

of restriction which, as will be shown below, is actually bijective.

4.12 IFMMA Iet Yy € Aut E(H) —— then VvV E,F € E(H),
E<F <= v(E) <v(F.
PROOF IfE<F, thenF= (F-E) +E, with F - E € E(H), hence

Y(F) = y(F - E) + Y(E) = v(E) < v(F).

And conversely... .

4.13 IFMMA Iet vy € Aut E(H) = then v(0) = 0 and v(I) = I.
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PROOF First
0=0+0=>v(0) =v(0+ 0) =v(0) + v(0)
=> y(0) = 0.
Second
Y(I) <1
y Hm <1

vy T @) < (o < I

+~
il

4.14 IEMMA Iet v € Aut E(H) — then V E € E(H),

YEH = y(@E)*.

PROOF In fact,

YE + EY) = y(®) + v(EY

H
]

v (I)

I-vy(E =vyE".

Y(E)

4.15 LEMMA ILet vy € Aut E(H) — then V E € E(H),

Y{(rE) = xy(E) (0 £r <1).

PROOF Assuming that r = 0,1, start with r % (n € N,n > 1) and write

E =

S|+

E+ --- +'rlYE (n terms).

YE® =ny G E)
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or still,
1 _1
Y(H-E) = E‘Y(E)-

But this implies that

Y(xE) = ry(E)

for all rational r € 10,1[. To handle an irrational r, choose a sequence {rn}

of rational r € 10,1[:

r - — <r <r
n
Then for n>>0:
rE=<rE < (r + 19E
n n n

N

1
Y (rE) Y((rn + H)E)

IA

Y(rnE)

IA
A

1
rnY(E) Y (xE) (x, + E)Y(E),
so in the limit,

ry(E) < v(rE) < ry(E).

4.16 REMARK Vv E € E(H),

E= v 2E,P)P {cE. 3.5),
PeP(H)
thus v y € Aut E(H),
Y(E) = v Y (A (E,P)P)

PeP(H)

1

v M (E,P)Y(P).
PeP (H)
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4.17 ILEMMA Let vy € Aut E(H) - then vy is an affine bijection.

PROOF v r € [0,1] and Vv E,F € E(H),

Y(rE + (1 - x)F)

li

Y(rE) + v((1 = r)F)

ry(E) + (1 - r)y(F).

4.18 REMARK Aut E(H) is strictly contained in the set of affine bijections
E(H) » E(H), the point here being that an affine bijection ¢ need not send 0 to

0 but instead ¢(0) = 0 or ¢(0) = I.

We shall now extend a given y € E(H) to an order isomorphism @Y:B(H) - B(H)
with the property that

@YIE(H) = Y.

Step 1: Extend Yy to B(H)+ by writing

A

|2l

v, @ = [|a[]v(

)

if A # 0 and set Y+(O) = 0. Note that

Y (rA) = ry () (r 2 0).

Furthermore, v, is additive on B(#),:

Y+(A+B)=I|A+B||Y(__AL§___
||a + Bf]
= |/a+B|Jy( —2—— i+ —2
lla+3B[] []a+3]]
T I VN P SR 1)1

|12 +B[] [{al] [|la+Bl| [[B]]



1s6.

e AL Ay sy LI B
a+8|  |lal] a+sll Bl
= | Al ]y —2—) + |[B||v( —=2—)

1l T

Y+(A) + Y+(B)-

Step 2: Extend v, to B(H)SA by writing

— + -
Yo B) = v, (A) -y, (A).

I.e
_1 1 ,
Yop @B = v, ([a] +2) - =y, ([a] -&).
Note that
Furthermore, Ygp 18 additive on B(H)SA:
- +, -
Ygp (A + B) =v,(A+B)) -y ((A+B))
=ly (]oa+B| +A+B) -1 (|]A+B| -2 -B)

2 '+ 2 Y+ : :

But

|a+Bl +A+B

= [a+B| + [a] + [B] - (|]a] =) - (|B] - B)

|]A+B| +A+B+ (|]A| -A) + (|B] -B)
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= |A + B| + |A] + |B]

Y,(|]A+B] +A+B+ (|]a] -A) + (|B] - B))

=Y+(|A+B| +A+B) +2y, (A) + 2y (B)

= v, (|a+ B[} + v (|a]) + v (IB])

v, (|A+B| +2+B)

= v, (|a+B[) + v (|a)) + v, (|B]

-2y, (A7) - 2y, ().
And likewise
Y,.(|A +B| - A -B)
= Y+(|A + B|) + Y+(|A|) + Y+(|B|)
- 2y, @) - 2y, 0.
Therefore
L (|]A +B| + A+ B) -1 (|]A+B|] ~A ~-B)
Z %+ 2%

Y, @) - v, @) + v, B -y @)

= YSA(A) + YSA(B) .

Step 3: Extend Ygp O B(#) by writing

<I>Y(A) (Re A) + /-1 YSA(BH a).

= YSA
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N.B. From the definitions,

® |E(H) = v.
Yl (H) = v

We then claim that CDY € Aut B(H). In any event, CPY is unital (y(I) = I
(cf. 4.13)) and positive (by construction). Moreover, @Y is surjective (its

range contains E(H)). As for injectivity, suppose that <I>Y (A) = 0, hence

1

YSA(Re A) 0

g
&2
|
o

To conclude that A = 0, it suffices to show that Re A =0 and Im A = 0. lLet us

check this for Re A, the argument for Tm A being analogous. Thus write

Re A= (Re A)T - (Re B)™.
Then

Yop(Re A) = 0 => v, (Re &) = v, ((Re B)7).

If Re A =0but (Re A)” = 0, then

0=1v,((Re A))
= || Re m)7||y( &AL,
|| (Re &) ]
=>
»Y(_.(—Re_ﬁ):___) = (0 => (REA)—'——O,
[ (®Re B ]

a contradiction. Accordingly, we can assume that both (Re A)+ z 0 and (Re A) = 0,
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SO
+ (ReA)+ - (Re &)~
[|Re A) | |[y( ———5—) = [|ReA) |[y(——=)
|| (Re 2) | || (Re B} ||
=>
(Re )"

|| e &)Y]| + || (Re B)7||

- || Re 27| | (e n)?
e || +|l@aT]  ||®ent]
- || (Re B)7|] - (Re A)~
HeRe O]+ [{@eaT||  ||®ea)T]]
_ (Re A)~

[l @®e mT|| + || (e 2)7]|

Re B)V = (Re A)” => Re A = 0.
Therefore the bottom line is that the arrow
Aut B(H) -~ Aut E(H)

of restriction is bijective.

4.19 REMARK Consider a bijection y:E(H) > E(H) such that v E € E(H),

Y(E) = y@*t
and vV E,F € E({),

E<F <= vy@E) <vy@®.
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Suppose that dim # > 1 —— then it can be shown that y € Aut E(H).
[Note: The assertion is false if H = C. Indeed, on [0,1] the functional
equation £(1 - x) = 1 - £(x) admits infinitely many strictly increasing solutions

that are not additive. E.g.: Given c > 1, consider

C
X

fc(X) = N

L+ @1 -x°€

In terms of the inclusions

W(H) < E(H)
U u < B(H),
P(H) < L(H)

it remains to consider Aut L(H), which we shall take to be the set of those

bijections A:L(H) - L(H) such that VP € L(H),

A@Y = A@)T

P, <P

1 <=> A(P

< AP

2 l) 2) '

Then Aut L(H) is a group and there is an injective arrow

Aut E(H) ~ Aut L(H)
of restriction which is trivially bijective if dim H = 1 but matters are not
so simple if dim H > 1, a condition that will be assumed henceforth.
N.B. If we identify the lattice L(H) with the lattice of all closed linear

subspaces M of f{, then Aut [(H) is the set of those bijective maps A that preserve
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orthogonality and order:

rethy = At

Ml c ,Mz <=> A(Ml) c A(MZ) .

4,20 ILEMMA Iet A € Aut L(H) —— then A(O)

Il

0 and A(T) = I.
PROOF vV P € L(H),
0 <P =>A(0) < A(P).
But A is bijective, thus A(0) = 0. And then

AT = A0 = A0t = ot = 1.

4,21 IEMMA Iet A € Aut L(H). Iet Pl,P2 € L(H) and suppose that Pl 1P, -

then A(Pl) i A(PZ)'

PROOF In fact,

_ L
= A(Pl) 2 A(P2)

=> A(Pl) L A(P2) .

N.B. Vv A € Aut L(H),

A(P(H)) = P(H).

Write Aut, P(H) for the set of those bijections pW:P(H) + P(H) which preserve
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"“transition probability zero", i.e.,

tr(oW(Pl) pw(PZ)) =0 <=> tr(Ple) = 0.

Then AutW P(H) is a group containing Aut P(H) as a subgroup.

4.22 EXAVPIE Take H = C° — then in the notation of 2.10, the elements of

P(H) are the matrices of the form

1
5 (12 + XO’X + ycy + zOZ) R

where x2 + y2 + 22 = 1, so the bijections of P(H) correspond to the bijections

(XIYIZ) + (x' Iy‘ IZ')

of _S_2, the unit sphere in 53. Using variables (1,4,9) (0 < ¢ <m, 0 <0 < 2w,

define f:§2 > §2 as follows:

£(1,6,0) = (1,6,8) (¢ = 3)

and
™ _ T
f(lljle) - (11‘2‘,9’(9)):
where
- 2
g =2 (O<osm
2
g(e) =(—e—;——ﬂ—)——+ T (m <8 < 2m.

The function p f:P(H) > P(H) induced by f preserves transition probability zero,

hence g € AutW P(H). Still, £ ¢ Aut P(H).
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[Note: In terms of cardinalities,

$Aut P(gz) =c

2 <
#Autw P(CT) = 2 .]

4.23 REMARK The two dimensional situation is the anomaly: If dim H > 2,

then it turns out that

Aut P(H) = AutW P(H) (cf. 5.18).

4.24 LEMMA Iet Peg € Autw P(H) -- then there is a unique A(pw) € Aut L(H)
such that A(pw) P) = pW(P) for all P € P(H).
PROOF Suppose, initially, that M is a nonzero linear subspace of H (M not
necessarily closed). Let
M) ) = {x € (P )H:u € M, | |u]] =13,
put A(pw) ({0}) = {0}, and observe that

M= Ao ) Ao ) ()

|
M= Alp VA(p) (M) .
Next,
T uewM, ||ul| =1

vem, [|v|| =1
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tr(@P) = [<u,v>[2 =0
tr(p (P )p (P)) =0

w u w v

Moy 0 & Alp) (00

Mp,) 01) < Ao) (™.

And
M= (Al DAl ()t
> AeZh (Mo ()
=>
Mp,) 019 > Alg ) 0.
Therefore

AMp,) () = Alp,) ().

If now M is in addition closed, then Mt = M, so

i

Alp) M) = Ao, ) (0™

]

Alp,) 0,

which implies that A(pw) (M) is closed as well.
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The arrow

- Aut, P(H) » Aut L(H)

MR

respects camposition and is bijective. In fact, injectivity is obvious while
A€ put L(H) => A[P(H) € Aut P(H)

and this proves surjectivity.



§5. GLEASON'S THEOREM

The set L(H) of orthogonal projections is a complete orthomodular lattice.

N.B. If {Pi:i € I} is a collection of orthogonal projections, then

AP, =g.l.b. {P,:1€ 1}
jer t t
v P, =Lub. {P,:1i€ I}.
ier t 1

[Note: A is the orthogonal projection with range
ier
N Ran P,
ier

and vV Pi is the orthogonal projection with range the closure of the linear span of
i€l

U Ran P..]
i€T

5.1 LEMMA If {Pi:i € I} is a collection of mutually orthogonal projections,

i

v P, Y P..
iel ieT

A charge on [(H) is a function p:L(H) - [0,1] such that pu(I) = 1 and

Py 1L Py => u(P; + P,) = u(P) + ul@,).

[Note: It then follows that u(0) = 0.]



5.2 LEMMA Iet y be a charge on L(H) -— then uy is monotone, i.e.,

Py

IA

P, => u(py) SlMPQ.
PROOF In fact,

P =(P2-Pl)+Pl

U(Pz) = u(P2 - Pl) + u(Pl)

u(P2 - Pl) = u(Pz) - u(Pl)

u(Pl) < u(Pz).

5.3 LEMMA Iet U be a charge on L(H). Assume: PP, = PP, — then

u(Pl A P2) + u(Pl v Pz) = u(Pl) + u(PZ).

PROOF Since Ple, Pl(I - P2) , and P, (T - Pl) are mutually orthogonal

projections, we have

p(Ple) + p(Pl(I - P2)) + p(Pz(I - Pl))

= u(PP, + P; = PP, + P, ~ PP,)

u(Pl + P2 - Ple)

= p(Pl \ PZ) .



But
- P L P, (I = Py)
B P2 1 Pl(I - P2)
=>
u(Pl) +u@, (T - Py)) = u(Pl + P, - P,P,)
= u(Pl v P2) .
_ H(P,) + u(P (I - Py)) = u(Py + P, = P;P))
Therefore
p(Pl v PZ)

u(Pl A P2) + u(P1 v P2) - u(Pz) + u(Pl v Pz) - u(Pl)

U(Pl APy) + WPy VP, = U(Pl) + }J(PZ)-

[Note: It is thus a corollary that

u(Pl v Pz) < u(Pl) + u(PZ)

provided PlPZ = PzPl.]

5.4 1LEMMA Iet p be a charge on L(H). Suppose that {Pi:i €I} is a



collection of mutually orthogonal projections -~ then

It = {ie I:u(Pi) > 0}

is at most countable.

Iet y be a charge on L(H) -— then an element P € [(H) is said to be y-null
if y(P) = 0. E.g.: 0 is p-null. If the set of p-null elements has a greatest

member Pu, then T -~ Pu is called the support of u, written spt u.

5.5 1LEMMA Suppose that spt U exists -~ then

u(P) = 0 <=>P L spt u.

5.6 EXAMPLE Fix a unit vector x € H and define px:L(H) - [0,1] by

Il

pX(P) tr(PXP) = <x,Px>.

Thenux is a charge on L(H) and

ux(P) 0<=>P1L Px'

Therefore the set of ux—null elements has a greatest member, viz. Pu =71 - Px'
X

hence spt W, = Px.

Let y be a charge on [(H{) — then u is said to satisfy the J-P condition if

I
o

u (Pl)

=> u(Pl v P,}) = 0.

o)

Il
o

M (PZ)



[Note: "J~P" stands for Jauch-Piron.]

5.7 LEMMA Suppose that spt y exists —- then y satisfies the J-P condition.

PROOF For
p(Pl) =0
=> Pl' 5 < Pu.
_ p(Pz) =0
On the other hand,
PPy vh
=> Pl v P2 < PU => M(P1 v P2) < ”(Pu) =0 (cf. 5.2).
_ Py sPpvh

® A charge y on [(H) is said to be g-additive if for any sequence {Pn:n € N}

of mutually orthogonal projections,

uCvP)= 37uP).
neN n neN n
[Note: According to 5.1,
vP = % P.]
neN n neN n

® A charge p on L(H) is said to be corpletely additive if for any collection

{Pi:i € I} of mutually orthogonal projections,

p( vP,)= ¢ u,).
jer v e ?



[Note: According to 5.1,

v P T P..]
ier i€l

5.8 THEOREM Suppose that p is o-additive -- then spt u exists iff u is
completely additive and satisfies the J-P condition.
PROOF Assume first that spt p exists -— then in view of 5.7, we have only

to show that p is completely additive. Introduce I' as in 5.4 and put

-+

P= VvP,,P = v P.,P.= V P..
jer * jert ¥ 0 jergti
Then
p=pv Pyr P+PO =0,
and
+
But
iEI—I+=>P. <P
i H
= <
>P0 Pu
=> n(PO) = 0.
Since y is g-additive, it follows that
+
u(P) = u(@)
= % ,uP.) = % u®.).
ierm Y qer ?



I.e.: yu is completely additive. Turning to the converse, we distinguish two

cases.

Case 1: u(P) >0 v P =z 0. In this situation, it is clear that spt p = I.

Case 2: I Pe€ L(H):P# 0and u(P) = 0. Zornify to get a maximal collection

{Pi:i € I} of mutually orthogonal projections such that Vv i, Pi z 0 and u(Pi) = 0.

Set

P = vPi.
B jer

Then by complete additivity, M(Pli) = 0 and the claim is that Pp is the greatest

u-null element in L(H). To see this, note that
u®) = 0= uP v Pu) = 0 (J-P condition)

= y(PvP -P)=0.
PRV LT M

( ).L 7

so by maximality,

Therefore

el
IA
4!
<
el

i
rd

as claimed.

5.9 EXAMPIE Fix W € W(H) and put

uW(P) = tr (WP) (P e L(H).



Then My is a g-additive charge on L(H). Let PW be the orthogonal projection

onto Ker W, so

]JW(PW) = tr(WPW) = 0,

and PW is the greatest uw—null element in L(H) (hence I - PW = gpt uW) . For

suppose that 1,,(P) = 0. Take an orthonormal basis {ei:i € I} for Ran P and note

that
0= }JW(P) = tr (WP)
= ¥ <e,,WPe.>
jer 1701
2
= I ||Mell
ieT

Owing now to 5.8, Wy is completely additive and satisfies the J-P condition.

[Note: The results embodied in 2.5 and 2.6 imply that, a priori, Wy is a

completely additive charge on L(H).]

5.10 THEOREM Assume: dim H = 2. Suppose that u is o-additive -- then u is

conpletely additive iff 3 W € W(H):u = Wy

N.B. The point, of course, is the representation of a campletely additive y as



[Note: The one dimensional case is trivial: L(H) = {0,I} and

|}
o

u(0)

=> U= g

It

uw(I@ =1

In general, the range of Wy is {0,1} only when dim H = 1 (use a decomposition of
W {cf. 2.12)).]

5.11 REMARK Gleason's theorem is 5.10 in the case when H is separable of
dimension > 2 (o-additivity and complete additivity are one and the same in the

separable setting).

Let S(H) = {x € H:||x|] = 1} — then a function f:S(H) + R is a frame function

if f(ex) = £(x) Vc € C:

c| = 1 and 3 a constant C(f) (the weight of f) such that
vV orthonormal basis {ei:i € 1}, the series 7 f (ei) is absolutely convergent and
i€l

has sum C(f). E.g.: If T € I;‘l(H) and is selfadjoint, then the function

£p(x) = <x,Tx>  (x € 5(H))

is a frame function.

5.12 ILEMMA Suppose that dim H > 2 and let f:S(H) > R_, be a nonnegative

0

frame function —- then 3 a selfadjoint T € L, (H) such that f = £.
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This is the technical crux of the matter but the proof is a bit involved
so we'll postpone it for now (see the Appendix at the end of the §).

Returning to 5.10, let y be a completely additive charge on L(H). Define
580 > Ryg by

fu (x) = p (PX) .

Then for any orthonormal basis {ei:i € I}, the camplete additivity of y gives

I

T £ (e.) T u@_ )
iet ¥ Y der &

=pu(VvP )
ier i

]

(L)

= l.

Therefore fu is a nonnegative frame function, hence by 5.12, 3 W € W(H):

To prove that u = e take a P € L(H) and choose an orthonormal basis {ei:i €1},

where I=J UK (JNK=g) and
{ej:j € J} an orthonormal basis for Ran P

{ek:k € K} an orthonormal basis for (Ran P)J'.

Then using once again the camplete additivity of yu, we have

u(P) = u( vPe)
j&T 73

=% u®,_ )
jer 5



11.

£ (e.)

It

z (el)
ja:rfw ]

L <e.,We.>
j&J

% <e.,Wpe.>
j&eJ

tr (WP)

I
=
E

So, module 5.12, the proof of 5.10 is complete.

5.13 EXAMPLE Gleason's theorem is false if H = 92. Thus fix a set R of

representatives for the antipodal equivalence relation on §2 and let

il
o

w(0) 1 (PER

’ uP) =

I
I-J

w(I) 0 (PZR).

ThenifW:u=uW.

Additional insight into the structure of Aut L(H) can be obtained by applying

the machinery developed above.

5.14 IFEMMA Iet A € Aut L(H). Suppose that {Pi:i € I} is a collection of
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orthogonal projections -- then

A(CvP,)= v AP.)
jert  der 1t
ACAP)) = A AP
jet ¥ jer 1t

5.15 EXAMPLE Fix W € W(H), A € Aut L(H), and put

pW’A(P) = tr (WA(P)) (P € L(H)).

Then W A is a completely additive charge on L(H). In fact, A(I) = I (cf. 4.20),

hence

uW’A(I) = tr (WA(I)) = tr(W) = 1.

And if {Pi:i € I} is a collection of mutually orthogonal projections:

(VPi)

8
W, A ieT

il

iel

I

icT

il

(v A(P;))
Hw ieT 1

il

L o (A(P;))
e W

= I gy ().
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5.16 LEMMA Assume: dim H > 2 — then V A € Aut L(H), there is a unique
z(A) € Aut W(H) such that
z(A) (P) = A(P)
for all P € P(H).

PROOF In the notation of 5.15, consider y -1
W, A

and determine W' € W(H) per
5.10: VP e L(H),

wo _®=n (@.

W, A W'
Definition:

z(A) (W) =W'.
Then z(A) € Aaut W(H). To confirm that

z(h) (P) = A(P)

for all P € P(H), it suffices to show that

tr(z(h) (B))P,) = tr(A(P))P

2) 2

for all Pl’PZ € P(H) (cf. 7.4). But

z(A) |P(H) € Aut P(H)  (cf. 4.10).
Therefore

tr (g () (P))P,)

tr(z () (B (M) () (@)

-1
tr (P () (B,))

-1
tr ez (A7) (B,))
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i

-1
tr (5 (A7) (P,)P))

tr(P,A(P,))

tr(A(P)P,) .

The arrow
Aut L(H) > Aut W(H)

A > (D)

respects composition. Moreover, it is injective. For suppose that

g(AYW) =W (WeWH).

z(p) (P)

P (P e P(H)

or still,
A(P) =P (P € PH)).

But this implies that A is the identity map. Thus fix P, € [(H) and write

0
P.= v P.,
O jer?
where P, ranges over the elements of P(H) which are < PO — then
A(PO) = v A(Pi) (cf. 5.14)

ier

v P,
jer t

= PO'
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Consider now the diagram

Aut L(H) — 2ut W(H)

T l (dim H > 2).

AutW P(H) <— Aut P(H)

As it stands, the vertical arrows are isomorphisms and the horizontal arrows are

one-to~one but it will be shown below that they too are isomorphisms.

5.17 ILEMMA Consider the diagram of groups

Assume: o,8,Y,6 are injective and

BOOL°6°Y=idG3.

Then «,8,Y,8 are surjective.
PROOF The hypotheses imply that the three remaining compositions are the

respective identity maps on G4,Gl,G2. E.g.: Given g4 € G4,

Y°B°0L°5(94)=9"1

Boaeo S§(y(Beacw 6(g4))) =fBoqgo 5(921)
=>

B°oc°6(g4)=6°oc°6(gjl)
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=> g4 = g&.

And this leads to the surjectivity. E.g.: Given 94 € Gys

Y{g3) =g,

ifg3=8°a° 6(94).

Working with aut P(H),
p € Aut P(H) => p € Aut P(H)
=> A(p) € Aut L(H)

=> r(A(p)) € Aut W(H).

But the arrow

Aut W(H) - Aut P(H)

is simply the arrow of restriction and v P € P(H),

g(A(p)) (P) = A(p) (P) (cf. 5.16)

It

p(P) (cf. 4.24).
Therefore 5.17 is applicable, hence all the arrows in the diagram

Aut L(H) — Aut W(H)
T l @im H > 2)

AutW P(H) «—— BAut P(H)

are isomorphisms.
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5.18 REMARK In particular:
dim H > 2 => Aut P(H) = Autw P(H) (cf. 4.23).
[Note: Suppose that dim H# = 2 and consider the diagram
Aut W(H) ~ Aut P(H) ~ Aut, P(H) > Aut L(H).

Then the first and third arrows are isomorphisms while the second arrow is

injective but not surjective (cf. 4.22).]

N.B. Maintaining the assumption that dim H > 2, V A € Aut L(H), 3 U € U(H)

or 3 U € U(A) such that
A= oylL(H) or A =o_|L(H).
i}
In fact,
A|P(H) € But P(H)
and 3 U € U(H) or 3 U € U(H) such that

AP(H) = OUlP(H) or AP(H) = o_|P(H).
U

On the other hand, given any P € P(H), we can write

P= VP,
iex

where P, ranges over the elements of P(H) which are < P. Therefore

A@) = v A(Pi) (cf. 5.14)
ieT
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v o (P,) =c¢.(vP,) =g (P)
jer U * Uljer * u
v AP.) =
ier *t
v o__(Pi) =a_(v Pi) = o_(P).
_der T U ier U
APPENDIX

ASSERTION G: Suppose that dim H > 2 and let f:S(H) - R.o be a nonnegative

frame function — then 3 a selfadjoint T € L, () such that £ = £, (cf. 5.12).

I do not intend to give a camplete proof of this result. Nevertheless, it
is instructive to isolate the essentials behind the argument.

N.B. In what follows, we shall allow our Hilbert spaces to be either real
or complex.

[Note: In the real case, a frame function f is "even", i.e., f£(x) = £(- x)
(x|l = 1D.]

Frame functions of the form fT, where T € I—‘l(H) is selfadjoint, are termed

admissible.

[Note: Recall that

frx) = <, Tx>  (||x|| =1.]

The technical key to the whole business is to first prove Assertion G in the

special case when H = 1_13 and S(H) = §2. In other words: If f:§2 > 1_3>0 is even
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and 3 C(f) such that for any orthonormal basis {el,ez,e3}, f(el) + f(ez) + f(e3)

= C(f), then f is admissible.

Proof: Omitted... .

Granted this, the proof of Assertion G hinges on two preliminary steps.

[Note:

F(x) =

Every frame function f can be extended to all of H by the prescription

x| 262 ® =0

=

0 (x=0).]

If H is a complex Hilbert space, then a closed set SO c H is a real subspace

if (1) a,pER & u,v E SO

Step 1: Suppose that H is complex of dimension 2 and let f:S(H) - Bz

=>au+bVESOand (ii) <,>|So><S

o <&

0

be a nonnegative frame function. Assume: The restriction of £ to the unit sphere

of every real subspace of H

[Iet M= sup £, thus 0

this, choose unit wectors X

is admissible —- then f is admissible.

N

<M < C(f) and £ actually takes on the value M. To see

f(Xn) + M
~ X > Xge
Set
<X Kg>
y = —_———— X .
n |<x_,x.>| n
n’~0
Then ||y || =1, limy = Xqr and the real linear span $,(n) of x, and y_ is
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a real subspace, hence 3 a symmetric Tn:SO(n) -> So(n) such that

fx) = <x,T x> (x€ So(_n),llxll =1).

Write

|E(xg) =M < |£(xg) - £(y)] + [£@y) - M|.
° [£ixy) - £(v,) |

- I<XO’TnXO> N <yn’Tnyn>|

= | <2y = ¥, T (xg + ¥) >

In

lxg = vl 1 1%y + w11 Tz

IA

21z [| |1xy - v,

IA

2C(f) | lxo - yn] | .

. lf(yn) - M|

<X ,X >
n’"0

|f(———x) - N

I
o
o
|
=
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et Yo be any unit vector orthogonal to Xq and let SO be the real linear span

of X and Yo Note that

- F(XO) =M

Fly,) = C(f) - £(xy) = C(f) - M.

0)

Since the quadratic form corresponding to f in 30 attains its supremm on the

unit sphere at X it follows that

Flax, + byy) = aM+b>(C(H) =M (abeR.
Ifa’be(_:-,ab;to,then
_r2 bla|
F(axO + byy) = F(E (|a|xo + =2k yg)
= F(|a|x0 + |b|y(')),
where
b
y' = .lil__.__y
0 a 0
|b]
is a unit vector orthogonal to x Therefore

.
Flax, + byy) = |a|®™ + |b|2(C(E) - M)
0 0 :

The same relation is valid if either a or b vanishes. Consequently, F(x) = <x,Tx>,

T the diagonal matrix

0 CE) -M|

w.r.t. the orthonormal basis {xo,yo}. But this means that f is admissible.]
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Step 2: Suppose that # is camplex of dimension >2 and let f:S(H) - I_2>0

be a nonnegative frame function. Assume: The restriction of £ to the unit sphere
of every two dimensional subspace of H is admissible —- then f is admissible.
[Written out, the assumption is that on each two dimensional subspace K < H,

3 a selfadjoint TK:K + K such that

£(x) = <x,Tyx>  (x €K, [[|x]] =1).

If x,y € H are linearly independent, then x,y span a two dimensional subspace K
and we put

T(x,y) = <x,TKy>.
If x,y € H are linearly dependent, say x = cy (c € C), take for K any two dimensional
subspace containing x, let

T(XIY) = <XITKY>I
and note that

<x,TKy> = <x,'I'Kcy> = c<x,TKx> = cF(x),

which is independent of the choice of K. Therefore

T:Hx H~>C

is welldefined. And by construction,

v

T(x,%) 0

T(x,y) =T (v,x)

T(x,cy) = cT(x,y) (c €C).

We then claim that

T(x,yl) + T(x,yz) = T(x,yl + y2) .



In fact,

So
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Re T(x,y) =7 (Fx +y) - F(x - y)).

=7 F&+y) ~Fx-y) +Flx+y,) - Flx - y,)).

2F(x) + 2F(y) = Fx +Vy) + F(x - y)

F(x + yl) + F(x + Yz) -F(x - yl) -F{x - Y,)

N

=.—(F(x+yl+x+y2)+F(x+yl—x—y2)

—F(x—yl+x—y2)-F(x-—yl—x+y2))
=l(F(2x+ +v,) + Fly, - v,)
2 Yy * Y, Y1 - ¥y
-F(2x-yl -—y2) - F(- yl+y2))

=5 Fx+y; +v,) -Fx -y, - v,))

Re T(X,yl) + Re T(XIY2)

|

1
5 (F(2x+yl+y2) - F(2x ""Yl -YZ))

1
3 Re T(2x,7; + ¥,)

I

Re T(lel + y2) .
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Next
T(x, - /~1y) =Re T(x, - /-1 y) + /=1 Im T(x, - V-1 y)

or still,

T(x, = /-1y) = - /1 T(x,y) = - /-1 (Re T(x,y) + /-1 Im T(x,y))

Im T(XIY) = Re T(X, - l/:i_Y)

Im T(x,yl) + Im T(x,Y,)

Re T(x, - /—_lyl) + Re T(x, - /:Iyz)

Re T(x, = V-1 (yl + y2))

Im T(Xryl + y2) .

This settles the claim. The final detail is the boundedness of T:

|T(x,7)| < |Re T(x,y) | + |Im T(x,y)|
= |Re T(x,¥)| + |Re T(x, = /-1 )|

%(F(x+y)+F(x—y)+F(x—/:-Ty)+F(x+/—_ly))

IN

2
CE (lx+y])2+ (- yl[2+ |x = Tyl 1%+ []x + AT y] |2

N

c@® (|]x]1%+ |1gl1®

IA

Ty | <) ([x[] =1, |]y]| =D.
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Thus there exists a unique T > 0: V x,y € H,

T(x,y) = <x,Ty>.

But this means that f is admissible.]

We are now in a position to prove Assertion G.

Iet K ¢ H be any two dimensional subspace and let So c K be a real subspace.
Take S

two dimensional (matters are trivial if S, is one dimensional) and fix

0 0

a unit vector Xq L SO. In the real linear subspace spanned by x, and S., the

0 0’
restriction of £ to "_S_2" is admissible. Therefore the restriction of f to the

unit sphere of SO is admissible. So Step 1 implies that f|§(K) is admissible

and then Step 2 implies that f itself is admissible.

RAPPEL, A cardinal k is measurable if k is uncountable and 3 a positive

measure m # 0 on the power set of x such that m({x}) = 0V x € «.

LEMMA Suppose that dim H is uncountable — then every o-additive charge u
is completely additive iff dim H is not measurable.

PROOF Fix a g-additive charge y and assume that dim H is not measurable.
Fix a collection {Pi:i € I} of mutually orthogonal projections. For each i € I,
choose an orthonormal basis in Ran Pi and complete their union to an orthonormal

basis {ek:k € K} for H. Define a positive measure m =z 0 on the power set of K by

m(LcK)=p(vPe) L = @
Lel L

and set m(@) = 0 — then m is finite, hence

D = {k € K:m({k}) > 0}
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is at most countable. Because K and K-D have the same cardinality, the restriction

of m to the power set of K-D must vanish identically. ILet

Kl

I}

Il

Then we have

u( v P.)
ieT

Therefore 1 is completely additive.

1

To

{k €K: 31i€Tst €, € Ran Pi}

{i€I:Ran P, NRan v P_ =z 0}.

keD

p(v P_)
kek' Sk

m(K"')
m{((K' N D)UK"' N (K-D))

m(K' N D) + m(K' N (K-D))
m(K' n D)

ul v P_)
kek'nD Sk

u( v P.)
jerr *

r u(p;)
jerr 1

L u(P.).
ier %

treat the converse, fix an orthonormal

basis {ek:k € K} for H and suppose that m =z 0 is a probability measure on 2K

which vanishes at every point of K.

Define n:L(H) » [0,1] by
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2
u®) =/ ||p, ||"dm(k).
K 3 Sk
Then
2
W@ =/ |le | “dmap)
K
= [ ldm(k) =
K

Moreover, in view of the monotone convergence theorem, 1 is o-additive, thus by

hypothesis is campletely additive. Accordingly,

= () =u(vP

kEKek

r uP
keK ek

=0’

a contradiction. So dim # is not measurable.

REMARK Under the preceding assumptions, every o-additive charge u on L(H)
extends to an element of Sn(B(H)) (= S(H))} (cf. 5.10), i.e., extends to a normal
state. If, however, u is merely a charge on L(H), then without any conditions of

a set—-theoretic nature, it can be shown that p extends to an element of S(B(H)),

i.e., extends to a state.



§6. STATISTICAL MODELS

An effect algebra is a system (E,0,1,8), where 0,1 are distinct elements of

E and ® is a partial binary operation on E that satisfies the following conditions.

Ya€E, a® 0 is defined and equals a.

i

_Q_:
El: If a ® b is defined, then b ® a is defined and a ® b= b & a.
E2: Ifa®band (a®b) ® c are defined, then b cand a ® (b ® ¢) are

defined and a ® (b®c) = (a ®b) & c.

3t VaE€E, there is a unique a' € E such that a ® a' is defined and

E,: If a® 1l is defined, then a = 0.

The elements of E are called effects.

6.1 EXAMPLE let (R,A) be a measurable space (meaning that ) is a nonempty
set and A is a o-algebra of subsets of Q). Given A,B € A, define A®B=AUB

ifANB=g - then (A,@,0,0) is an effect algebra.

6.2 ILEMMA The condition EO is redundant, i.e., is implied by E]. - E4.

PROOF Use E3 toget 1':1 9 1'=1or still, 1' ® 1 = 1 (cf. El)’ hence
1' = 0 (cf. E4). Now write
1=1 1!

=180

1

(a®a') 0 (cf. E3)



= (a'®a) ®0 (cf. El)

il

a'e (a® 0) (cf. E2).
But

a'®@a"=1=>a"=a

=>a® 0= a.

6.3 EXAMPLE The unit interval [0,1] is an effect algebra under the partial

binary operation a ® b = a + b whenever a+ b <1 (here a' =1 - a).

6.4 EXAMPLE Given a measurable space (2,A), let E(Q,A) be the set of all

Borel measurable functions f:Q - [0,1] —-- then E(Q,A) can be viewed as an effect

algebra in the obvious way.

6.5 EXAMPLE If H is a camplex Hilbert space, then E(H)

E®F=E+ Fprovidled E+ F < I (here, E' =E' =1 - E).

6.6 LEMMA Iet (E,0,1,8) be an effect algebra. Assume:

then b = ¢c.

6.7 LEMMA Ilet (E,0,1,8) be an effect algebra. Assume:

Given an effect algebra (E,0,1,®), write

a<bif 3 ce€eE:a®c=h.

adb

aéb

is an effect algebra:

a®dc -

0 - then



6.8 IEMMA The binary relation < is a partial orderingon E and 0 < a <1

for all a € E.

[Note: The fact that < is reflexive, i.e., a < a, follows from E.:a & 0 = a.]

0
N.B. In 6.3, 6.4, 6.5, < is the usual partial ordering.
6.9 REMARK In general, (E,<) is not a lattice.

6.10 LEMMA Iet (E,0,1,8) be an effect algebra — then a ® b is defined iff

a<b'.

6.11 IEMMA Iet (E,0,1,8) be an effect algebra -- then

a<b=>Db'"<a'.

An element a € E is sharp if a A a' exists and equals 0. Denote the set of

sharp elements in E by Eg —= then 0,1 € Eq and in 6.3, Eg = {0,1}, in 6.4, Eg =

{xA:A € A}, in 6.5, E, = L(H).

S
The operation ® can be extended to any finite set of elements by recursion:
8yse-.,8, are sumable if a, ® --- & a,

1 .1 exists and (a; ® --- ® a2 ;) & a exists,

in which case we put
a, ®---0a =(a;®---0a ;) da.

A subset D c E is summable if every finite subset of D is summable. We then define

the sum ® D as the supremum of all partial finite sums (assuming that the supremum



exists in E). BAn effect algebra is a o-effect algebra if every countable summable

subset has a sum.

6.12 ILEMMA An effect algebra (E,0,1,8) is a o-effect algebra iff for every

increasing sequence a] S8, < .eey the supremum v a, exists.
n

N.B. The effect algebras in 6.3, 6.4, and 6.5 are o-effect algebras.

let E,F be effect algebras —— then a map ¢:E - F is additive if

a ® b defined => ¢(a) @& ¢(b) defined

¢(a @ b) =d(a) & ¢(b).
If ¢:E > F is additive and if ¢(1) = 1, then ¢ is a morphism. A morphism ¢ is an

isomorphism if ¢ is bijective and q>'1 is a morphism.

6.13 IEMMA Suppose that ¢:E - F is a morphism -- then ¢$(0) = 0.

PROOF In fact,

1=¢(1) =4¢(1e0

$(1) & ¢(0)

]

1 ¢(0)

$(0) ® 1

$(0) =0 (cf. E,).



6.14 IEMMA Suppose that ¢:E » F is a morphism — then V a € E, ¢(a') =
¢(a)'.
PROOF In fact,

1=¢0 = ¢a®a
= ¢(a) ® ¢(a")

=>

¢@') = ¢(@' (cf. Ej).

A morphism ¢:E + F between o—-effect algebras is a o-morphism if for every

increasing sequence a; S8, < ..., we have
d(v a) =V ¢(a,) -
n n

6.15 EXAMPIE Iet (Q,A) be a measurable space, H a complex Hilbert space —

then a semispectral measure on (2,A) is a o-morphism A -~ E(H) (cf. §7).

A state on an effect algebra E is a morphism s:E - [0,1], thus s(0) = 0,
s(l) =1, and s{a ® b) = s(a) + s(b). Write S(E) for the set of states on E ——

then S(E) is a convex set.

6.16 EXAMPIE Iet X be a nonampty set —— then ([O,l]X,O,l,ﬂ)) is an effect
algebra, where 0(x) = 0, 1(x) =1, (£ ® g)(x) = £(x) + g(x) (x € X). Denoting

by B(X) the Banach space of bounded real valued functions on X, a map

s: [O,l]X + [0,1] is a state iff 3 a (necessarily unique) positive linear functional



A:B(X) + R with A(1) = 1 such that |[0,1]1% = s. In particular: S([0,1]) is

a singleton, viz. the identity map on [0,1].

6.17 EXAMPIE ILet [0,11% = [0,1] x [0,1] — then [0,1]% is an effect algebra,

where (al,bl) ® (a ,b2) is defined iff a; ® a, and bl ® b2 are defined in [0,1],

(alrbl) ® (azrbz) = (al ® a2,bl @ bz) .
Here
2
S([0,11%) = {soc:O <o <1}
Soc(a'b) =o0a + (1 - a)b.

A o-state on a o-effect algebra E is a o-morphism s:E - [0,1], hence

s(® an) =@ s(an) . Write Sg(E) for the set of o-states on E — then SO (B) is
n n

a o-convex set.

[Note: Obviously, S C5(E) c S(E).]

6.18 EXAMPLE Iet (Q,A) be a measurable space and let M-{(Q,A) be the convex

set of probability measures on (Q,A). Given u € M-{ (Q,A), put

w(g) = /o fau (£ € E@QA)).
Then y € SO(E(Q,A)) (monotone convergence theorem). Moreover, every s € S_(E(R,A))

is of this form.



6.19 REMARK The extreme points of MI(Q,A) are the probability measures

u such that v A € A, either u(A) = 0 or 4(A) = 1 (observe that 0 < u(d) < 1

Tu=n (-2 "
u(Q - A)

Tul(=na)
u(a)

u = u(a)

).

£ (- u(A))l

E.g.: The Dirac measures Gw(w € ) are extreme points of MI(Q,A) (however
distinct o might give rise to the same Sw) . In general, there are others. Thus

take Q uncountable and let A be the set of all subsets of Q that are countable or

have a countable complement. TIet u(A) = 0 (A countable), u(A) = 1 (A uncountable) ~-
then y is an extreme point of MI(Q,A) but u = Gw (VwéeQ. On the other hang,

if Q is Polish (i.e., if Q is a complete separable metric space) and if A = Bor Q
(the o-algebra of Borel subsets of ), then the extreme points of M;: (Q,A) are

the Dirac measures, so in this situation there is no pathology.

6.20 EXAMPIE ILet H be a separable complex Hilbert space —— then
SO(TE(H)) = WH) .

[Employing a step~by-step procedure, one can extend a given g € Sg(E(H))

to an element XWE S{H). And:

s(E) = )\w(E) = tr (WE) (E € E(H)).]

Fix a Polish space M and let E be a o-effect algebra — then an observable



on E is a o-morphism X:Bor M -+ E. Spelled out,
X(@ =0, Xx(M) =1
Si n Sj = g1 = 3) => X(g Sn) = g X(Sn).

We shall call X sharp if v S € Bor M, X(S) is sharp.

Notation: QM(E) is the set of observables on E.

6.21 EXAMPLE Fix a € E and take M = R — then the prescription X :Bor R > E,

where

1 if {0,1} n S

]

{0,1}

a if {0,1} n s = {1}

1l

X, () =

a' if {0,1} n s = {0}

0 if {0,1} n s =g,

defines an observable on E, the indicator of a.

6.22 REMARK Every u € MI(M,Bor M) can be regarded as an observable on

E = [0,1].

Suppose given a convex set § whose elements are called states and a set (

whose elements are called observables.

Mlz To each A € § and to each X € (, there is attached a probability



measure mi

on Bor M.
M2: VAl,AZESandO<w<l,

X X X
_ =wm, + (1 -wm, v XE€O.
Ty + (1 - WA, A A,

1

|

: VXlEOandVBorelfunction®:D/1—>M, HXZEO:VAES,

A pair (S,0) subject to My - My is called a statistical model based on M.

6.23 THEOREM Let E be a o-effect algebra -- then the pair (SO(E) ’ OM(E))
is a statistical model based on M.

PROOF Given s € SG(E), X € OM(E) , put

m§=s °XEMI (M, Bor M).

[Note: V Borel function ¢:M - M, the composition X ° <I>—l is again an

observable on E.]
We shall now specialize to when E = E(Q,A).

6.24 I1FMMA Suppose that
X:Bor M - E(QIA)
is a sharp observable -- then

SNT=g=>X(8)X(T) = 0.



10.

PROOF Let

Xa
(A,B € A

=

~

=2
I

=> XpXg = 0-

If £f:0 - M is Borel measurable and if

X=(8) = x _ (8 € Bor M),
f £ 1(S)

then
Xf:Bor M -~ E(Q,A)

is a sharp observable.

6.25 LEMMA Suppose that

X:Bor M »> E(Q,A)

is a sharp observable —- then 3 a Borel measurable function f:Q + M such that

X=Xf.

PROOF To illustrate the ideas, consider the case when M = R and, for
convenience, work with the elements of A rather than their characteristic
functions - then

U X({x} =@ (see below)
S
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and since the union on the LHS is disjoint, we can define £:0Q + R by stipulating

that £(w) is to be the x € R such that w € X({x}). Therefore

£71(s) =x(5) (s € Bor R).

Write
R= U [k,k+ 1[.
k= -
Then
Q= U X(k,Xk+ 1D).
k= -

Fix w € Q and choose k:w € X([k,k + 1[). Iet I = [k,k + 1]:
X(I) = X([k,k + 1) U X({k + 1}

=> u € X(I).

Put Il = I and define In = [an, 1%1] recursively:

an+bn an+bn
w € X(I) =ZX(la, ——1) UX([ —5—, b 1)
=>wEX(In+l),
where
an+bn an+bn
In+l=[an’ 2 1 or [ 2 ’bn]'

By the nested interval principle,

QO:

N Ih={X} (3 x €R.
n=1
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But

O 0

X(n IT)= n X(T)
n=1 o =1 O

=> u € X({x}).

And this proves that

U X({x}) = Q.
xeg

[Note: The general case is analogous. In this connection, recall that a

metric space (X,d) is complete iff for every descending sequence Cl = C2 > ... of

nonenpty closed sets such that diam Cn + 0, the intersection N Cn is not empty.]

n

If ¢:EM,Bor M) -+ E(Q,A) is a o-morphism, then the restriction cbIBor M is

an observable. There is also a converse.

For suppose that X:Bor M + E(Q,A) is

an observable. Write X(w,8) = X(S) (w) — then

_ +
uX,m = X{w,—) € Ml(M,Bor M)

and the prescription

XF(w) = Jy Fmau, (m  (F € E@,Bor M)

extends X to a o-morphism

X:E(M,Bor M) -+ E(Q,A).
Indeed, V S € Bor M,

ixsk(m) =y Xg@dny ()
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= iy, (8

X(w,8)

X(S) (w) «

So, in sumary, there is a one~to-one correspondence between observables

X:Bor M » E(Q,A) and o-morphisms ¢:E(M,Bor M) - E(Q,A).

6.26 EXAMPLE Since
S(E(Q,A) =M (2,4)  (cf. 6.18),
it follows from 6.23 that the pair
M, A), 0, (E(2,A))
( l r r M r )
is a statistical model based on M:
X

mu = °X (X:BorM-~> E(Q,A)).

[Note: 1If
X:Bor M + E(Q,A)
Y:Bor M + E(Q,A)
are observables and if
m}; = mﬁ Y ue M-{(Q,A) ’
then X = Y. Proof: vS E€BorMand V w € Q,

X(8) (w) = 6 (X(8)) = § (¥(S)) = ¥(S) (w).]
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6.27 REMARK The arrow

MI «,A) -~ MI(M,Bor M)

mX
u

Y —>

is an affine map. In addition, it is weakly continuous and

M (S) = X(S) (w)
W

is a measurable function of w. Conversely, any affine map MI Q,A) - MI (M,Bor M)

with these two properties is of this form for a unique observable X:Bor M -+ E(Q,A).



§7. SEMISPECTRAL MEASURES

Let (Q,A) be a measurable space, H a complex Hilbert space -- then a

semispectral measure on (Q,A) is a o-morphism A - E(H) (cf. 6.15). In other

words, a semispectral measure on (Q,A) is a function E:A > E(H) such that
E(@ =0, E(Q) =1
B NA=f (123 = E@ UAU...) =EQ@) +E®) + ...,

where the convergence in the summation on the right is in the strong operator

topology. A spectral measure on (Q,A) is a semispectral measure E such that

VA EA, E(d) is sharp, i.e., E(A) € L(H).

[Note: Suppose that E:A » E(H) is a function such that

E(@) =0, E(Q) =1I.

Then E is a semispectral measure iff Vv x € H, the map A » <x,E(A)x> is countably
. . . + .
additive. So, for instance, given any u € Ml(SZ,A) , the prescription

E@) = p@)I (A € A)

defines a semispectral measure.]
7.1 REMARK Write M(Q,A;H) for the set of semispectral measures on (Q,A) —
then M(Q,A;H) is a convex set and every spectral measure is an extreme point but,

in general, there will be others (cf. 7.8).

7.2 IFMMA Let E:A - E(H) be a semispectral measure -- then E is a spectral



measure iff vV A,B € A,

E(A N B) = E(A)E(B).

Iet E:A > E(H) be a semispectral measure —— then v W € W(H), the composition

Mg © E € My (@A)
And the arrow

T W(H) »M*l'(sz,A)

W—>)\W°E

is an affine map.

7.3 THEOREM If 0:W(H) - MI(Q,A) is an affine map, then there is a unique
semispectral measure E:A » E(H) such that ¢(W) = >‘W ° E,

[The point is this: Every affine map f£:W(H) - [0,1] can be represented by
aunique E € E(H), i.e., £W) = AW(E) = tr(WE) W€ W(H)).]

7.4 RAPPEL Iet A € B(H). Suppose that tr(AW) = 0V W€ W(H) — then A =0

[let x € S(H) and take W = P_:
tr(APX) = <x,Ax> = 0.e.. .}

7.5 LEMMA If
T OE:A > E(H)

F:A » E(H)



are semispectral measures and if

Mg © E= Ny ° FVWEWH,

then E = F.

7.6 REMARK Suppose that H is separable — then SO(E(H)) =~ W(H) (cf. 6.20).
Now fix a Polish space M —— then the observables X:Bor M - E(H) are precisely the

semispectral measures on (M,Bor M):
Oy (E(H)) = M(,Bor M;H).

And the pair
(W({H) ,MM,Bor M;H))
is a statistical model based on M (cf. 6.23).

[Note: Consider the case when M = R —— then in this situation there is a
one-to-one correspondence between the set of selfadjoint operators on H and the
set of spectral measures on (R,Bor R). Here, of course, it is a question of
potentially unbounded operators A:Dom A - H and we shall denote by EA the spectral

measure Bor R - L(H) attached to A (thus for f:R - R Borel, the spectral measure

attached to £(A) is the assignment S - EA(f'_:L (8))).1

If Q= {ml,mz,...} is finite or countable and A is the set of all subsets of

Q, i.e., A= 29, then a semispectral measure E:A + E(H) is completely determined by

the E(wi) = E({mi}) . So, Vv subset A c Q,

E@) = I E(wi)-

wiEA



In particular:

X E(wi) =TI.
w.EQ
i

N.B. Suppose given effects E, (k=1,...,n):

n
z = TI.
k=lEk
Take = {1,...,n}, A= 29, and put

E@A) = T .
kEAEk
Then the arrow

E:2% > E(H)

is a semispectral measure.

[Note: One can identify MI(Q,A) with the simplex

n

{(X reeey
! i=1

7.7 EXAMPIE Take f = C° and let
o, -
_ 1 _ 1
By =3 By =3
-y 4 -
_1 1
B3 =7 r By =7
11

)\n):Xi >0, I )\i = 1}.]




Then El'EZ'EB’E are effects and

4

E| +E, + Ej + E, =

0 1 .

Therefore this data generates a semispectral measure.

7.8 EXAMPLE Take H = 92 and let P]_’Pz’P3 be orthogonal projections onto

three vectors with angles between them %—Tr- ~—= then

The associated semispectral measure is an extreme point of

H@,2%c% (@ = 1,2,30

but it is not a spectral measure.

If E:A > E(H) is a semispectral measure, then V x,y € H, the arrow
A~ <x,E(A)y>
is a complex measure ux g On § whose total variation is at most ||x|| ||y|].
14

Given a bounded measurable function f:0 -~ C, put

Be(x,y) = fo £lw)du, ().

Then

Bf:HxH+g



is a sesquilinear form. Since

IBe o) | = L], [Ix[] xll,

it follows that 3 a bounded linear operator T_. € B(H) such that

f
Bf(x,y) = <%, Tey>

for all x,y € H and [leH < ||£]],. In suggestive notation, one writes

Tf = fQ f(w)dE(w) .

Example: VAE€A, T =E@Q).
Xa

7.9 LEMMA We have

7.10 RAPPEL If S is a subset of B(H), then its commutant S' is
{T € B(H):TS=8T Vv S € 3}

and its bicommutant S" is (S')'. EIC:

- SCS"
St=Sttt= L.
S = S tee .

[Note: S is commutative iff S < S'. And



Sc8t=>8"c 8 =8"r=(8")".
Therefore S" is cammutative.]
Put
S* = {s*:35 € S}
and call S selfadjoint if S = S*. If S is selfadjoint, then S' and S" are
*~-subalgebras of B(H).
[Note: A x-subalgebra of B(H) is called a W*-algebra if it coincides with

its bicommutant.]

The set

{E} = {E(n):A € A}

is selfadjoint, hence {E}" and {E}" are x-subalgebras of B(H).

7.11 1IEMMA V £,

"
Te € {E}".

A semispectral measure E:A » E(H) is said to be commutative if v A,B € A,
E(A)E(B) = E(B)E(A).

[Note: Every spectral measure is commutative (cf. 7.2).]

7.12 1EMMA Suppose that E is comutative — then E" is commutative, hence

v £,9,



7.13 ILEMMA Suppose that E is commutative —— then Vv £, Tf is normal:

% = mEkm
Tfo Tfo.

[Note: Recall that Tf = T_.]
f
N.B. If E is a spectral measure, then Vv f,g,

Tng = ng.

So, in this situation, the arrow £ -~ Tf is a norm decreasing *-homomorphism from

the commutative Banach algebra B(2) of bounded complex valued measurable functions

on { into an algebra of normal operators on H.

7.14 REMARK ILet A be selfadjoint (unbounded in general). Given ) € R, put

E? = EA(]- ©,A\]) = then v x € H, FX()\) = <x,E§x> is an increasing right continuous

function on R and

W y(dabl) = B (a,bl)x>

II

F (b} - Fx(a),
thus M o is the Stieltjes measure induced by Fo (and F, is the cumulative distrib-
14

ution function of My x) . Here
14

Dom A = {x € H:fR >\2d<x,E§:x> <o}

and v x € Dom A,



<X Ax> = _/'E }\d<x,Ez;x>
2 2
| |ax||” = fI.3 A d<x,E‘§:x>.

[Note: If x %y, then the function )\ - <x,E;\y> is of bounded variation

(as can be seen by polarization) and U v is the associated Stieltjes measure.]
14

7.15 RAPPEL Assume that H is separable and let {Ai:i € I} be a comutative

set of bounded selfadjoint operators —— then 3 A € B(H)SA and Borel functions

£,:R > R such that v i,

7.16 EXAMPLE Assume that H is separable and let E:Bor R ~ E(H) be a
commutative semispectral measure -— then 3 A € B(H) <A and Borel functions WgiR > R

such that Vv S,

E@©S) = /g deEA.

We turn now to a method of constructing semispectral measures from spectral
measures.

Suppose given two measurable spaces (Ql,Al) and (QZ,A?_) —— then a probability
kernel is a map

K:Ql % A2 - [0,1]

such that K(-—, 2) is measurable for every A2 = A2 and K(wl,——-) € MI(QZ,AZ) for



10.

every w, € Ql. E.g.: If f:Ql -+ 92 is measurable, then

K(wl,Az) = (£ (wl) )

a,

is a probability kernel.

7.17 EXAMPLE Consider the setup of 7.16 - then the integration can be
taken over the spectrum ¢(A) of A. Moreover, one can always arrange matters in
such a way that

0 < WSO\) <1 (S € Bor R,X € 0(3))

and vV A € g(A), S » ws(k) is a probability measure on R. So if

Q, = o{A), A, = Bor ag(a)

1

0]
|

R, A, = Bor R,

27 2

then K(A,S) = ws(k) is a probability kernel.

let E]_:Al + L(H) be a spectral measure. Define EZ:A2 + B(H) by the rule
EZ(AZ) = le K(wl,Az)dEl(wl)
or still,

E,(B,) = T, (—a)”

7.18 LEMMA E2 is a comutative semispectral measure.
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PROOF To check that E2 (AZ) € E(H), note that

g < <'x,E2 (AZ) x>

=7 2 Riwg /Ay dp, o (wg)

I

le ldux ,X(wl)

= <x,Tlx>

= <x,T x>
XQ
1

= <x,El(Ql)x>

= <x,x>.

7.19 EXAMPLE Iet A= [Amn] (m=1,...,M, n=1,...,N) be an M-by-N matrix

whichisstochasticinthesensethatxanOandvn, Z>\mn=l. Put
m

L]
It

1 {lr---rN} (Al

H
N

1l

Qz {l,...'M} (AZ s

|
N
L

Fix a spectral measure n - El (n) and define a probability kernel K by

K(nIAZ) = 7 >\Im-

Ry
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Then the induced semispectral measure m + E, (m) is given by

E,(m) = er ?xmnEl(n) .

7.20 RAPPEL Take H = LZ(B) and let

(Qf) (A) = A£E(N),
where

Dam Q = {£:/, A°[£(0) [Par<s).
Then Q is selfadjoint (but unbounded) and the associated spectral measure

2

:Bor R ~ L2 (R))
is the prescription

EX(S)f = XgE -

[Note: Q is the position operator. If UF:L2 (R) - L2 (R) is the unitary

operator provided by the Plancherel theorem, then P = U;lQUF is the momentum

operator. Explicated,

(PE)(A) = - /L £' (N,
where
2
Dom P = {f:/p [£'(}) ["dr<eo},
the derivative being in the sense of distributions. So, v x € 12 ®R) (||x|] =1,

_ P
a (2 (8)) = tr@E ()
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<XIEP (S)X>

1l

I
= <x,UF XSUFx>

= Vg, x>

2
Is |UFX(>\)l an.]
Fix p 2 0:p(A) = p(= A) and [ p()d) = 1.

7.21 EXAMPLE The assignment

0
S > Jp (Pxg) A

defines a semispectral measure Q o called an approximate position operator, thus

v 6,0 € LR,

<¢,QD(S)1P> = Jg (Pxxg) W (MY (A)aA.

Put

Szl=QZ=I_{, Al=A2=Bor]_3
and define

Kp:g x Bor R + [0,1]
by

Kp(X,S) = (O*XS) (A).
Then Kp is a probability kernel, so the formation of Qp is simply an application

of the foregoing generalities.
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[Note: Q itself is formally recovered by taking p = § ((S*XS = )(S) .1

N.B. Approximate momentum operators can be defined analogously.

7.22 EXAMPIE Fix a real valued unit vector & € L2 (R):

€ € Dom Q N Dom P

and
<EIQ€> =0
; & even.
<€IPE> =90
Given a,8 € R, put
EugM) = T Pev-a) e R).
Then
- <£0L8’Qg056> = Qo
—_ <€0€B'PEOLB> = B.
Given
We wtl®),
write
1
W(a,B) = > <gocB'W€oc8>'
Then

5 W(a,B)dods = 1.
R
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To check this, consider a decomposition of W:

W= I w,P. (cf. 2.12)
i1

ier,
=>
S 5 W(a,B)dodB
R
= T w %——f 3 EygrPiEygdodB.
lEIW 1 m B o 170
And
L, <« ,p.£ >dodB
27 R2 ol i
=Lf <€ o ,<xX.,E >x.>dodB
27 R2 aB’ TifmaB L
1 2
= 5= fRz ‘<ga8,xi>} dodB
1 2
= [, |=—=—<€g .,x.,>“dodB
:52 sz—,n_— OLB 1 l
=7, |x,(WEM - o) |°d\da (Plancherel)
R 1
B 2 2
= fR2 l; ) |7 &) | "arda
2 2
=[x [17 1g]]
= 1.
Therefore

S 5 W(o,B)dodB = = w, = 1.

R €L,
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For each S € Bor 32, the arrow
W > fg W(o,B)dodB
is an affine map W(L2(R)) + [0,1], hence there exists a unique E(S) € E(L2(R))
such that
[g Wia,B)dodB = tr(WE(S))  (cf. 7.2).
The definitions imply that
E:Bor R > E(L2(R))

is a semispectral measure and V S € Bor R,

1l

T RS xR = Sy (8P MaE )

ER x §) = [y (lglz*xs> (M GE" (M)

or still, in terms of the marginals,

i

lg]

I

E(R x —) P A .
- 12

[Note: E is not cammtative.]

Fix a Polish space M, take H separable, and let E:Bor M - E(H) be a

commutative semispectral measure:

E(S)E(T) = E(T)E(S) vV S,T € Bor M.
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Put
T A =E(S)
_ B =E(T)
and let
o
: Bor R » L(H)
A
be the spectral measures determined by .
B

N.B. Since AB = BA, for all U,V € Bor R,
P OE W = EWME D).
. + +
Abbreviate Ml (M,Bor M) to Ml (M) and let

M ()

AM c 2 1
be the g-algebra generated by the sets of the form

{]J:}J(Sl) <Cll e I]J(Sn) <cn}l

where the Si € Bor M and the c; € R, thus (M-{(M) ,AM) is a measurable space. Given

S € Bor M, define

+
TrS:M:L ™M -»R

ﬂs(u) = y(S).
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Then TT,S is Borel measurable. Therefore

Then

+
mg € EM, M) A (cf. 6.4)

7.23 LEMMA 13 a spectral measure X:ANI -+ L(H) such that vV U € Bor R,

) = X ().

[Note: It can be shown that X is necessarily unique.]

7.24 THEOREM (Holevo) We have

A=E(S) = + Trs(u)dX(u).

PROOF Iet x € H:||x|| = 1 and define n:L(H) > [0,1] as in 5.6:

Hy (P) = <x,Px>.
b, o X € My (00,4
<, (f g (W) X () ) x>

=7, mglnaly, ° X ()

=] o —l
fg My ° X e 1) ()
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]

fg Ml © B )

fB Ad<X,EZ;x>

= <X,Ax> = <x,E(S)x>.

[Note: If

I
0
i

+ —
=M M, A = Ay

=M, A

o)
|

2=BorM,

then K(uy,8) = Mg (1) is a probability kernel.]

7.25 EXAMPLE Take M = R and let the data be as in 7.17, thus

E(S) = /., K(A,S)AE(\) (S € Bor R).

o(A)

Denote by k the function o(a) - M-]*:(g) that sends A to K(A,—) —— then « is

measurable and

X=8o K_l:AR > L(H)

is a spectral measure such that

[ mgaRG) = 1, ag(dE o T ()
My (R) M) (®)

o k) (VAP

= fc:(A) (TrS

= Iy KOLSIE ()

E(S).
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[Note: This capital "A" is not the same as the "A" figuring in the

statement of 7.24.1]

Semispectral measures can show up unexpectedly. As a "for instance",

consider von Neumann's inequality: If T € B(H) is a contraction (meaning that

lIT|| < 1) and if
n

n k
p(z) = =T z, p(T) = I Tk,
k=0 %k k=0 “x
then

Hpm |} < swp |p2)].
z|=1

To prove this, one can assume outright that ||T|] < 1 (since 1lim rT =T).

r+1
Let A = {z:|z]| = 1} — then the series

Clz) =T+ 1 (KaEmk+ 2
=1
is uniformly convergent on A, so V X,y € H,

S zn<x,C(z)y>dz = <x,'1‘ny> n=20,1,...).

A
Given S € Bor A, the integral
fS <x,C(z)y>dz

makes sense and

o
A

fs <x,C(z)x>dz

2
=

IA

a+2 & (|75
k=1
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In addition, V x,y € H, the function

~ Bor A+ C

S - fS <x,C(z)y>dz

is countably additive, so 3 a semispectral measure E:Bor A - E(H) such that

<xX,EB(S)y> = fS <x,C(z)y>dz.

And Vn = 0,

Iy Z9E(z) = T

i

r ar
[P |] !lkgoak |

n X
|/, (% z )dE(z) | |
l A k=0 ak

[/, P(2)aE(z) ||

IA

lp@ ], = swp |p@)].
|z|=1

7.26 EXAMPLE Suppose that U € U(H) and consider the trigonometric poly-

n k
nomial z az on A —— then
k= -n

n

2 08|
1z el

H

: adk
HU"k=>: a |

-n

| E a g

k= -n



22.

n
sup | I
|z|=1 k= -n

n



§8. THE KOLMOGOROV CONSTRUCTION

Let @ be a nonempty set — then a kernel on @ is a map K:Q x @ > C.

Definition: A kernel K on Q is positive definite if v n € N and for all

Wyreee Wy € Q

Cqre-+sCy €Cy

we have

n
X E.c.K(w.,w.) > 0.
=1 1

8.1 EXAMPLE Take 2 = H, a complex Hilbert space -- then XK(x,v) = <x,y> is

a positive definite kernel on #.

Iet A = [aij] be an n-by-n matrix (ai i € C) —— then A is said to be positive

definite if for every sequence CyreserCy of n complex numbers,

n

Y c,c.a,. = O.
3= I

[Note: A positive definite n-by-n matrix determines a positive definite

kernel on {1,...,n} (and vice-versa).]

8.2 REMARK If K is a positive definite kernel on @, then the matrix

[K(wi,wj)] is positive definite, hence in particular



Klw,w") = Klw',yw) -

8.3 IFEMMA TIf A = [aij] and B = [bij] are positive definite, then so is

C= [aljblj] (the entrywise product of A and B).

PROOF Iet
X.. = C.C.b..
1] 1757340

Then X = [xij] is positive definite:

n n

T le xl = b zlz clc .b. i
i, =1 J 1] i,5=1 J 373

n
= T (z c )(z c.)b..
i,9=1 373 i7i751
n
= L (z. 5% (z.c.)b.
i,j=1 ( ) 3737713
= 0.
Therefore tr(aAX) > 0, i.e.,
n n
T a..X.., = Y a..c.c.b.
i,9e1 R4 55 137371713

= z c.c.a. .b.
i,5=1 173743743

v
o
N



Denote by K({2) the set whose elements are the positive definite kernels on

2 == then 8.3 implies that K(R) is closed under pointwise multiplication.

8.4 IEMMA If A = [aij] is positive definite, then so is [E(A) ij], where

CH
E(A)J-_j =e 1,

Corollary: K € K(Q) => eK € K(Q).

8.5 THEOREM (The Kolmogorov Construction) ILet K be a positive definite
kernel on 2 — then 3 a complex Hilbert space HK and a map A:Q » HK such that
Kw,w') = <Aw) ,Aw")>
and the set {A(w):w € Q} is total in HK.

()

PROOF Consider the vector space C of all camplex valued functions f£:Q ~> C

such that f(w) = 0 except for at most a finite set of w. Put

<, f'>= ¥ fWwE'(w")K(w,w").
w,w'

Then the pair (_@(Q) /< , >) is a complex, potentially non Hausdorff, pre-Hilbert
space. To get a genuine pre-Hilbert space, divide out by N = {f:<f,f> = 0} (which

thanks to the Schwarz inequality, is linear) and then take for HK the completion
of _C_:(Q)/N. As for A, simply observe that

Klw,n') = <<Sw,6w,>.



[Note: If HI'< is another complex Hilbert space and if A':Q - HI'< is another

map satisfying the preceding conditions, then there is an isometric isomorphism

T:HK - H& such that TA(w) AV (w) Vw € Q.]

8.6 EXAMPLE Take Q = H, a complex Hilbert space, and let

RK(x,y) = e XY (x,y € H).

Then K is a positive definite kernel on H and HK = BO(H), the bosonic Fock space

over f.

[Note: Here A:H -~ BO(H) is the map x + exp x:

<X,y>

e = <exp x, exp y>.]

8.7 EXAMPIE Iet Hl, cee 'Hn be complex Hilbert spaces with respective inner

products < , >l,...,< rone Put

n.—
Kix,y) = ktl Vi

b
|

= (Xyreeerx)

Y= (Wyreeey,)-

Then K is a positive definite kernel on Hl X aae X H‘n and

HK=H1® e e e ﬁHn’

the Hilbert space tensor product of Hl"‘ . ’Hn'



8.8 'REMARK Write HILB for the category whose objects are the camplex Hilbert

spaces and whose morphisms are the bounded linear operators -- then the functor

®:HTIB x HILB -+ HILB

and the object C together with the canonical natural isamorphisms serve to equip
HILB with the structure of a symmetric monoidal category. This data does not
directly reflect the presence of an inner product but it appears indirectly since

HIIB is also a *-category, i.e., V H]_,H2 € Ob HILB, 3 a map
*:Mor(Hl,Hz) = B(Hl,Hz)

that sends a morphism A:Hl > H2 to its adjoint A*:H2 - Hl subject to

I* =TI, (AB)* = B¥A*, A** = A,

For the applications, it will be necessary to extend the definition of kernel,
replacing the target C (= B(C)) by B(H) (H a complex Hilbert space), thus now
K:2 x Q »~ B(H).

Definition: A kernel K on @ is positive definite if v n € N and for all

ml,...,mn € Q

RyreeerXy € H,
we have

n
Y <x,,Kw, ,w:;)x.> = 0.

N.B. The condition on K amounts to requiring that V n, the operator matrix



K(wl,wl) K(wl,mz) e K(wl,wn)

K(wz,wl) K(wz,wz) cee K(wz,wn)

K(wn,wl) K(wn,wz) aee K(wn,wn)

defines an element of B( 3 H)+.

[Note: V x € H, the matrix
<x,K(w,w)x> <, Kw,u")x>

<x,Kw',w)x>  <x,Kw',w")x>

is positive definite. Therefore

<x,K{w,0")x> = <x,K{w',w)x>

=>

<K(w,0')*x,x> = <K(w',w)x,x>

K{w,w')* = K{w',w).]

8.9 EXAMPLE Iet H,K be complex Hilbert spaces and suppose that A:Q » B(H,K)
is a map. Put
K(w,w') = Alw) *Aw").
Then K is a positive definite kernel. In fact,
n n

T o<x.,K(w, ,w.)xX.> = Loo<x.Aw: ) *A(w.)x.>
I ig=t v 3



n
z <A(w.)x. ,Alw.)x.>
i (w3135, (‘*’3) 3

]

li

|z 112
I Alw)x ||” = 0.
A,

There is no difficulty in extending 8.5 to the present setting.

8.10 THEOREM Iet K be a positive definite kernel on @ — then 3 a complex

Hilbert space HK and a mapping p:Q x H - HK linear in the second variable such that
<x,K(w,w")x'> = <plw,x) ,0(w',x")>
and p(Q,H) is total in HK

(Q)

PROOF Replace C by H @ ang write

<f,f'>= ¢ <f(w),Klw,w")Ef(w')>.
w,w'

[Note: If HI‘< is another complex Hilbert space and if p':Q x H > HI'< is

another map satisfying the preceding conditions, then there is an isometric iso-

morphism T:HK > HI'< such that T o p = p'.]

N.B. Take H = C (= B(C)) and let A{w) = p(w,1) -- then

Kw,n") = <1,Kw,0")1>

<p(wrl) ,D(w' Il)>

<Aw) ,Alw')>.



8.11 REMARK Given w € Q, let A(w) = p(w,—) —— then A(w) € B(H,HK) and

Kw,w') = Alw)*A(w'").

Iet K(Q;H) stand for the set of positive definite kernels K:Q x Q » B(H).

Given K, K' € K(;H), write K 2 K' if K - K' € K(Q;H) .

8.12 EXAMPLE Given K € K(Q;H) and E € E(HK), put

KE(w,w') = A(w) *EA(w") .
Then KE e K(Q:H) and K > KE

[We have

n n
T <X, K {0 rw,)x> = T <%, ,Alw,;) *EA(w,)x.>
TR e e TSI S

n
r <Alw.)x.,BA{w.)x.>
i,d=1 11 3]

n
_ -X </E A(wi)xi,/E_ A(wj)xj>
i, =1

I

|2 Eaw)x||2s 0
X A = 0.
|]_1 ! ¥

RKlw,w*) - KE(w,w')

= A(w) *IA(w") - A(w)*EA(w')

= A(w)* (T - E)A(w")

= Kp _ glonw’).]



8.13 IEMMA ILet K,K' € K(2;H) and define

T A(w) € B(H,HK)

(w € Q)

A'(w) € B(H,H,)

as in 8.11 -- then K 2 K' iff 3 a contraction T:HK > HK' such that

A'(w) = TA(w) (we Q.
[Note: The totality of p(Q,H) implies that T is unique. And

K'(w,w") = A (w))*A* (w')

(TA (w) ) *TA (w*)

A{w) *T*TA (w') ,

where T*T € B(HK) is a positive contraction (cf. 8.12).]

There is another version of 8.10 which is based on the following observation.

8.14 IEMMA A map K:Q x Q » B(H) is a positive definite kernel iff for any

finitely supported collection {Ao0 € B(H):w € Q},

I AMK(w,0")A, = 0.
w,w

I.e.: The 1HS is in B(H)+.
[Note: Finitely supported means, of course, that

#{w € Q:Aw 2z 0} < o.]
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To make use of this, some additional structure will be required.

So let E be a right B(H)-module — then a B(H)-valued pre-inner product

on E is a function < , >:E x E > B(H) such that vV a,b,c € E, VA € B(H), v XA € C:
(i) <a,b + c> = <a,b> + <a,c>;
(ii) <a, ) b> = X<a,b>;
(iii) <a,bA> = <a,b>A;
(iv) <a,b>* = <b,a>;

(v) <a,a> 2 0 (=> <a,a> € B(H)+) .
If

<a,a>=0=>a=0,

then < , > is called a B(H)-valued inner product.

[Note: < , > is "conjugate linear" in the first variable:
<aA,b> = A*<a,b>.]

A pre-Hilbert B(H)-module is a right B(H)-module E equipped with a B(H)-valued

pre-inner product < , >.

8.15 LEMMA Suppose that E is a pre-Hilbert B(H)-module -- then V a,b € E,
<a,b>*<a,b> < ||<a,a>||<b,b>.
PROOF Take ||<a,a>|| = 1 and let A € B(H):

0

IA

<aA - b,aA - b>

A*<a,a>A - <b,a>A - A*<a,b> + <b,b>

IA

A*A - <b,a>A - B*<a,b> + <b,b>.
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Now take A = <a,b> to get

0 < <a,b>*<a,b> - <b,a> <a,b> - <a,b>*<a,b> + <b,b>

or still,
<a,b>*<a,b> < <b,b>.
Put
Hal] = ||<a,a>| ‘1/2 (a € E).
Then 8.15 implies that ||.|| is a seminorm on E:
lla +b[] = [[a]] + [|p]]
|xall < 1Al |lall.
Moreover, ||.|| is a norm if the pre-inner product is actually an inner product.
Iet
N, = la€ E:|]a]| = 0}.

Then NE is a submodule of E and the pre-inner product and seminorm drop to an
inner product and norm on the quotient module E/NE.

E is said to be a Hilbert B(H)-module if the seminorm is a norm and E is

complete.
[Note: Identify C and B(C) -- then the Hilbert C-modules are the complex

Hilbert spaces.]

8.16 ILEMMA The completion of E/NE is a Hilbert B(H)-module.

8.17 EXAMPIE View B(H) itself as a right B(H)-module and put
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<A,B> = A*B (A,B € B(H)).

Then B(H) is a Hilbert B(H)-module.

8.18 THEOREM Iet K be a positive definite kernel on Q -~ then 3 a Hilbert

B(H) -module EK and a mapping A:Q - EK such that

Klw,w") = <Aw) ,Alw")>.

PROOF The set of all finitely supported collections {Aw € B(H):w € Q} is

a right B(H)-module and the prescription

' = * ] 1
<{Aw}'{Aw}> pX : AwK(w,w )Aw
w,w

equips it with the structure of a pre-Hilbert B(H)-module (cf. 8.14), thus by
definition,

Klw,w') = <{6wCI:C € Q},{Gw,c,l:g' € Q}>.

The rest is clear: Mod out by the elements of seminorm zero and then camplete
(cf. 8.16).

[Note: There is also an assertion of uniqueness.]

8.19 REMARK As has been seen earlier, C-valued positive definite kernels
can be multiplied pointwise but while this operation makes sense for B(H)-valued
positive definite kernels, the pointwise product of two positive definite kernels
need not be positive definite. The escape fram this difficulty is simple: Replace
pointwise multiplication by pointwise composition of mappings. So suppose that

H,H' are complex Hilbert spaces and let XK:Q x Q -+ B(B{(H),B(H')) be a map —- then
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the following conditions are equivalent.
® For all

w ,...,wn € Q

1
and all

Al,...,An € B(H)

l,...,A € B(H"),

n

X A'*K(w ,w Y (A*AL)AY = 0.
i, =l + 3773

® The map
g:(B(H) X Q) x (B(H) x Q) > B(H")

that sends

((A,(.U) ’ (A' ’UJ'))

K(w,w') (A*A")

is a positive definite kernel.

Under these circumstances, we shall again refer to K as a positive definite

kernel (8.18 is applicable via k, hence

K(w,w') (&%) = K(w',w) (A)*).
If now H,H',H" are complex Hilbert spaces and if
K:Q x Q - B(B(H),B(H"))

_ L@ x @ = B(B(H"),B(H"))
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are positive definite kernels, then

L o K:Q x @ > B(B(H) ,B(H"))
is a positive definite kernel. Here

(L o K) (w,w") = L{w,w") o Kw,w").

Iet E be a Hilbert module -=- then E is a Banach space. Write B(E) for
the set of bounded linear operators T:E ~ E and let B*(E) denote the subset of
B(E) consisting of those T € B(E) for which there is a T* € B(E) such that
<T*a,b> = <a,Tb> V a,b € E. In other words: B*(E) is the set of bounded linear
operators on E possessing an adjoint w.r.t. the B(H)-valued inner product on E.

[Note: The adjoint T* of a T € B*(E) is unique, belongs to B*(E), and T** = T,
Therefore B*(E) is a unital *-algebra with involution T -+ T*. More is true:
v T € B*(E), ||T*r|| = [lT[IZ. Since B*(E) is a closed subalgebra of B(E), it
follows that B*(E) is a unital C*-algebra.]

N.B. Every T € B*(E) is B(H)-linear: T(aA) = T(a)A. In general, however,
an arbitrary bounded B(H)-linear map E > E need not have an adjoint.

[Note: Another point is that as elements of B(H),

<T(a),T(a)> < |]T|[2<a,a> (a € E).]

8.20 EXAMPIE Given a,b € E, define ©_ ,:E ~ E by

a,b’
@a’b(c) = a<b,c> (c €E).
*
Then ea,b € B*(E), where
* =
ea,b eb,a'
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[Note: An element P € B*(E) is a projection if P = P* = P”, E.g.: 0O

is a projection provided <a,a> = I.]

Iet A be a unital x-algebra with unit e. Suppose that ¢:A > B(H) is a
linear map (it is not assumed that ¢ sends e to I) -- then ¢ gives rise to a

kernel KQ:A x A - B(H), viz.

Ky (Eom) = B(E*n) .

8.21 EXAMPLE Suppose that ¢:A -+ C is linear and positive, i.e., ®(£*E)

v

vV £ € A -~ then K<I> is positive definite:

n
£ c.c.K, (E.,E.)
i,9=1 1739717 7)
n -
= L c.c.OP(E*E.)
i3 v

n
= L 0({(c.E.)*c.E.
1m0 ((clgl) cJEJ)

n n
= 9(( L ENX( L £
((i=l ci&y) (j=l CJEJ))

Iet E be a Hilbert B(H)-module —— then a unital *-representation of A on E

is a unital *-homomorphism mw:A > B*(E). Given a € E, define @a:A + B(H) by

@a(g) = <a,m(&)a> (£ € A).
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8.22 ILEMMA Put Ka = Kq) -- then Ka:A x A » B(H) is positive definite.
a
PROOF Bearing in mind 8.14, suppose that {AE € B(H):£ € A} is finitely
supported:
* ]
E%E‘ AgKa(F,,E )AE'
= * *z 0
g?g' Ag<a,ﬂ(£ £ )>A£,
= I Af<a,m(g)*m(g")a>A.,
€’g| g g

= 7 A§<n(£)a,n(£')a>A€.

= 7 <(ﬂ(£)a)A£,(ﬁ(€')a)AE->

= X <w(£)(aAg),ﬂ(£')(aAg.)>
£,8"

<z m(n) (aAn) ,Z m(n) (aLAn)>
n n

v

0.

8.23 RAPPEL, Let A be a unital *-algebra —— then an element £ € A is

unitary if g—l exists and equals £*. One calls A a U*-algebra if A is the

linear span of its unitary elements. E.g.: Every unital Banach *-algebra is

a U*-algebra (hence, in particular, every unital C*-algebra is a U*-algebra).
[Note: Recall that a Banach *-algebra is a Banach algebra A equipped with

an isometric involution: ||&]]| = ||&*|| (€ € A (]]e]] = 1).]
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N.B. For a class of examples of U*-algebras which are not unital Banach

(G)

*—algebras, take any group G (discrete topology) and consider C'' under con-

volution equipped with the involution f - f£*, f* (o) = f(G_l) —— then the 60 are

unitary and their linear span is all of g_(G) .

8.24 THEOREM Iet A be a U*-algebra and suppose that ®:A ~ B(H) is a linear

map. Assume: Kq) is positive definite -— then 3 a Hilbert B(H)-module E, a unital

*-representation m of A on E, and an element a € E such that
o(g) = <a,m(&)a> (g € A).

Moreover, the linear span of 1(A)(aB(H)) is dense in E.
PROOF Consider the algebraic tensor product A & B(H), viewed as a right

B(H) -module in the obvious way. Define

< , >:ARQB(H) x AR B(H) » B(H)
by
n m

<% £.8A., I mn.8B.>
=1+ tyg=m 3

= I A¥*(E*n.)B..
i + ot

Then A & B(H) is a pre-Hilbert B(H)-module. On the other hand, A @ B(H) is also
a left A-module and

N =Ny @ B(H)

is an A-submodule of A & B(H). To see this, let £ € A be unitary — then
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n n

E(I B @ AE(T g B8R

n n
<X EE.RA., I £, QA>
=1t ty=m ot 4

L Aro((gg,) *ggj)Aj
1,7

* k%
i?j AYo(g¥e «Sij)Aj

Il

Iy A}‘_®(E§‘_€j)Aj

i,J
n n
= <.Z Ei e Ai,.Z Ei 2 Ai>
i=1 i=l
=>
EN < N.

But A is spanned by its unitary elements, thus
AN < N.
Proceeding, set
E,= AR B(H) /N
and given £ € A, write

WO(E_,)(X+N)=E,X+N (Xe A B(H).

Then ﬂo(g*) = TrO(g)* and there is no difficulty in showing that Ty extends to a

unital *-representation m of A on the completion E of E0 (Tro(g) is an isometry

if £ is unitary). Finally, viewing
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e®QR I+N

o
Il

as an element of E, we have

<a,m(g)a> <e QIR I

i

I*¢(e*g) I

d(ef)

o (&)
and the linear span of

m(A) (@B(H)) = {m (&) (an) }

{£ @ A + N}

is EO which is dense in E.

8.25 REMARK Suppose that ¢(e) = I = then from the above, <a,a> = I.

Therefore Pa = G)a a € B*(E) is a projection (cf. 8.20) and the arrow
r

A 0On,a

ia a *-isamorphism of B(H) onto the closed *-subalgebra PaB* (E)Pa of B*(E).

Furthermore, v b € E,

P_m(E)P_ (D)

Il

Pa’lT (8) (a<a,b>)

P_(n(2) (a) <a,b>)

Pa(ﬂ(i)a)<a.b>

a<a,m(§)a><a,b>
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ad(§)<a,b>

%0 (2) ,a®)

T.e.:

(&) »©

20 (£) ,a = Paﬂ(E)Pa (& € A).

So, in summary: If Kq) is positive definite and if ¢(e) = I, then 3 a C*-algebra

B containing B(H), a projection P € B such that B(H) = PBP, and a *-homomorphism

m:A - B with ¢(8) = Pn(E)P v £ € A,

8.26 EXAMPIE (The GNS Construction) Iet A be a U*-algebra and suppose that

¢:A > C is a positive linear functional (cf. 8.21) — then we can write
®(8) = <a,m(E)a> (£ € A) (cf. 8.24).

Here E is a Hilbert B(C)-module or still, E is a complex Hilbert space, and a is

m-cyclic: mw(A)a is dense in E.



§9. »-SEMIGROUPS

let H,K be complex Hilbert spaces and let R € B(H,K) — then an element

B € B(K) is called an R-dilation of an element A € B(H) if

A = R*BR.

One writes A = ARB and calls A an R-compression of B.

[Note: If R*R =TI, then R is an isometry and H can be viewed as a closed
linear subspace of K. With this understanding, R* is the orthogonal projection

PH of Konto Hand V X € H, Ax = PHBx. To reinforce this convention, it is

customary to write A = erB and to call A a projection of B and B a dilation of A.]

9.1 EXAMPLE If T € B(#) is the projection of U € U(K), then T is a con-

traction. Proof: V x € H,

||| | = ||pjux|]| < [[ux|] = |[x]]
= ||T]| = 1.
Conversely, let T € B(H) be a contraction —— then 3 K> H and U € U(K) such that
T = erU.
[Put K= H ® H and let
T DT
U= € B(K)I
-D T



where
DT=(I—‘I'I‘*)1/2 (0 < T ~-TT* < I)
Dpx = (T -2 (0 <1 - T < T).

Identify H with the first factor of K —- then

™ = PHUX (x (XIO))I

PH the orthogonal projection of K onto H, and the claim is that U € U(K). From

the definitions,

x -—
T Dy T D
U*u =
D, T ~ D T*
and
- T Dy T* = D
uu* =
- %
_ DT* T B B DT T _
or still,
—T*T+D2 ™D _ - D T*—
T* T T*
U*U =
2 %
~ DyT — TDp D} + TT




2
% -—
TT* + D, TDps + DT
UU* =
- D . T* + T*D D2 + T*T
_ T* T T* _
or still,
- N _ . —
I T*Dp, = DT
U*u =
~ DT ~ D, I ~
and
I TDps + DT
Uu* =
- % *
DpT* + T*D, I .

But the off diagonal entries vanish. To see this, one has only to show that

= = * = %
DT = Ty, (=> T*D, = D, T*).

In any event,

i
DIT = TD,
=>
2 2n
Dy T = O,

2, _ 2
P(D)T = Tp(DL,,),

p an arbitrary polynomial. Since



2.1/2
Dy = (DT)
D (Ds*)l/z

and since 3 a sequence of polynomials P, such that v A € B(H) 4

1/2

pn(A) > A (sorm),
it indeed follows that
DT = TDpy-]

[Note: These considerations imply that every element of B(H) has a normal

dilation.]

9.2 EXAMPIE Every effect E € E(H) can be dilated to a projection.

[Take K = H & H and work with

- B (E - E2)1/2 -

(E - E2) 1/2

A *-semigroup is a semigroup T with unit e equipped with an involution
*:T - I', thus
gF* =g, (En)* = n*g*, e* = e.

-1

E.g.: Every group G is a *—semigroup (o* ).

I
Q

[Note: Every unital *-algebra A is a *-semigroup (per multiplication).]
N.B. We have

e* - ee* = e**e* = (ee*)* = e**

I
®



A representation of a *-semigroup I' on a complex Hilbert space H is a

homomorphism w:T' + B(H), m being termed a *-representation provided w(g*) =

m(E)* v EeT.

9.3 REMARK Suppose that w:T > B(H) is a *-representation of I' — then
m(e) is an orthogonal projection and m is said to be unital if m(e) = I. In
general,

H=nm()H & (I — m(e))H.

Therefore m is the orthogonal direct sum of a unital *~representation and a null
*-representation.
[Note: A representation of a group G is a unital #*-representation iff it is

a unitary representation.]

9.4 EXAMPIE ILet (Q,A) be a measurable space -- then A is a *-semigroup:

A

1 " A

= A, N A

) 1 NA,, Q- A=A, A* =A

So, if mw:A = B(H) is a *-representation, then

ra)? = 1(a%) = ()

I

m(A)* m(A*) = w(a).

Thus the 7w(a) are orthogonal projections.

Iet T be a *—-semigroup. Suppose that ¢:T » B(H) is a function and m:T - B(K)

is a *-representation —- then we write ¢ = AR'n ifveger, o) = ARw(g) and we

write ¢ = pr,wr if v £ € T, ®(§) = erﬂ(E).

H



[Note: Call 7 minimal if ©(T)RH is total in K. A minimal 7 is necessarily

unital.]

9.5 LEMMA Suppose that ¢:T' » B(H) is a function. Iet

'rrl:I‘ - B(Kl)

Myl = B(Kz)

2

be *-representations of I' for which 3 Rl € B(H,Kl) & R2

m, =& = s
ARl 1 AR2 2

€ B(H,Kz):

Assume: mw, and T

1 o are minimal -- then there is an isometric isomorphism T:Kl -> K2

such that TRl = R2 and Tﬂl = 'IT2'I,'.

PROOF Extend the arrow
Lo (E)Rx; > I My (85 )Ryx,
i i
in the obvious way.

[Note: We have

<My (&) R X,y (%) R, x>

<RI“1(£)*“1(g)R1X’X>

<R3<_1rl (E*) 'ITl (&) Rlx,x>

*
<R'i’lTl(E g)Rlx,x>

<REm, (E*E)Ryx, %>



= <1T2(£)R2x,ﬂ2(£)RZX>.]

9.6 LEMMA Suppose that ¢:T - B(H) is a function. Let

T, > B(K

1 1

be x-representations of I' for which
ernl = ¢ = erTrz.
Assume:

Trl(I’)H is total in Kl

Trz(F)H is total in K2.

Then there is an isometric isomorphism T:Kl > K2 such that Tx = x V x € H and

TTTl = 1T2T.

[This is a special case of 9.5. Bear in mind that

Rl:H > Kl

RZ:H - K2

are isometric embeddings and V x € H

" =
Rlx X

l!R2x P xll ‘]

Let T be a *—-semigroup -- then F(I',H) will stand for the camplex linear



space consisting of all functions f:T - H such that f(£) = 0 except for at most
a finite number of £.
N.B. There isamap ' x H » F(T',H), viz. (§,x) > fE <! where

xif n=§

fg,x(”) =

0 if n = &.

Suppose that &:T - B(H) is a function —— then ¢ gives rise to a kernel
KQ:T x T - B(H):

KQ(E,H) = ¢(&*n).
And the condition that K(1> be positive definite is that v £ € F(I',H),
L <E£(&),2(E&*fMm)> =2 0.
Em
9.7 LEMMA If K@ is positive definite, then v £,n € T,

B(E*N)* = 9 (n*E).

9.8 EXAMPLE Take ' = Z — then a function ¢:Z2 - B(H{) is simply a collection

{Tn:n € %}, where V n, T, € B(H), so Ky is positive definite iff for every finite

sequence
R_reee X _qiXgiXyree X € H,
we have
n
% <x, ,T, . X,> = 0.
K, 0= -n kKL

Impose now the condition T0 =TIand V n, T—n = T; -~ then the assumption that K®



is positive definite forces the Tn to be contractions. This can be seen as follows.

Fix x. € H, n

0 € Z, and define fO € F(T',H) by

0

£,(0) = x5, £o(ng) = - T_ X,

0
letting £,(n) = 0 otherwise:
r <f.(n), T £ (m)>=> 0.
n,m 0 m-n 0
I.e.:
<x0,Z Tmfo(m)> + <f0(n0) X Tm—n fO (m) >
m m 0
= XorXg> * <Ko Ty (=T Xo)>
0 0
+<~T_ x%,,T x>+ <-T_ x.,I(-T_ X,)>
N, 0 n0 0 n, 0 n0 0
-— — *
XorXg” T Ty ¥orTon X0~
0 0
= <x0,x0> - <T_n0xO,T_nox0> > 0.

Therefore the Tn are contractions, as claimed. On the other hand, let us start
with a contraction T and put

o =7 (m=0,1,...)

n
T_ = T (m=1,2,...).
Then TO =Tand Vv n, T_n = Tl’fl . In addition, Kq) is positive definite. Thus let
rr,0) = 5 ™™™y gy 1,050 <2m.

m

- 00
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. e : - /18
since ||T || < 1, the series is convergent in nomm. Set z = re -~ then
T(r,9) =
1 oy m,m 1 ~ -m m
(I+7 2z ) + (I 4+ Z 2 (T%)
S S

Re(I + 2 & 2°7%
1

Re(I + zT) (I - zT)'l

<x,T(r,0)x>

2 2 2 -
= 1vl1% - lzi]Imyl1* 20 (=@ -2n7x.
Fix a finite sequence

X_reeerX 1o XgiXyreeasX € H

and in the above, take

x= T e—/ZI L
k= -n
Then
n /=T (k-£)6
X e <xk,T(r,6)x£> >0
k,£= -n
or still,
o T /T (k—4m) 6_|m|
X I e r <xk'T x,> 20
m L
k, €= -n =
or still,

o n
o T D jmkl

<X T,  Xp> 20
s k.= -n k" ek
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T <X ,T, . X >
K. 0= -n Kertpx

n
1lim z r“)'_k|

r4l k,f= -—n

X rTp 1 %>

v
o
L

9.9 LEMMA If ¢ = ARTT for some *-representation w, then K@ is positive

definite.
PROOF In fact, v £ € F(T,H),

L <E(E),2(E*n)Ef(n)>
g/

z <£(&) ,R*m(g*n)RE(n)>
E:N

il

T <m(E)RE(E) , m(M)RE(N) >
21|

= ||z 'IT(]J)Rf(U)HZ > 0.
u
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Suppose that &:T » B(H) is a function -~ then ¢ is said to satisfy the

boundedness condition if 3 a map B:T - &0 suwch that vu € rand v £ € F(T,H),

L <£(&),0(E*u*un)f(n)>
g,/

< B I <£(8),2(E*n)f(n)>.
&
9.10 IEMMA If ¢ = AR’IT for some *-representation w, then ¢ satisfies the

boundedness condition.

PROOF In fact, vu €T and v £ € F(T,H),

L <£(&),0o(E*u*un)f(n)>
€M

= T <f(&),R*T(E*p*un)RE(n) >
gm

= gz <m (W m(E)RE(E) ,m (W) T (M) RE(n) >
/M

I

[T 2 T(IREM) | |2
V

A

) |12 & <E(E),0(E*n)£(n)>.
g,n

9,11 THEOREM (Sz.-Nagy) Suppose that ¢:T + B(H) is a function. Assume:

Kq) is positive definite and ¢ satisfies the boundedness condition —— then 3 a

complex Hilbert space K, a minimal *-representation m of I' on K, and a linear map
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F(T,H) ~ K

£ > f

onto a dense linear subspace of K such that ¢ = ARTT and v £,g€ F(T',H) s vueT,

<§,1T(u)§>= L <£(&),2(E*un)g(n)>.
&

9.12 EXAMPIE If G is a group, then the boundedness condition is autamatic
and specialization of 9.11 leads to the following classical assertion. Given a

positive definite function x:G » C with x(e) = 1, put KX(O,T) = X(G—lT) (0,T € G) —
then the kernel KX is positive definite, hence 3 a complex Hilbert space HX' a

homomorphism UX:G - U(HX) , and a cyclic unit vector xX € HX such that vV 0 € G:

0) = <x_,U_(0)x_>.
x (o) X'X()X

9.13 EXAMPIE Iet T € B(H) be a contraction — then 3 K> H and U € U(K)

such that T = erUn or still, T = PH(Un{H) (n=0,1,...), P ,:K > H the orthogonal

H
projection (cf. 9.1 and 9.8). Furthermore, {U'H:n € Zz} is total in K.
[Note: Iet

EY:Bor[0,21] -+ L(K)

be the spectral measure attached to U:

21T/_6U

U=/, e de” (6)

P = ngr V=1 nedEU(e)
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Then E = P, o EUIH is a semispectral measure and

s 21 /=1 no

=f0 e de(e),

a conclusion that should be compared with that arrived at during the course of

deriving von Neumann's inequality in §7.]

While the proof of 9.11 is "canonical", it is on the lengthy side so we shall
break the argument up into a series of steps.
Step 1: Given £ € F(I',H), define a function £:T -+ {{ by

£(5) = T O(E*n)E(n) .
n

Then

F(T,H) = (£:£ € F(T,H)}

is a complex linear space. Put

<£,g> = L <f(g),g(E)>
g
and consider the RHS:
(\
L <£(g),g(g)> =12 < d(E*n)E(n) ,g(&)>
g

£ n

=3 % <f(n),2(*n) *g (&) >
£n

T <E(m),on*g)g(&)>  (cf. 9.7)
n

Y ™M

=73 <€(n),Z o(n*E)g(E)>
n g

= ¥ <E(m),g(n)>.
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Then

Hh >
i
>

<f,g> =712 <£(€),9(E)>
g

R AGCEIGE
G

T <f1(n),§(n)>
n

=3 <£; () ,g; ()>
n
= é <£,(8) g4 (8)>

= <fl,gl>.
Therefore
<, >:F(T,H) x F(T,H) ~C
iw welldefined.

Step 2: Since K® is positive definite,

<E,f> = 1 <E(D),£(5)>
£

=2 L <fMm),o(n*g)E(g)>
En



l6.

T <£(E),eE*nE(n) >
&

v

0.
And this implies that

2
|

~ A ~N A A~
|<f,g>|" < <£,£> <g,9>.

Step 3: We claim that

<£,£5=0=> £ = 0.

For then <£,g> =0V g, i.e.,

F(E),9(E)> =0V g.

a2 fing|

In this relation, take g

I

ng:

0 =3 <E(E),q. _(E)>
£ Ny

= <f (n) 'Y
= f =0,

n and y being arbitrary. Therefore < , > is an inner product and F(T,H) is a
pre-Hilbert space.

Step 4: Given £ and u € T, write

1l

< *
FU(E) £(u*g)

z o(E*un)£(n) (ten.
n

Iet yj = f(nj) (3 =1,...,m) be the nonzero values of £, thus



Define Fu as follows:

Then

and vV £ €T,

where {vl,...

Step 5:

Then

is linear and

In addition,

17.

m
F = 3 o(E*un.)v..
u(E) o (& unJ)YJ
F M= L y.ifwu,=v (348
uns=v 7 £
j
Fu(v) = Q if pnj v (J=1,...,m.
F ’
y € F(T,H)
n ~
= *
FLE) = B OENIT, (),

,vn} = {pnl,...,unm} and Vi # Vp for k = 2.

Fu e F(T',H).

Define m<p> by the rule

(T<u>f) (£) = £(u*E).

W<u>:%(T,H) > %(T:H)

T<uv>

AN

<r<u>f, £>

m

=7
g

= I
g

<UST<V>,

<E(u*€) ,£(8)>

L <e(E*un)£(n) ,£(8)>
n

Consequently,



18.

it

Yy ™

 <f(n)  o(E*un) *£ (&) >
n

% <E(n) ,o(n*p*E) £(8) >
n

e ™

Il
™

<f(m),Z e((un) *E)£(&)>
n g

Il
™

<E(n),£(un) >

"N ~
= <f,m<p*>>,

So, by polarization,

A A

<m<w>f, o> = <€, me<pF>g>.

In particular:
<m<pu>E, mep>f>

A "~

<f,mep*>mep>£

i

<£,m<p* >,

Step 6: We have

<E, m<p*u>£>

X <f(n),£((u*u)*n)>
n

z <f£(n),£(u*un)>
n

L <£(8),o(&*u*un)£(n) >,
&m

which, by the boundedness condition, is
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IA

By = <£(&),2(&*n)Ef(n)>
&/

~

B(1) <E,£>.

Therefore

~

<> E, Tep>f> < B(p) <£,E>.

Step 7: Iet K be the completion of F(T,H) per the imner product < , > ==

then m<p> admits a unique extension to an element w(u) € B(K) and
m:I > B(K)
is a *-representation of I'. Moreover, by construction the arrow

F(r,tHy - K

~

f-~f

has the stated properties.

Step 8: Define R:H - K by

Rx = fe,x'
Then R € B(H,K):
2 _ A ~
[Rx| [7 = <f rfe
= <x,% (e*e)x>
= <x,0(e)x>.
And
<x,R*1 (1) Rx>

= <Rx,T{u) Rx>
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~

= <fe,x’ﬁ(w fe,x>

é i <fe,X(n),®(n*u€)fe'X(E)>

= <x,d((u)x>

<I>=AR1T.

Step 9: Iet £ € F(I',H) — then

It
e

£(2) = 3 S(E*M) £(n)

il
™

L o((n*e)*u) £ (w)
nu e, f(n)

) ﬁ fe, £(n) (M*E)

(ﬂ(n)fe'f(n))(a)

Il
S ™

1
e

(mr(mRE(n)) (£).
n

Step 10: 7 is minimal, i.e., m(T)RA is total in K. This is because each

f e F(r,H) is a finite linear combination of elements of w(T')RH and F(T',H) is
dense in K.

The proof of 9.11 is now complete.

9.14 REMARK Suppose that ¢(e) = I — then ¢ = prm. Proof: m minimal =>
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T unital

R*R = R*n1(e)R = d(e) = I.
[Note: Here is a corollary: V & €T,

o(E)*0(E) < &(E*E).

Indeed, V x € H,

<x,®(E) *0(£) x> l|®(€)X!|2

IA

[m ()= |2

il

<x,m(E*E) x>

<x,0(E*E)x>.

£=gr = 0(5)° < 0(£9).]

In certain situations, the assumption that K. is positive definite forces

0]
the boundedness condition.

9.15 EXAMPLE Suppose that A is a unital Banach *-algebra thought of as a
*—semigroup w.r.t. multiplication. ILet ¢:A > B(#) be a linear map and assume

that Ks is positive definite. Given f € F(A,H), define wf:A -~ C by

we) = ¥ <£(8),2(E*mm) £(n)>.
&M

Then we is a positive linear functional:



22.

we(p*p) = I <£(g), @ (E*u*um) £(n) >
£/

~ ~
= <f,m<u* >

N N

<m<p>£, mp>f>

I

[\

0.

So, by standard generalities,

o) | < wete) (xaeun 2,

r(.) the spectral radius. That the boundedness condition is satisfied is thus

manifest.

9.16 IEMMA Fix a *-semigroup I and let ®:T > B(H) be a function. Assume:

K ® is positive definite —-- then the following are equivalent.

1. 3 amap B:F+_I_{>osucht11atVuEPa.rldeEF(F,H),

L <£(&) ,2(E*u*un) £(n)>
()

< By & <£(8),0(E*n)f(n)>.
€M

2. 3amap B:T ~ R, such that vu el and v x € H,

0
<x,® (E*p*pg) x> < B(u)<x,d(E*E)x>.

3. 3 a positive constant K and a submultiplicative map a:T -+ R_, such that

0
vuerT,

[ow || s Ratw).
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4. 3 amap p:T >R, such that vy e T and v £ € F(T,H),

0
2 2k
lim inf (  <£(&),2(E*(u*w) " n)f(n)>) < p().
k> g,m
PROOF
e 1 => 2: This is obvious (same RB).
® 2 => 3: Suppose that ||x|]| =1, ||ly]| = 1 — then
<y, 00|12 < <y,8(e)y> <x,6(ur) x>
< Blu)<y,o(e)y> <x,2(e)x>
< B |loce) ||
=>
e || = s ™?|[et@ ]].
Therefore we can take a = 61/2, K= ||o(e)|]. Choosing B to be minimal gives

a(pv) < a(wa(v), the asserted submultiplicativity of o.

® 3 => 4: Note that

|!¢(£*(u*u)2kn)|[

Ra (2% (1) 2Kn)

IA

A

Ko (2%) a ( (1) 2 o (n)

Ko (E%) o (1) o () 25

A

B(u) < al(p*).
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¢4 =>]: First

|<mawrn>, £512 < | [naunog] |2 ] |£] |2
T.e.:

| 5 <£(E) o (Ermun £ () > |2
£/

< (T <E(E),0(E* (w*p) 2m) £(n)>)
&m

x { L <£(&),0(E*n*)f(n)>).
g

Thus, by iteration,

L <£(&),0(&*u*un)£(n)>

g/
2k 2k
£ (Z <E&),2E**) " EM)>)
g€/
1-27k
x (L <£(&),0(E*n*)f(n)>) .

€N
And so forth.

9.17 THEOREM Suppose that ¢:T - B(H) is a function. Assume: K® is positive
definite and 3 M > O:

[]o(w) || <MV ueT.

Then ¢ satisfies the boundedness condition, hence 9.11 is applicable.

[Thanks to 9.16 (3 => 1), this is immediate.]

9.18 REMARK It can happen that K® is positive definite, vet ¢ fails to
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satisfy the boundedness condition. For example, let I' be the x-semigroup of all

complex polynomials on the real line (the *-operation being complex conjugation).

Given £ € T, put

2(6) = Sy E(be Tt

to get a function ¢:T' »~ C (= B(C)) -- then it is clear that ch is positive definite.
Still, ¢ does not satisfy the boundedness condition. Thus write EO for the poly-

nomial t » t and note that

@(Eg) = nl.

If now ¢ did satisfy the boundedness condition, then it would satisfy 3 in 9.16

for a submultiplicative o, hence

nt = |o(gp) |
< Koc(EIg)
< Kon(io)n
=>
nl,1/n
OL(EO) z (R—-) ’
an impossibility.
[Note: Sans Stirling,
1
@D _ 1 o _ 1 N
1 T oo+l 0= (n!)l7n 0.1
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9.19 IEMMA Suppose that K is a complex Hilbert space containing H as a

closed subspace. Let A € B(H), T € B(K) -- then T|H = A iff
A=prT and A*A = pr T*T

or still, iff
@92 = pr (' (4,3 =0,1,...,).

PROOF It need only be shown that the conditions

T*T

= * =
A erT and A*A pry

imply T|H = A. To this end, let x € H — then

x| |2 = <x,A%ax>

= <X,PHT*TX>

= *
<PHX,T Tx>

= <x,T*Tx>

Fl

But at the same time,

z
=
L

Therefore

2
I
¥
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I.e.:

Tx = Ax => T|H = A.

Iet A € B(H) — then A is said to be subnormal if 3 a complex Hilbert space
K containing H as a closed subspace and a normal T € B(K) such that T|H = A.
[Note: In general, every A € B(H) can be represented as the projection of

a normal T € B(K) in some extension space K:A = pr,T (cf. 9.1).]

9.20 EXAMPLE Every isometry A is subnormal. For A is a contraction, hence

3 K> Hand U € U(K) suchthatA=erU {(cf. 9.1). But Vv x € H,

[l ] = [lax|| = [lpox|] < |[ox]]| = ||x]]
=> PHUx=Ux
=> U|H = A.

9.21 LEMMA Suppose that A € B(H) is subnormal -- then V XgrKyree X, € H,

n . .
b} <Alx \ ,iji> > 0.
i,3=0 J

PROOF The ILHS equals
n i .
L <T x. 'T]Xi>

i,3=0

or still,

n . .
Lo<x., (T0)*mlx >
- i
i,j=0
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or still,
n P
) <x.,T3(T ) *x.>
[ 1
i,j=0
or still,
n . 5
. .E <(TJ)*xj,(T )*xi>
llj_
n
2
= [ @]
=0

v

0.

9.22 THEOREM Let A € B(H) and suppose that v XgrXyr--rX € H,

n . .
5 <A'x.,Ax.> > O.
. e 1
i,j=0

Then A is subnormal.

PROOF Take for T' the set of all pairs ¢ of nonnegative integers (i,j), with

(,3)@d',3") = @3 +1i', j +3")
(llj)* = (]ll) , €= (0,0).

Then T is a *-semigroup. Define ®:T - B(H) by
(E) = 6(1,9) = (axial.

Claim: K<I> is positive definite. Proof:

T <E(8),0(E*E")E£(E")>
£,g!

= X z <f(llj)l®(3 + ilri + j')f(i'rj')>
(1,9) 13"
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- 5 L <Ed,3), @) A G 5
(1,3) ',3"

- e
- ('z_) (_'z.') Al e, ,aM fEr,
1,3 1,]

il

. .
L <A x.,Alx.,>
iir ot

\%

0.

Here
x; = I AIE(i,5)
J

j!
=3y a £(i',3Y.
jl

X.
it

As for the boundedness condition, we have

o, 1 = |[a]|**

IN

a(i,j) = |[a][*
is (sub)multiplicative:

a((i,3)1',3") =a@d +1',3 +3")

i+it+i+3"

RENY

al(i,j)a(d,3").

Therefore one can quote 3 => 1 in 9.16. Now apply 9.11 to get m:d = pr,m
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(cf. 9.14 (d(e) = ¢(0,0) = I)). Since the semigroup operation is commutative,

the 7(&) are normal. Iet ‘EO = (0,1) -- then a given & = (i,j) can be written as

£= (1,030,173
i3
= &9,
SO
n(g) = (%),

where T = n(go) . Accordingly,

(Aﬁ)lAj = o(i,3) = erﬂ(i,j) = er(T*)iTj (i,3 = 0,1,...)
=>

TiH = A (cE. 9.19).

9.23 REMARK Retaining the notation of 9.16,

a(i,g) = ||al [
=>
s = [[A]1PH) = a0 = |[a]|%
Consequently,
n . N
5 <Al+lx., 3+lx.>
. . 1
i,3=0

n . .
< |al1? 1 <alx,nlxp.
- 3 i
i,j=0
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APPENDIX

Our definition of *-semigroup incorporates the condition that T be unital,
an assumption that simplifies the theory. Here, we shall retain the involution
*:T - T but drop the existence of the unit e: T will thus denote a nonunital
*—semigroup.

What can be said about 9.11? For the most part, no use was made of the unit
which, in fact, makes an appearance only near the end, viz. in Step 8 (construction
of R). Still, 9.11 does go through in the nonunital case provided we append an
extra hypothesis (see below).

Going back to the beginning for the moment, the first point is that 9.5 and
9.6 remain valid (the proofs, however, are a little more camplicated). Next, the
boundedness condition does not change but 9.16 needs a slight revision: Replace
3 by

3'. 3 a function K:T -~ &O and a submultiplicative map a:T - B>O such that

vyuerT,
| |®(E*u*ug) || < K(E)aly).
Turning to the nonunital version of 9.11, introduce the following condition:
C: 3 anet {ei:i €I'inT such that v £ € T,

o(Ee;) + 0(8)

b(efg) »~ 2(g)

weakly and

y = sup ||o(e*e.)]] < .
i€T o
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RAPPEL. Iet H be a complex Hilbert space. Suppose that {xi:i €I} is a

bounded weak Cauchy net in H —— then there is a unique x € H such that X, > X
weakly.

RAPPEL, Iet H,K be complex Hilbert spaces. Suppose that {Ti:i €I} is a
weak Cauchy net in B(H,K) such that V x € #,

sup ||T;x|] < .
i€l

Then 3 T € B(H,K) such that Ti - T weakly.
[V x € H, {Tix:i € I} is a bounded weak Cauchy net in K, hence is weakly

convergent to a unique element of K, call it Tx —- then T:H - K is linear. But,

by the uniform boundedness principle,

sup ||T.[] =M < e,
iel

Therefore v x € H& Vy € K,

|<y,Tx>| = lim |<y,T.x>|
ieT

N

M y[] [«

So T is bounded and by construction, T, > T weakly. ]

[Note: In general, B(#,K) is not weakly camplete. E.g.: Take H = K
infinite dimensional and T:H# - H linear and unbounded. Given a finite dimensional
subspace F < H, let TF =T o PF’ PF the orthogonal projection of H onto F -- then

{TF} is a weak Cauchy net in B(H) which does not converge weakly in B(H).]
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Given £ € T, define R

E:H > K by

(Rex) (W) = £, LG (= o)) .

LEMB V£ €T, R, € BH,K).

PROOF Suppose that X > 0 in H -~ then

2 ~ A
i = f
Rl 12 = <8 oy

>

= <xn,<1>(£*£)xn>

IA

1%, 112 [1ec*a) ||

+ 0.

IFMMA V &,n € T, we have

Ran d(E*n) .

PROOF V x,y € H,

<x,R* > = <R.x,R y>
XIERny g,nY

~ ”~N

<f £ >
g,x' n,y

il

<x,0(E*n)y>.

Continuing the discussion, granted C (maintaining, of course, the assumption

that K<I> is positive definite and satisfies the boundedness condition), put



34.

R.=Re (i € I) = then
i

I
A
h
~
H >
\4

<R.xX,R.x>
i r 1

<X e*e. ) x>
;0 (ete;)

IA

vl 1] 2

Thus 3 M > O:

sup |[R,|| =M < « (uniform boundedness principle).
ieT

On the other hand, the definitions imply that {Ri:i € I} is a weak Cauchy net,

hence 3 R € B(#H,K):

R = lim Ri (Wor) .
i€r

With this preparation, we are finally in a position to deal with Step 8 in

the proof of 9.11, viz. the assertion that ¢ = AR’IT, ie., Vuer,

®(n) = R*1(U)R.
First
T(WR = w(y)lim R, (WOT)
i€T
= 1im w{w)R, (wWor) .
i€l 1
But
ﬂ(u)Ri = 1T(]J)Re..
1
And

(Tr(u)Re_X) (&) (ﬂ(u)fe ) (&)

i i,x
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<I>(E*uei)x

(R o %) (E).

1
Therefore
mT(WR, = R
1 ne,
=>
()R = lim R e (Wor) .
ier ¥&i
ILEMMA We have
R = 1lim R (WOoT) .
Hoder Hey
PROOF vx€e Hand Vv f € F(T,H),
<R  Xx,f> = <f £>
pe, e, ,x’

= é <TZ] <I>(E*n)fpei'x(n),f(£)>
= I <¢(E*pe.)x,f(§)>
g 1

> I <9(E*u)x,£(8)>
2

2 <E x(0)EE)>

]
&
s
x
Ho>
\'4
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So, in conclusion,

m(WR = 1lim R (WorT)
ieT i

But then
R¥*1 ()R = R.*R.u

= (lim RY)R_ (WOT)
jer t M

= 1im (R*R )  (WOT)
jer tH

= lim (R* R ) (wWor)
ier & M

= 1im ®(e*y)  (WOT)
ier 7

= q’(U) ’

as desired.

REMARK 7 is minimal (cf. Step 10 of the proof of 9.11).

[Note that

(Rx) (§) = &(E%)x

(MW Rx) (§) = (E*u)x,

which leads to the formula in Step 9.]



§10. DILATION THEOREMS
In this §, we shall consider some important applications of 9.11.

10.1 RAPPEL If {Ti:i € I} is an increasing net of positive operators

converging weakly to an operator T, then Ti -+ T strongly and

T = l.u.b. {Ti:i €T},

Suppose that (Q,A) is a measurable space and E:A > E(H) is a semispectral

measure.

10.2 THEOREM (Naimark) There exists a complex Hilbert space H containing
H as a closed subspace and a spectral measure E:A - L(H) such that vV A € A,
E(A) = P E() [H,

P{ ¥:T1 -+ H the orthogonal projection of H onto H. Furthermore, the requirement that

{E(a)H:A € A}
be total in H determines H and E up to isometric isomorphism (cf. 9.6).

PROOF Recalling that A is a *-semigroup (cf. 9.4), view E:A > E(H) (c B(H))
as the "o" of 9.11. There are then two points.

1. The kernel

A x A~ B(H)

(A,B) - E(A n B)



is positive definite: For all

Ayr---/A € A

XypeeerXy € H,

we have

n
T <x.,BE(A. NnA)x.> = 0.
i, 2t

To establish this, put
n
u= I u .
i=1 %%

Then by polarization and the Schwarz inequality,

! <u (i,j=1,...,n).

X p X
13

Denote the corresponding Radon-Nikodym derivative by fij and let X

V A EA,
0 < <§ Aixi,E(A) (Z_ }\jxj)>
1 J
= .Z. >‘i>‘j<xi’E(A)xj>
i,J
= I A AU (a)
i,3 1%
i,J
Therefore

n
oAl =20 [ua.e.l.
ig=1 + I

l""'>\n

ec



On the other hand,

n 5 -
‘.E Axa 1T = L AA%a ma,
i=1 i i,J= 1]

Now apply 8.3 to conclude that

n
z

f..(w) =20 [u a.e.l,
i,j=1 ]

Xa.ma.ti
i

which upon integration over Q gives

n
0 < T S
i, =1

X £, .du
Q AinAj ij

n

T J £, .dp
1,371 Ay

n
T <xi,E(Ai N A.)x.>.
i,3=1 >

i

2. E satisfies the boundedness condition:

n
b <xi,E(Ai NANAX.>
i,3=1 J 3]

n
< B(Aa) L <x,,BE(A, N AL)x.>.
T

Indeed, the assigmment
n

A-> E <x;,E@; NAN Aj)xj> (= 0)
i,)=1

is a measure whose value at Q is



n

z <xi'E(Ai NAL)X.>.

i,3=1 3 J

The boundedness condition is thus satisfied by taking B(A) = 1 (A € A).

Thanks to 1 and 2, 9.11 is applicable. Denote the "K" there by H and the

"m" there by E:

E:A > B(F()

E = erE (cf. 9.12 (E(Q) = I))

with
{E(@)H:A € A}

total in H. The fact that E is a unital *-representation of A on H implies that

i

E(Q)
, E(Q) = I.

£@a)2

E(A)

Il

E(A)*

I.e.: E:A > L(H). It remains to prove that E is a spectral measure. To begin

with, E is finitely additive. For let A A, € AwithA) NA, =g — then v

ABe Aand VvV x,¥y € H,

<E(B)y, (E(A)) + E(®,)IE@)x>

<E(R) E@)) + E(R,))E®)y,x>

il

<E(A N AN Bl)ly + E(A n A, N B)y,PHx>

]

<PHE(A na nBy+PE®ANA, N Byx



= <E(A N A; NB)y + E(A N A, N B)y,x>

= <E(A N (A; UA,) nB)Y,x>

= <PHE—(A n (a; UA,)) N B)y,x>
= <E@)E@A; U A)E(B)y,Pyx>

= <E@®)y,E@; UA)E@)x>

E(Al uay) E(Al) + E@,).

Finally, if Al c A2 € ..., then

E(Al) < E(A2) < ...

and by the same procedure, we find that

lim E(An) = E( B An)
n=1

weakly, hence strongly (cf. 10.1).

In the proof, minimality was used to force the countable additivity of E.
However, minimality may not have a direct interpretation, while the construction

of a larger "H" and "E" does.

10.3 EXAMPIE Take 2 Polish, let A = Bor Q, and fix a Borel measure .

Suppose given a collection of unit vectors e, (w € Q) such that the function



w > |le | | is continuous with

H
]

fQ Pemdu (w) (sor) .

So Vv x €1,
x=[ Q <ew,x>ewdu (w)

and V v,x € H,

<y,x> = <y,fQ <ew,x>ewdu(w)>
= fQ <y,ew><ew,x>du (w) .
Put
E@A) = fA Pe du (w) (A € A).

w
Then E is a semispectral measure. Let H= LZ(Q,u) and define a spectral measure
E by

E(A)f = Xaf (A EA.

Identify H with a closed subspace of H via the isometry x -~ fx' where

2 2
£ W =<e x> (||x[]" =/ [1<e ,x>][Tan(w)).
Iet
K{w,w') = <ew,ew.>.

Then

fQ K(w,w')fx(w')du(w')

=

Q <ew,ew, ><e x>dp(w')

= <e ,x>
W

i

fx(w) .



On the other hand, V £ € H*,

S k(w0 £ ) dn(w")

i

IQ <ew,ew,>f(w')du(w')

fQ <e ,ew>f(w')du(w')

]

fQ fe (N E(w")du(w")
w

= 0.

Therefore the orthogonal projection PH of H onto H is an integral operator with
kernel k. Finally,

E = P E|fl.
In fact,

PHEfX (w)

Jo klw,w')x (W (wh)dulw')

fA <ew,ew.><ew,,x>du (w"y.

And, by comparison,

fE (A)X(LO) = <ew,E(A) x>

<e,rdp <e rixe dilw')>

fA <e re 1><e , sodp{n') .

10.4 IEMMA Iet T be a *-semigroup, ®:T - B(H) a function. Assume: K_ is



positive definite —- then for all x € H and for all

gl,...,gn erT

cl,...,cn € C,

we have

n
T C.c.<x,0(E¥E.)x> = O.
= v

10.5 EXAMPLE Let A be a U*-algebra and suppose that ¢:A -~ B(H) is a linear
map. Assume: Ks is positive definite -~ then ¢ satisfies the boundedness condition.
To see this, let Myrees sty € Abe unitary —thenvxxeHHand v £ € T,

n

T C.C.<x,®(E*uFu.E)x>
i5=1 1 ]

n

T C.C.<x,0((uE) *u.E)x>
i,j=1 *t S

v

0.

Therefore the matrix
[<x,®((ui€)*uj€)x>]

is positive definite, hence its operator norm is < its trace which equals

n

iil <X, 9 ( (Mig) *Uig) x>

n
= %%
121 <%, 0 (E*ufu; g) x>



n
= I <x,0(g%g)x> (ufy; = e)
i=1
= n<x,d(E*E) x>
=>
n —
T c.C.<x,0(E*u*u.g)rx>
ij=1 ”

o 2
< (n T ey | <x,0(E*E) x>,
i=1 *

Since any p € I can be written as a finite linear cambination of unitary elements,
it follows fram 2 in 9.16 that ¢ satisfies the boundedness condition.
[Note: Specialized to the case when A is a unital Banach *-algebra, we have

thus recovered 9.15 by a different argument. ]

10.6 REMARK Here is another proof. Using 8.24, write

d(u) = <a,m(p)a> (e A.

Then
e [| = ||<a,mwa>]|
< |la]] |lrwal]  (cf. 8.12)
2
< [lal]” [Iwu |].
In 3 of 9.16, take K = llallz and set a(u) = ||m(n) || to conclude again that ©

satisfies the boundedness condition.

10.7 THEOREM Iet A be a U*-algebra and suppose that ¢:A - B(H) is a linear
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map. Assume: K<I> is positive definite -~ then ¢ = ARTT, where 7 is a minimal

*-representation of A on some complex Hilbert space K.
PROOF In view of 10.5, this is implied by 9.11 modulo one detail: Linearity

of m. But, due to the minimality of m, m(A)RH is total in K and V x,y € H,

<m(n)Ry, (m(&y) + m(E,))m(E)Re>
= <Ry, (T(n*§4€) + m(N*E,E) ) Re>
= <y,R*m(n*g  E)Rx + R*m(n*E, &) Rx>
= <y,<I>(n*ElE)x + 2(n*g,8) x>
= <y, d(n*g& + n*E,E)x>
= <y,0(* (€ + E)E)x>
= <y,R*T(n*(§; + &,)E)Rx>

= <Tr(n)Ry,Tr(£l + EZ)TF(E)RX>

W(El + Ez) = ﬂ(El) + ﬂ(iz).

Ditto:

m(cg) = cm(§) (ced.

10.8 REMARK In 10.7, take for A a unital Banach *-algebra -- then

9 = AR’IT (= R*mR) is continuous:

® € B(A,B(H)).
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Proof: A *-representation of a Banach #*~algebra on a Hilbert space is necessarily

continuous (in fact, contractive).

[Note:
2
[lel| = [IR[|" = ||R*R[].
For
®(E) = R*1(&)R
=>
He@ || < [Ir*[] [Im@&) [ |IR]]
2
< [R[Z =] THEld
2
< [IR[Z [ell (] < 1)
=>
2
e[l < |IR[]".
On the other hand,
d(e) = R*R  (m(e) = I)
=>
| |IR*R|| = |[o(e) ||
< [le[]| [lel]
< |lel]  (llel]l =D.]

10.9 RAPPEL An approximate unit in a Banach *-algebra A is a norm bounded

net {ei:i € I} such that vV £ € A,

1im Heig"EH =0
ier
lim ||ge; - €| = 0.
ier
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10.10 IEMMA If A is a Banach *-algebra and if A admits an approximate
unit, then every positive linear functional on A is continuous.

[Note: If w:A » C is a positive linear functional, then

lw(E*ng) | < r(mw(E*s) (n = n*),
r(.) the spectral radius.]

This lemma leads to an "automatic continuity" result. Thus let ¢:A > B(H)

be a linear map. Assume: Ky is poesitive definite -- then
® € B(A,B(H)).
Proof: V x € H, the linear functional
wX(E) = <x,0(E)x>

is positive, hence by 10.10 is continuous. Polarization then implies that

Y X,¥ € H,
wx’y(i) = <x,0(E)y>

is continuous, thus I M > 02
XY

g o ®) | <M I [2]

But by the uniform boundedness principle,

|le}] = sup [[2E) |] <
Hell <1
<=>V x,y € H,
sup |<x,0(E)y>] < e
[lel] =1

[Note: In the case when A is unital, this approach provides another route

to 10.8.]
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10.11 THEOREM Iet A be a Banach *-algebra with an approximate unit and

suppose that ®:A - B(H) is a linear map. Assume: Kq) is positive definite -- then

o = AR’!T, where 7 is a minimal *-representation of A on some complex Hilbert space K.

PROOF It is a question of applying the considerations in the Appendix to §9.

Since ® is continuous, V £ € A,

®(Ee;) ~ 2(€)
in B(H) (norm convergence) .
®(e§E) > 2(g)

On the other hand, if

Sup HelH =G,

i€T
then
llotete ) || = |l6]] |lete,]]
< 1ol lletl] Ileyl]
2
< 1lel] eyl
2
< |]ellc
=>
Yy = sup [|o(ete) || < .
ier 11

I.e.: Condition C is satisfied. There remains the verification of the boundedness

condition. Thus fix x € H — then
*q.%
wX(E w*ug)

= <x,d(E*p*ug) x>
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IA

r () (£4E)

r(p*p) <x, d(£*E) x>.

So condition 2 of 9.16 is met if we let B(up) = r(u*y).

10.12 EXaMPLE (The GNS Construction) Specialize 10.11 to the case when ¢ is

a positive linear functional -- then K, is positive definite (cf. 8.21) and 3 a € K:

o
o(g) = <a,n(g)a> (cf. 8.26).
For let a = R(1) (R:C » K):

<R(1) ,m(E)R(1)>

<1, (R*1(§)R) (1) >

<1,0(8)1>

e(8).

[Note: 7 is minimal, hence w(A)RC is total in K. But m(A)RC = w(A)R(1),

which is linear, so R(1l) is m-cyclic.]

10.13 THEOREM (Stinespring) Let A be a C*-algebra and suppose that

®:A > B(H) is a linear map. Assume: Ky is positive definite —— then ¢ = ARTT,

where 7 is a minimal *-representation of A on same complex Hilbert space K.

[This is a special case of 10.11 (every C*-algebra admits an approximate unit).]

Iet A be a U*-algebra and suppose that ¢:A -~ B(H) is a linear map. Assume: Kq)
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is positive definite and ¢(e) = I — then 10.7 is in force and RR* € B(K) is an

orthogonal projection.

10.14 IEMMA We have

{8 € A:0(8%F)

o(E)*0(8) }

= {g € A:o(ng)

o(n)d(&) v n € Al.

PROOF If ®(ng) = d(n)@(§) Vv n € A, take n = &* to get I(E*E) = G(E*)Q(E) =

P(E)*®(E) (cf. 9.7). To go the other way, assume that ®(E*Z) = ®(£)*®(£), thus

R*m(E*E)R = (R*(E)R)* (R*m(E)R)

or still,
R*m (&) *m(E)R = R*m (&) *RR*7 (E)R.
Iet
T = (I - RR*)T(E)RR*.
Then
T*T = RR*7(£)*(I - RR*) (I — RR*) (£)RR*
= RR*7(£)*(I — RR*)mw(E)RR*
= RR*1 (&) *1 (£)RR* — RR*7 (£) *RR*7 (§) RR*
= R(R*1 (E) *m(E)R = R*1 (&) *RR*1 (§)R)R*
=0
=>
T=0

T(E)RR* = RR*7 (£)RR*.



l6.

So, Vn €A,
RO (nE)R* = RR*1(ng)RR*
= RR*7(n) m(§) RR*
= RR*1(n) RR*1 (£) RR*
= RO(n)P(E)R*
=>
R*RO (&) R*R = R*Rd (n) ¢ (£) R*R
=>
®(ng) = d(n) (&) (R*R = I).
[Note: If
- @(g{gl) = <I>(£l)*<I>(E;1)
@(5’2‘62) = <I>(&;2)*<I>(£2),

then v n € A,

@(néliz) = @(nil)Q(Ez)

5(n) 8(£;) & (E,)

i

SOOI AR

Therefore

{g € A:0(E%E)

o (g)*0 (&) }

is a unital subalgebra of A on which ¢ is multiplicative.]

10.15 IEMMA If §:A - B(H) sends the unitary elements of A to the unitary
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elements of A to the unitary elements of B(H), then ¢ is a *-homomorphism.

PROOF Given a unitary & € A, we have

®(E)*0(E) = I = d(e) = d(E*E).

So, vn€EA,

1l

¢(ng) = o(n)o(g)  (cf. 10.14).

Therefore ¢ is multiplicative on A. But ¢ is also a *-map (cf. 9.7), hence ? is

a *-homomorphism.

Given a *-algebra A, define y:A -+ [0,x] by

Y(€) = sup ||7(E)]],

i
where 7 ranges over the x-representations of A on a complex Hilbert space -- then

A is said to be a GN-algebra if y(£) is finite for all & € A.

10.16 EXAMPLE Every U*-algebra A is a N-algebra. For if £ € A is unitary,

then

Hm@ |12 = | |m@ ) ||

[{m(exe) [|

[|me)|] = 1.

10.17 EXAMPIE Every Banach *-algebra A is a GN-algebra. In fact, Vv £ € A,

Y(&) < r(g*g)l/2 < HE*EHl/z-

10.18 EXAMPLE The *-algebra A of all complex polynomials p:R + C is not a
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GN-algebra.
[Note: The multiplication is pointwise and the involution is complex

conjugation.]

Suppose that A is a GN-algebra —- then y:A »> _I_z>0 is a submultiplicative

seminorm and

1t

vE*E) = v(@®)2 (EeA.

Let

=

(= {g:v(g) = 0}).

AR=ﬂKer

i

Then AR is a *-ideal in A and Y induces a C*-norm on the quotient A/AR. Denote the

caompletion of A/AR by C*(A), the enveloping C*-algebra of A, and write p A for the

canonical *-homomorphism A > C*(A).

10.19 EXAMPIE It can happen that A = AR Thus let A be the set of all camplex N

-by-N matrices that have only finitely many nonzero entries in each row and each
colum -- then A has no nonzero #*-representations on a complex Hilbert space.
[Note: The multiplication is matrix multiplication and the involution is

conjugate transpose. ]
10.20 LEMMA Suppose that A is a (N-algebra. If B is a C*-algebra and ¢:A -+ B

is a *-homomorphism, then there is a unique x—hamomorphism 3:C*(A) - B such that

®=5°pA.

10.21 IFEMMA Suppose that A and A' are GN-algebras and ¢:A > A' is a
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*—~homomorphism —— then there is a unique *-homomorphism C*(¢) :C*(A) - C*(A')

rendering the diagram

Py
A > C*(A)
; | o
¥
Al > Ck(AY)
Dy

camutative.

Suppose still that A is a GN-algebra and let ¢:A - B(H) be a linear map.
Assume: ¢ is y-bounded, i.e., 3 M > 0 such that
[19(8) || < My (&) (£ € A).
Then ¢ vanishes on AR’ hence drops to A/AR, and from there extends by continuity

to a linear map ©:C*(A) > B(H) with the property that ¢ = % o Py

is positive definite iff K_ is positive definite.
d

10.22 LEMMA Kq)



§11. COMPLETELY POSITIVE MAPS

Iet A be a *-algebra.
¢ Write A + for the set of all finite sums of the form igl g;_ii and call
the elements of A Y+ positive.
® Write ASA for the set of all £ € A with the property that £* = £ and

call the elements of ASA selfadjoint.

11.1 IEMMA The linear span of A+ is A2.

PROOF 1In fact,

DK £+ FDExE + (D).
0

E*n =

|
ifl"lw

11.2 IEMMA The linear span of ASA is A.
PROOF In fact,

E=(E+E%)/2 + /-1 (£ - &%) /2/-1.

11.3 IEMMA We have

PROOF The definitions imply that the IHS is contained in the RHS. On the

other hand,

)3
i=1



n n
1 n
1 n
—_— = * * - * -
=3 B UL+ e+ np) - 8L - gy
€A, - A

[Note: Therefore

Let A,B be *—algebras —— then a linear map $:A > B is said to be positive if

CP(A_I_) c B+.

11.4 IEMMA Suppose that ¢:A +~ B is a positive map -- then V §,n € A,

d(E*N)* = o(n*E).

PROOF V c € C,

0 < o((cg + n)*(cg + 1))

= |c|2©(€*€) + co(E*n) + co(n*E) + @(n*n).

Take ¢ = 1 and ¢ = /=1 to conclude that

o(g*n) + 2(n*g) = o(E*N)* + o(n*E)*

€ B

d(E*N) = 2(N*E) = d(n*E)* — B (E*n)*



and then add these equations.

[Note: Therefore A = A2

e(E)* = o(g%) (g € A).

In particular, this is the case when A is unital.]

Write Mn(A) for the algebra of n-by-n matrices with entries from A made into
a *—-algebra by the specification

And ditto for B.

[Note: 1If Mn(A) is identified with A @ Mn(<_2) , then
(E @ A)* = £* @ A¥,

A* the conjugate transpose. ]

11.5 EXAMPLE Let

[Aij] S Mn(B(H)) .

Then
[A;5] €M (BUD),
iff V Al'-..,An E B(H)I
n
z A;.‘_Ai.A. 2 0.
i,j=l J 3

If now ¢:A - B is a linear map, then V n, ¢ gives rise to a linear map



@n:Mn(A) > Mn(B), viz.

Definition: ¢ is n-positive if o is positive and ¢ is completely positive

if o is n-positive V n.
[Note: & n-positive => ¢ m-positive (m < n).]

N.B. It is false that "positive" => "campletely positive". E.g.: The arrow
of transposition
MZ(Q) > M, (&)

A~>Z—\T

is positive but not 2-positive.

11.6 EXAMPIE A x-homomorphism &:A » B is positive:

n n
¢ (iil £¥E;) iil o(g%E,)

n

Z 0(g;)*e(8,) € B,.
i=1l

Since @n is also a *-homomorphism, it follows that ¢ is completely positive.

11.7 EXAMPLE Suppose that H and K are camplex Hilbert spaces and m:A -+ B(K)

is a *-representation —— then v R € B(H,K), ¢ = AR'rT is completely positive.

11.8 REMARK An n-positive map CD:Mn Qe ~ Mn (C) is necessarily campletely

positive. On the other hand, one can construct examples of k-positive maps



cD:Mn(g_) > Mn(g) which are not (k+l)-positive (k=1,...,n-1 (n > 1)).

Every n-tuple 51' .o ’gn of elements of A determines a positive element g

of Mn(A) , viz.:
= T%kT = *
f;_ _— [gigj] r
where = is the element of Mn(A) whose kth row is gl, .e "gn and whose other entries

are 0 (any k between 1 and n).

11.9 LEMMA Iet g€ Mn(A) be positive —— then £ is a finite sum of positive

elements of the form [g*{gj] .

PROOF By definition, £ is a finite sum of elements of the form Z*E (E € Mn(A)).

1)

Decompose = as El+---+E ' EkthekthrowofuandOOtherwise——then

and each term on the right is of the form [E;_F,j] .

11.10 THEOREM Suppose that ¢:A -+ B(H) is a linear map -- then ¢ is completely

positive iff K 8 is positive definite.

PROOF If ¢ is completely positive and if 51"”'5n € A, then

[£1E5] € M (W),

n
=> [<I>(E§Ej)] €M (B(H), = B( & H

+



Therefore K, is positive definite. Conversely, let £ € M.n(A)+ ~ then in view of

o

n

11.9, to prove that ¢ _(&) € B( & H) , one can assume that £ has the form [£%*£.],
n'= + = 17]

in which case matters are immediate.

Consequently, the requirement that a linear map ¢:A » B(H) be completely

positive is: v n € N and for all

gl,...,gn € A

xl,...,Xn E H’

we have

n
ro<x,,0(E*¥.)x.> = 0.
I

Here is a variant.

11.11 LEMMA Suppose that ¢:A > B(H) is a linear map. Assume:

(¢ € A) = then ¢ is completely positive iff

gl'...’gn
v €A
B NyreserNy
and vV x € H, we have
n
I <xepe(ErEs) ey x> 2 0.
i,j=1

o(E)* = o(E¥)

PROOF ILet X run over a set {xi € H:i € I} such that {@(A)xi:i € I} is total



11.12 RAPPEL Suppose that w:B(H) -+ C is a bounded linear functional such

that ||w|] = w(I) = 1 — then w is positive, hence is a state on B(H).

11.13 ILEMMA Iet ¢:B(H) - B(H) be a unital linear map. Assume: ¢ is
bounded and ||¢|]| < 1 -~ then ¢ is positive.

PROOF Given x € S(H), define wX:B(H) + C by mX(A) = <x,%(A)x> — then W
is a linear functional of norm < 1. But W (I) =1, so
W € S(B(H)) (cf£. 11.12).

Therefore

A€ B(H)+ => wx(A) > 0.
Since this is true for all x € S(H), it follows that

A€ B(H)+ => 0(A) € B(H)+.

11.14 EXAMPLE Let $:B(H) » B(H) be
2

[}

unital linear map. Assume: ¢ is

bounded of norm < 1, idempotent (i.e., d) and

P(XY¥Z) = X0(¥Y)Z (X,Z € Ran & & Y € B(H)).
Then ¢ is completely positive. To see this, note that ¢ is at least positive

(c£. 11.13), thus V A € B(H{), ®(A)* = ¢(A*) (cf. 11.4). Now let

Al,...,An

€ B(H).

B

l,o-o,B

n



n
T ©(B,)*A*A.0(B.)
ig=1 *+ tJ

n n
= (X (B ))*( & (B,)) =0
k=lAk % k=1Ak k

n

* *
. E <x,<I>(Bi)<I>(AiAj)<I>(Bj)x>
i,j=1

n

* * N
. _Z_ <x,<I>(Bi) @(AiAj)lI)(Bj)x>
i,5=1

n
_ E <x,<I>(<I>(Bi)*A§Aj<D(Bj))x>
i,=1

n
<x,0( X @(Bi)*A?i‘_A.CI)(B.))}O
i,5=1 J J

2 0.

Therefore ¢ is completely positive (cf. 11.11).

Let X be a ICH space, C_(X) the algebra of complex valued continuous functions
on X that vanish at infinity. Equip C_(X) with the sup norm and let the involution
be camplex conjugation.

N.B. The dual C_(X)* of COO(X) can be identified with M(X), the space of
complex Radon measures on X:

1~ I, I (f) = .
w>I, u() J fau



Here

Hul [ = Jul &),

|| the total variation of p.

11.15 THEOREM If 4:C (X) - B(H) is positive, then ¢ is completely positive.

PROOF It suffices to prove that Kq) is a positive definite kernel (cf. 11.10).

So let
- fl,...,fn e COO(X)

xl,...,xn € H.

Then the claim is that

n -
Y <x.,0(f.f.)x.> = 0.
i, =1 * +1

To begin with, v x € H, the assigmment
f > <x,0(5)x> (f e C_(X))

is a positive linear functional, hence is given by integration w.r.t. a Radon

nmeasure ux:

<x,0(f)x> = fX fdpx.

Therefore
n
'21 <xi,<1>(,f)xi> = fX fdy,
where
n
= Iy, .
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Because ¢ (ff) € B(H)+, we have
|<xi,<1>('f'f)xj>[
< H@(Ef)l/zxil] ||<1>(Ef)l/2xj]|
_ = 1/2 = 1/2
= <xi,®(ff)xi> <xj,®(ff)xj> .

So, thanks to the Radon-Nikodym theorem, 3 ¢ij € Ll(X,u) such that v £ € C_(X),
<xi,®(f)xj> = fX f¢ijdu.
Next, for all Al,...,xn € C:

n
)X X.A.<x.,®(ff)x.>
ig=1 * 31t J

n _ n
< I kixi,é(ff) X ijj>

i=1 j=1

I\

0.
Consequently,

n

z X.A.¢..(x)‘z 0 [na.e.].
i,3=1 131

But the matrix [fifj] is positive definite at every x € X, thus on the basis of 8.3,

n
z
i,j=1

fifjd)ij >0 [upa.e.].

And this implies that
n

T o<x,,0(f.fu)x.>
0
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z ¢
il]"'l X lj

= Jf, ( b ffq)
i, j=1 l]l]

v
o
.

11.16 REMARK If A is an arbitrary commutative C*-algebra, then 3 a ICH
space X and an isomorphism A -+ C_(X). Therefore 11.15 can be restated: Every

positive ¢:A » B(H) is necessarily completely positive.

11.17 I1EMMA Iet A be a U*-algebra and suppose that ¢:A - B(H) is a positive
map — then ¢ is y-bounded (hence lifts to a positive map CI_>:C* (A) ~ B(H)).

PROOF We claim that vV £ € A,

e || < 2[]ee) |]|v(©).
Indeed
[[#(&)|] < 2 sup
x€S (H)
Now fix x € S(H) — then

W (E) = <x,0(E)x>

is a positive linear functional, thus 3 a unital *-representation of A on some

complex Hilbert space K and an element a € K such that

wX(E) = <a,m(E)a> (cf. 8.26).

2
[all

<a,m(e)a>

<x,%(e)x>
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< ||ote) ]
=>
|<x,0E)x>] < [al|?]|m(@) ||
< Hete) ||y .

11.18 LEMMA Iet A be a Banach *-algebra with an approximate unit and suppose
that ¢:A > B(H) is a positive map -- then ¢ is y-bounded (hence lifts to a positive
map ©:C*(A) > B(H)).

PROOF As in 11.17, it suffices to estimate

|<x,0(8)x>| (£ € A,x € S(H)).

To this end, note first that the discussion following 10.10 implies that

o € B(A,B(H)).

But v 1 € I,

l<x,<I>(eiE)x>12 < <x,0(efe,)x><x,0(E%E)x>.

Therefore
|<X.<I>(E)X>|2 < M<x, 0 (E*E) x>,
where
M= ||o|| sup ||ete,|].
ieT 13
So, if
wx(ci) = <x,0(8)x>,
then
_ 2
Hal 1y = supllo () |0, (E%E) < 1}
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<M,

a bound which is independent of x € S(H). Using 10.12, write

wX(E) = <a,rm(&)a>.

Bearing in mind that w(A)a is dense in K,

2 2
HaH = sup [<arY>‘
yesS (K)

sup |<a,7r(£)a>|2
m(£)acs (K)

sup Ju (6) |2
w, (E*E) <1

= gl

IA

M

l<x,0(0)x>| = ||al|%]|m(® ]

IA

IA

My (€) .

11.19 THEOREM Iet A be a commtative U¥*-algebra or a cammtative Banach
*-algebra with an approximate unit and suppose that ¢:A > B(H) is a positive map --
then ¢ is campletely positive.

PROOF It is clear that
A commutative => C*(A) commutative.

But &:C*(A) ~ B(H) is positive, hence is completely positive (cf. 11.16), so
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K_ is positive definite (cf. 11.10). Therefore Kq) is positive definite (cf. 10.22),
¢

hence ¢ is completely positive (cf. 11.10).

Iet X be a ICH space — then vV p € X, there is an arrow
evp:Mn(Coo(X)) > Mn(g)

of evaluation.

11.20 ILEFMMA Iet F = [fij] € Mn(Cw(X)). Assume: V p € X,
evp(F) € Mn(§)+.
Then

F €M (C,(X),.

11.21 THEOREM Let A be a *-algebra and suppose that ¢:A -~ C_(X) is positive —
then ¢ is completely positive.

PROOF Let ¢ € Mn(A)+. To establish that
@n(g) € Mn(Cw(X) )+,
we can and will assume that g = [gzgj] (cf. 11.9) —- then v p € X, the matrix

3 (5) (P) € M_(C)

is positive definite. Proof:

n

Y CiC.d_(E) (P) ;.
i,4=1 i n= ij

n
= C.C.O(EXE.
i,jil cicjé(ilij) (p)
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n

—~ *
o) (,i.’ ; 21 cicj Eiij) (p)

1

u

n
z ckEk) ) (P)

n
(( T £, )*(
el KK

1\

0.
Therefore

o.(8) €M (C (X)), (cf. 11.20).

[Note: One can, of course, replace C_(X) by an arbitrary commutative

C*-algebra (cf. 11.16).]

11.22 REMARK It can be shown that if A and B are C*-algebras, then there

is a positive but not 2-positive map ¢:A » B unless A or B is commutative.

11.23 EXAMPLE A linear functional ¢:A -~ C is positive if vV £ € A,
®(£*¢) > 0. Claim: Positive linear functionals are completely positive. To

see this, in 11.21 take X to be a singleton - then C (X)) =C(X) =C....

[Note: One can also proceed from first principles: Use 8.21 and quote
11.10 (A was unital in the discussion preceding 8.21 but this plays no role in

the argument) .]

11.24 IEMMA Iet A be a unital *-algebra and suppose that ¢:A - B(H) is

2-positive —— then V £ € A,
O(E)*B(E) < ||ole)|]|o(E*E).

PROOF V £ € A, we have
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1 g 1 g
<I>2( )
0 0 _ _ 0 o _
T d(e) o)
= EMZ(B(H))+.

d(E)* D(E*E)
So, V X,y € H,

<x,0(e)x> + <x,0(8)y> + <y, (&) *x> + <y, d(E*E)y>

> 0.

If d(e) = 0 but ®(§) = 0 (3 &), choose y subject to ¢(§)y = 0 and then take x to

be a large multiple of - ®(£)y, fram which an obvious contradiction. Therefore

=2 0= d(e) = 0.

Now let
- - [e@ || 2@y,
multiply the above inequality by ||®(e)|], and then vary y over H to get
o) || e(e)*e(e) o)

- 20(8)*0(8) + ||ete) ||@(E*E) = O.
It remains only to note that

2(E)*(T - |[o(e) || Troe)) 0(8) € B(),.

11.25 LEMMA ILet A be a unital Banach *-algebra and suppose that ®:A - B(H)
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is positive. Assume: & € A is normal, i.e., &&* = £*f — then
d(E)*0(E) < ||ole) ||o(E*E).

PROOF Let A(Z) be the closed *-subalgebra of A generated by e and £ -— then
A(g) is a unital commutative Banach *-algebra, hence the restriction of ¢ to A(f)
is completely positive (cf. 11.19), in particular is 2-positive, so 11.24 is

applicable.

11.26 RAPPEL The closed unit ball in B(H) is the closed convex hull of U(H).
[Note: In fact, every A € B(H) with |]A|| < 1 is a convex combination of

unitary operators.]

11.27 THEOREM Let H and K be complex Hilbert spaces and suppose that

®:B(H) + B(K) is a positive map —- then ¢ is bounded and | ||| = ||®(D) |

PROOF That ¢ is bounded is standard. This said, let U € U(H):

e |12 = [le@*a ||
< |le || ||e(w*U) || (cf. 11.25)
= lle(m||%.
The continuity of ¢ and 11.26 then imply that ||o|| = |]&(T)]].

In other words: “Positive maps ¢:B(H) - B(K) attain their norm at the identity

operator".

11.28 EXAMPLE Is it true that if ||¢]|]| = ||e(T)|| and &(I) > 0, then ¢ is
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positive? The answer is "no". E.g.: Consider the linear map <I>:M2 (C) - Mz(g)

defined by

11 212 41 %12
®( )y = .

21



§12. OPERATOR SYSTEMS

Let H be a complex Hilbert space —-- then an operator system is a linear

subspace S « B(H) such that I € S and S = S*.

12.1 REMARK In view of the Gelfand-Naimark theorem, every unital C*-algebra

A "is" an operator system.

Given an operator system S, put

S, =3 nB(H,

SSA =8N B(H)SA.

Let A € Sg, —— then
A=at-a

but it need not be true that A+,A- € S.

12.2 EXAYPLE Take H = C’ and identify B(H) with M,(C). Let

S = {A:all =a,, = a33}.
Then S is an operator system and
-0 0 1
A= 0 0 0 €S




But
1 0 1 - T 0 -1
+_1 -1
A =3 0 0 0 P A =3 0 0 0
1 0 1 -1 0 1

do not belong to S.

Nevertheless, it is still possible to express A € SSA as the difference of two

elements in S "

1 1
A=z ([Allz+2) -5 (Al - A).

Since the real and imaginary parts of each element of S also belong to S, it follows

that S is the linear span of S+.

12.3 ILEMMA V A.,A

1 ZES+’

12y = Ayl = max{]|a [{,[]3,]]3.

The notion of positive linear functional on S is clear and the standard facts

obtain.

12.4 IEMMA If w:S > C is a positive linear functional, then w is bounded and
ol | = w(@.

12.5 LEMMA If w:S > C is a bounded linear functional and if ||w|| = w(I),



then w is positive.

12.6 THEOREM (Krein) Every positive linear functional w:S + C can be

extended to a positive linear functional w:B(H) - C.

PROOF Thanks to 12.4, w is bounded and ||w|| = w(I). Now use the Hahn-

Banach theorem and extend w to a bounded linear functional w:B(H) > C with

ol = []w]

. That ¢ is positive is implied by 12.5.

If

S c B(H)

T < B(K)

are operator systems, then a linear map ¢:S - T is said to be positive if
®(S) < T,.

N.B. & is %-linear:

O (A)* = ¢ (A*) Ae3g).

12.7 EXAMPIE In general, a positive map ¢:S + B(K) can not be extended to

a positive map $:B(H) -+ B(K). To illustrate this, take = 94, let

X = diag(1,/-1,-1,- /~I),
and denote by S < .M4 (C) the operator system spanned by I,X,X* -- then
al + bX + cX*

is selfadjoint iff

[}
i
U}



and is positive iff in addition
a > 2max (|Re b}, |Im b]).

Consider now the linear map ¢:S - M,(C) that sends

al + bX + cX* to

Then ¢ is positive and

It
'.—l

e 1]

il
N

e ||

Since ||X|| = 1, this implies that
el =v2 > [[em]|

But if there were a positive extension 5>:M4 (C) » M,(C), then

3|

3@ || (c£. 11.27),

an impossibility.

12.8 IFEMMA Suppose that ¢:S -~ T is positive — then ¢ is bounded and

1o

PROOF There are three steps.

N

2 ||e(my|].

1. IfA€S+, then

0<Ac< ||a]l|]I=>0cx500@A) < ||a]|e(D)



[le@) || = [1a]l [le@m]].

2. IfAESSA, then
lle@ || = [leG (Iallz +2) - 3 (||a[|T - 2|

< zmax {[[e(/[allT + A ], [[o(|IAllT - A ]} (cf. 12.3)

< |al] He@].

3. IfA €S, then

A=R A+ /-1 ImA

[le@) ]|

IA

||Re A[] + [|Im &

IA

2{|al] [fe@m].

12.9 REMARK The constant 2 in 12.8 is sharp. However, under certain circum-
stances, it can be reduced. For instance, if X is a compact Hausdorff space and if
®:C(X) ~ B(H) is positive, then ¢ is completely positive (cf. 11.15) and ||¢]|]| =
||e(@) || (cf. 10.8).

12.10 LEMMA Suppose that ¢:S - B(K) is positive -- then ¢ extends to a posi-

tive map on the norm closure of S.

Given an operator system S, it makes sense to form Mn (8), an operator system



n
M_(B(H)) = B( @ H)

and we shall put

M (S), =M (S) N M (B,

Mn(S)SA = Mn(S) n Mn(B(H) )SA.

If §,T are operator systems, then a linear map ¢:S - 7 induces linear maps

@n:Mn(S) > Mn(T) (n=1,2,...)

and ¢ is termed completely positive if Vv n, <I>n is positive.

12.11 EXAMPLE Given

A= [aij], B = [blj] € Mn(_c_:)r

their Schur product A*B is [aijbij] (the entrywise product of A and B (cf. 8.3)).

Now fix A and define a linear map S;:M_ (C) » M (C) by S,(B) = A*B -- then the
following are equivalent:

1. A is positive definite; 2. SA is positive; 3. Sa is completely positive.

12.12 IEMMA Fix an operator system S and let X be a campact Hausdorff space.

Suppose that ¢:C(X) > S is positive —— then ¢ is completely positive (cf. 11.15).

12.13 IEMMA Fix an operator system S and let X be a compact Hausdorff space.

Suppose that ¢:S + C(X) is positive —— then ¢ is completely positive (cf. 11.21).



[Note: Specialized to the case when X is a point, the conclusion is that

every positive linear functional w:S + C is completely positive.]

N.B. We have

[eyf] = voe < ||¢n|| < vee s

IA

[lel] = |lo,l|

Set

]

e[|y = suw {]|e ||:n € N}

Then ¢ is said to be completely bounded if |[¢|]|_ < < and completely contractive

if |]]], < 1.

12.14 EXAMPIE The arrow of transposition

M (©) - M (©)

A »—AT

is completely bounded and, in fact, ||7]||g4 = n.

Suppose that $:S » T is completely positive ——- then ¢ is completely bounded.

Proof:
eIl < 2]|e,(@]]  (cf. 12.8)
=2||e(M]]
=>
el |y s 2[]e@]]-



With more work this can be sharpened to:

ollgy = 1e]] = |]ec

.

Matrix Trick Vv A € B(H),

[A[] <1 <= € M, (B(H), -

AX I

12.15 THEOREM If S,T are operator systems and if ¢:S - T is campletely

positive, then ¢ is completely bounded with

.

PROOF The assertion is trivial if ®(I) = 0 (for then ® = 0 (cf. 12.8)), so

assume that ¢(I) = 0. Noting that

n

T MM (9) =My (S)

M, (4 (T) = M, (T),

take a contraction A € Mn (8):

I A
lal] < 1= > 0.
Then
-1 A
q>2n ( )



5. (D o @)

= >0
~ o (A)* o (I) ~
But
0<e (D)< [[e (T
= [le@||1.
Therefore
[lem|r o (&) -
_ <I>n(A)* [le(@ |1 _
e ||z - e (D) 0
0 e[| - 2 (T)
B o (1) ¢ (A)
+
3 <1>n(A)* 4>n(I) B
20
- I e @ /[le@m|]
=> pd 0

o (A)*/||e(T) ] I
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e, @/[le@m|] || <1
=>
e, @ || = |]o(m]|
=>
e |1 < [le(D]]

lolly, < lle@

On the other hand, trivially

e ] = ell = [le]] 4.

[Note: Just what space "I" operates on is to be inferred from context.]

12.16 RAPPEL ILet A€ B(H) — then - I <A< I iff Vv te€eR,

[1a - /T ex]] = @+ £3)Y2,

12.17 1IEMMA If S,T are operator systems and if $:S »> T is a unital linear
map, then ¢ is completely positive iff ¢ is completely contractive.

PROOF One direction is immediate:

o(I) =I=> |[e(D]|] =1
=> |]9| ch =1 (cf. 12.15).

As for the converse, VA € S:- I <A < I, we have
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i

o) = /~T tI|]| = ||e@) - /<1 to(1) ||

il

oA - /~T tI) ||

IA

[ell [|a = /=1 1]

IA

|12 = /=T tI]]
2,1/2

A

(L + ¢

-1

IA

d(A) < I.

Given E€ S:0 <E<I, letA=2E~-1I —then-I<Ac<I, so

or still,
0 < 0(E) < I.
This proves that ¢ is positive. The same argument also works for <I>n. Therefore

® is campletely positive.

Given an operator system S, write L(S,Mn(g)) for the vector space of linear
maps from S to Mn(g) and write L(Mn(S) /C) for the vector space of linear maps fram

M _(S) to C.

o There is an arrow
L(S,Mn(g)) - L(Mn(S) /C)

viz. ¢ » Aq), where

n
_1
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e There is an arrow
L(Mn(S) /<)~ L(S,Mn(C_l) Y,

viz. A > ¢,, where

AI
@A(A)ij = nA(Eij 8 A).

[Note: Here, e reeer® is the canonical basis for gn and Ei" 1 <i, <

1 J

are the matrix units in Mn(g_:) , thus Ei' ® A is the element of Mn(S) whose j.jth

J

is A and whose other entries are 0.]

N.B. We have

T 9> A >0, =293
o) A@

> A = A
2y

!
| A~ <I>A
12.18 ILEMMA Let ¢ € L(S,Mn(g)). Assume: @n is positive -— then Aq) is

positive.
PROOF Iet
5 .
XEC =C@® ... 8C
be the vector

ele «ee B en.

_1
Acp([Aij]) == <X,<I>n([Aij])X>.

12.19 IEMMA Let @ € L(S,Mn(g)) . Assume: Aq) ig positive —— then ¢ is

n,

entry
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completely positive.

PROOF Put w = A ® and use 12.6 to extend w to a positive linear functional
G:Mn(B(H)) > C — then the map

@a:B(H) - Mn(g)

extends ¢, thus matters are reduced to proving that ¥ = ¢ is completely positive
w

1,2,...). Solet A€M (B(H),, say

[}

or still, that ¥ is m-positive (m

A [A’]!‘_Aj] (cf. 11.9).

Since ‘Pm( [A{Aj]) operates on gmn , to check positivity, it suffices to work with

n
x=xle---®xm€§mn, xiEC_Jn, xi=pilcipep.

This said, write

*
<x, Ll’m( [AJ._Aj 1)x>

m
= X <xi,‘P(A§“A.)x.>
i,j=l J ]
m n _
= z L c, c. <e ,Y(A*Ar.)e >
. . h
i1 p,gel P39 P 3" g
m n - -
= 3 T C, c.no(E_ & A*.).
CipSiq™ Epg 8 AfR;)

i,7=1 p,g=l
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Put
cll ci2 c:i_n
C. = 0 0 0 (1 <1i<m.
i
_ 0 0 ... 0
Then
n —
C*¥C, = L c.,c.BE .
1] p,g=1 ip jq
Therefore
*
<x,‘£’m( [AiAj] Y x>
m —
=n L w(C¥C. & A*A.)
ijg=1 *+J )

m m
nw(( T QA)*( T 2A))
oy Cx Ay k___lck By

[\

0'

12.20 REMARK Suppose that ¢:S - Mn(g) is completely positive —- then <I>n

is positive, hence Aq) is positive (cf. 12.18), and the proof of 12.19 produces a

completely positive extension Y:B(H) - Mn (C) of ¢.

[Note: We have

el = [le@ [ = [le@]|| = [le]| (cf. 12.15).

Let X be a normed linear space and let K be a complex Hilbert space. In
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B(X,B(K))* (the dual of B(X,B(K))), write B(X,B(K)), for the closed linear span

of the linear functionals A

Y where x € X, X € B(K), (cf. 2.3), and
r

Ax,A(A) = AMax) (A € B(X,B(K))).

Then B(X,B(K)) is isametrically isomorphic to the dual of B(X,B(K)),, hence can
be equipped with the weak* topology. Taking into account Alaoglu's theorem, it
follows that a bounded net {Ai:i € I} of bounded linear maps A X > B(K) has a
convergent subnet.,

N.B. A bounded net {Ai:i € I} in B(X,B(K)) converges to A weak* iff VT € I—‘l(K)’
tr((Aix)T) + tr ((Ax)T) (x € X)

or still, v u,v € K,

tr((Aj_x)Pu V) > tr((Ax)Pu V) (cf. 1.10),

14 14

tr( ) > tr(P

P (Aix)u,v (Ax)u,v) '

i.e.,

<v, (Aix) u> > <v, (Ax)u>.

Let X = B(H) and equip B(B(H),B(K)) with the weak* topology. Denote by
CPr(B(H) +B(K))

the set of campletely positive maps B(H) -+ B(K) of norm < r.

12.21 LEMMA CPr(B‘(H),B(K)) is compact in the (relative) weak* topology.

12.22 THEOREM (Arveson) Let S < B(H) be an operator system, K a complex
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Hilbert space. Suppose that ¢:S - B(K) is campletely positive —- then ¢ admits
a campletely positive extension VY:B(H) - B(K).

PROOF Given a finite dimensional subspace F < K, put
o (8) = PF®(A)|F AeSs),
where PF is the orthogonal projection per F -- then PpiS > B(F) is completely
positive. But B{(F) = Mn(_c_:) (n = rank PF) , hence 3 a campletely positive extension
¥oiB(H) ~ B(F) of ¢ (cf. 12.20). Pass now from Y to ¥ = ¥ P, so

\PF:B(H) + B(K)

and QF is again campletely positive. Order the F by inclusion to get a net {-‘I;F}

in CP B(H),B(K)):

HY¥pl | = @I (cf. 12.15)

eyl

N

[ ||

JENC]

IA

e |

[lel]  (cf. 12.15).
Using 12.21, choose a subnet of @F} that converges to some element
¥ e CPI lq’l l (B(H),3(K)) —— then the claim is that

¥|S = o.
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To see this, fix A € 8§, take u,v € K, let Fu = span {u,v}, and consider any

'V
FoF :
u,v
<v,@)u> = <V,PF<I>(A)u>
= <V,<I>F(A)u>
= <v,‘PF(A)u>
= <Vo‘PF(A)PFu>

= <V,:P-F (Ayu>.

Let T < B(H) be an operator system -- then I is said to be injective if given
operator systems T < T' < B(K), every completely positive &:T + I has a completely

positive extension &':T' » T.

12.23 EXAMPLE B(H) is injective. For, according to 12.22, a completely
positive ¢:T » B(H) admits a campletely positive extension ¥:B(K) - B(H), thus one
can take ¢' = ¥|T'.

12.24 REMARK Every unital C*-algebra A can be regarded as an operator system

(cf. 12.1), so it makes sense to ask whether A is injective or not.

12.25 IFMMA T is injective iff 3 a completely positive projection
T:B(H) » I of B(H) onto T.

PROOF Suppose first that T is injective. In the above, take K = H and let
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T=1

Tl

B(H) .

Then the identity map I » I has a conmpletely positive extension [[:B(H) - I which
is obviously idempotent. Turning to the converse, assume that I has the stated
property, consider operator systems T ¢ T' < B(K), and let &:T > I be campletely
positive. Postcompose ¢ with the inclusion 1:7 +~ B(H) to get a completely positive
map 1 © &:T -+ B(H) —=— then 12.22 provides us with a completely positive extension
¥:B(K) » B(H) and &' =T o (¥|TY):T' ~ I is a completely positive extension of
:v BeT,

o' (B) = (¥(B)) = N{1 o &(B)) = 2(B).

[Note: Schematically,

TcTY e B(K)

o]
LA

I<I{ B(H) .]

Take T injective and Il per 12.25.

N.B. I is unital (= ||n|| = ||T(@) || =1 (cf. 12.15).

12.26 LEMMA VY A,B € B(H),
I((A)B) = M(N(A)I(B)) = M(AL(B)).

PROOF By linearity, it can be assumed that A and B are selfadjoint — then
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0 n@A) 0 n@) —

T = andHZ(T) =

@) B _ m@a  ne _

are selfadjoint elements of M, (B(H)), hence

L,m? s M) (ef. 11.24).

Therefore
_ , _
TT(A) DA IE)
_nenm n@? + nee?
_ 2
(T (A) ) T (T (A) B)
<
_ nEI@)) nm@? + 8% _
=>
() 2) T(I(A) T (B))
2 2
. IAEIEA) nmm? + 1@ ?)
T nm@? (T (A) B)
<
_ TI(BNI(A)) n(m@? + 8% _
=>
- 0 I(IA)B) - TME@I®B) —

_ IEI@) - MIE)na) —

v
(o]
-



But

Thus we have

where

Fix

with the property that

X*

20.

(I(M@A)B) - M(H(A)TI(B))*

I

H((I(A)B)*) - TM((T(A)II(B))*)

I(B*I(A*)) - II(II(B*)T(A*))

H(BI(A)) - N(O(BIT(A)).

X = I(I(A)B) - M(I(ATI(B)).

411 912
€ MZ(B(H))SA
*
_ %12%n
- T a,, a —2
11 %12

] 2%
all=a12—0=>x=0

I(IR)B) = TMAITIB)) .
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Finally
(AN (B) ) * = II(II(B*)A¥)
= N(II(B)A)
= (B IA))
=>
n(an(s)) = M(m(B)I(a))*

mHn@)um)).

12.27 THEOREM Suppose that I < B(H) is an injective operator system — then
the assignment

IxT~>1

(A,B) >~ A o B = [[(AB)
I

defines a multiplication on I. Furthermore, I together with this multiplication
and its given *-operation and norm is a C*-algebra with multiplicative identity I.

PROOF The multiplication is associative (cf. 12.26):

Ao (B () = IQAN(EBC)) = IIA)I(BC)) = MI(H(A)BC) = N(ABC)
i I

(A o B) o C = [(I(AB)C) = N(I(AB)T(C))= M(ABIL(C)) = II(ABC).
- I I

H
)
-]
]

I(Ia) = I

I
>

b
o
=
1

= H(AT) = H(A) = A

Il
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and vV A,B €1,

(A o B)* = TI(AB)* = [I(B*A*) = B* o A%,
I i

Therefore 1 is a unital *-algebra. But the continuity of II implies that T is

norm camplete. And Vv A,B € S,

i

]a o B]|

I

|[m(a8) ||

IA

Lol [1as[] < [{a8]| < [|a[] |[B]].

Therefore ] is a complex Banach algebra. It remains to verify the C*-condition,

viz.
2
||a* o a]| = |]a]|%
I
On the one hard,
||a* o A|} = [[m(a*n) ||
I
< ||m|] ||a*a]]
2
= [|a*al| = [|a]]%,
while on the other,
TT(A*A) = TI(A)*T(A) (cf. 11.248)
= A*A
=>
||a* o A|| = |[H(A*A) ||
I
% _ 2
> |[a*al] = ||a]]|".

Let AH stand for T supplied with the C*-algebra structure set out in 12.27 —-



then V n, the arrow
T M (B(H) ~ M (B(H))

determines a C*-algebra structure on the range AT[ .
n

12.28 IEMMA There is a canonical x-iscmorphism

Mn(AH) = AHn.

PROOF In fact, V A,B € Mn(Al'[) , their product is the matrix

i

[EA., oB .l =1L TQA. B .)]
. lkHBkj . 1kPxj

= Hn([]?; AikBkj])

i

n_(RB).

[Note: A *-isamorphism of C*-algebras is necessarily isometric, thus one can

n
identify Mn(AH) and AH . Accordingly, Mn(AI{) has the relative B( & H) norm and
n

n
M (D) NB(®H, =M (A),.]

N.B. In general, AH is not a C*-subalgebra of B(H).
[Note: It is easy to prove, however, that AH is monotonically complete in

the sense that every bounded increasing net A; € (AH) SA has a least upper bound.]

12.29 REMARK The multiplication in I is independent of the choice of Il in
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the following sense. Suppose that
Hl:B(H) > 1

HZ:B(H) > T

are completely positive projections of B(H) onto I -~ then the diagram

T 4-——-+A

i

[
I —— A

I

has a unital filler G):AH > AF which is a *—isomorphism.
1 2

Iet A,A' € T and let B € B(H) — then (cf. 12.26)
M(AI(B)) = I(II(A)B) = II(AB)

N(I(B)A') = TI(BII(A")) = I(BA").

12.30 LEMMA Suppose that I is a subalgebra of B(H) — then
II(ABA') = AN(B)A'.
PROOF Since T is closed under multiplication,

AlI(B)A' € 1

N(An(B)A') = AN(B)A'.
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But

N(AI(B)A') = TI(ATI(IT(B)A"))
= [[(AlI(BA'))
= TI(ABRA').

[Note: Therefore II:B(H) » T is an I-bimodule map. In particular, I might

be a unital C*-subalgebra of B(H) in which case I is called a completely positive

conditional expectation.]

Let A be a unital *-subalgebra of B(H) —— then A is said to be generated by

projections if the linear span of the projections in A is norm dense in A. E.q.:

W*-algebras have this property.

12.31 LEMMA Suppose that A is generated by projections. Assume: 3 a unital

idempotent ¢:B(H) -+ B(H) of norm 1 whose range is A — then vV £,n € A & V A € B(H),

®(EAn) = £ (A)n.

PROOF To begin with, ¢ is positive (cf. 11.13), thus V A € B(H), ¢(A)* = d(A¥)
(cf. 11.4). This said, it suffices to make the verification when £,n are projections
in A and then one has only to show that ¢(£A) = £0(d).

Indeed,

2(An)* = &((An)*)

I

® (n*A¥)

n* (A¥)

= N*¢(A)*

®(An) = (n*d(A)*)* = d(A)n.
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Iet §' =1 -¢ - then vV A,A' € B(H),

So, V t €R,

OI

llea + £'ar ||

= || (6A + E'A")*(£A + £'A") ||

= |lavza + ateiar||

IA

[|a*eal| + [|a*g'a]|

|Iaxg*eal] + [|atxgr*g'a’||

i

|1 Em*eal| + [[(g'a")*e'a" ||

I

[leal 1% + []ear |12

+

@+ 2] g e | |2

= ||e'o(zn) + tero(en) | |2

[1E'0(ER) + to(2'o(zA)) | |2

||£'0(Ea + tE'o(EA)) | |2

N

||ea + tero(en) ||

leal|? + | |terocea) ||

IA

I

[[eal |2 + €3]]z oem |2

2t + 1) ||g'oea) | |2 = ||l |2

lerecem) |12 = o



27.

Il
[en]

£'o(gn)

1]

o(gn) = £2(&n).

Replacing £ by &' and repeating the argument leads to
Eo((T - &)A) =0
or still,

Ed(A) = £2(&R).
Therefore

o(en) = go(a),

as desired.

[Note: Consequently, & is completely positive (cf. 11.14), hence A is

injective (cf. 12.25).]

12.32 EXAMPLE Take A = CI and let ¢ be as in 12.31 — then V A € B(H),
?(A) = w(@A)I (w(Ad) € C)

and w:B(H) ~ C is a state on B(H) (I = ¢(I) = w(I)I => w(I) = 1). Conversely,

if w:B(H) ~ C is a state on B(H) and if we let
@A) = w@A)I,

then ¢ is unital (w(I) = 1), idempotent (®(2(a)) = ?(WA)I)= w(A)(I) = w(A)I = &(A)),

and ||e|[ = [|o}| = 1.
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APPENDIX

The following result can sometimes be used to reduce a nonunital situation

to a unital situation.

IEMMA Iet S c B(H) be an operator system, K a complex Hilbert space. Suppose
that ¢:S » B(K) is completely positive —-— then 3 a unital campletely positive

¥:S - B(K) such that
2a) = oMY @em?@cs).

PROOF Let T = ¢(I) € B(K) + and let PT be its support projection -- then PT

is the minimal P € L(K) such that TP = T and the sequence
™2+ 1" Y2 e B,

is increasing and converges to PT in the strong operator topology. Fix x € S(H)
and define ¥":S » B(K) by

1/2

V@) = @+ /07 Y@ @ mT Y wme @ -2y,

Then ¥" is campletely positive and we claim that V A € S, the strong limit of

{\l’n(A)} exists. To establish this, it can be assumed that 0 < A < I, hence

0<d@A) <9(I) =T, so 3 CAE B(K):

1/2
CAT

@(A)l/Z -

1/2 .,
T “C¥.
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Therefore
@(A)l/z(T + I/n) vz CATl/z(T + I/n) 1/2 > CpPr,
(sor) .
(T + I/n) l/2<I>(A)l/2 = (T + I/n) - 172 l/zc* > B C*,
But

Ho@mY 2 + /m)~ Y2
< eyl

- 1/2
I+ 1/m” Y%em)Y?))
Since multiplication is jointly continuous on bounded sets in the strong operator
topology, it follows that

1/2 %
> PTCACAPT

(¢ + /m)” Y@ (T + /m)”
strongly, from which the claim. Now define V¥:S - B(K) by
¥(a) = lim v (a).
Then ¥ is completely positive. Moreover, ¥ is unital:

Y(I) = lim ¥7(1)

Lim((T + 1/n)" Y25(1) (7 + 1/m) /2

+ < -
X,x> (I PT))

- 1/2,1/2,1/2 1/2

lim((T + I/n) (T + I/n)"

+ (I -P)))

T

PTPT+I—PT



And lastly,

30.

1/2 1/2

(T + I/n) 7 “¥* (@) (T + I/n)

= ¢(A) + <x,Ax> (T + I/n) (I - PT)

1/2

/2y ayrl2 = o(a) + <x,Ax> T(T - P,

o(a) + <x,Ax> (T - TPT)

I

o(a).



§13. RADON-NIKODYM THEORY

Let T be a *-semigroup.

Notation: Given functions ,¢':T » B(H) whose associated kernels KQ,K@

are positive definite, write ¢ > ¢"' if K s ~ Kpr is positive definite.

Suppose that

¢, sT > B(H

1 1)

b T > B(HZ)

2

are representable, i.e.,
<I>l = ARlﬂl (Rl € B(Hl,Kl))

<I>2 = ARzTr2 (R2 € B(HZ,K2)) .

where

lel" > B(Kl)

'rr2:F > B(Kz)

are minimal *-representations of I' on

Kl
respectively.
[Note: Kq) ,Kq) are necessarily positive definite (cf. 9.9) and both <I>l,<I>
1 72

satisfy the boundedness condition (cf. 9.10).]

2



13.1 LEBMA Let X € B(H,H,). Assume: 3 X € B(K,.K,) such that

~ ~

XR; = RX and X (§) = m,(E)X (£ € T).
Then
>112
[1x[]%e; > x*o.X.
PROOF Given

gl,...,gn el
X

1771 %n € Hl’

we have

n
L <, , X%, (EFE.)Xx.>
i,9=1 i 27173

- *R% *
= L <xi,X R21T2(€igj)R2ij>

= I SR, (E5) T, (B RXx.>
= 'z <Tr2(gi)R2Yo<i,ﬂ2(£j)R2Xxj>

2
= || £ my(E R%x ||

I
™

. 2
Ty () KRy |



oo 2
Hkil Xy (G IR%, |

~ N Hz
Hx(Z m ()R, %)
oy LK TR

IA

1R17 113 m 6mps, |12

n

2
|1x]] i'j_il <%0 (EFE)%,>.

Therefore

1%/ 1%, = x*ox.

13.2 RAPPEL Let H be a camplex Hilbert space. Suppose that A c B(H) is

a *-subalgebra and has a trivial null space (§x =0V § € A => x = 0) — then the

closure A of A in the strong operator topology contains the identity operator I.

13.3 IEMMA Iet X € B(Hl’Hz)’ Assume:

r2<1>l > X*<I>2X (3Ir>0).

Then there is a unique X € B(Kl’Kz) such that

~

XR, = R,X and fml(g) = 1T2(£)>~( (EeT).

PROOF Proceeding as in 13.1,

o 2
Hkil 2 (B Ry ||



n
L <X, ,X*,(E¥E.)Xx.>
i,3=1 i 271737

]

2 n
r T <x.,0, (E¥.)x.>
i,5=1 b I R Ry Ml |

A

It

2|3 IR x| |2
oy L1k 1¥%

so there is a unique X € B(Kl'Kz) such that vV £ € T,

Xm (E)R) = T, (E)RX.
Andthen‘v’E,nET&VXEHl,
Xy ()7 (WRx = Xmy (En)Ryx
= ﬂz(En)RZXX
= T, (E) T, () R,Xx
=, (E)Xm ()R %
since m (MR H, is total in K, it follows that X intertwines m and T,. It

remains to prove that ;CRl = RZX' For this purpose, consider the *-subalgebra

W e B(Kl @ K2) of all diagonal matrices



where

W, = i o (g)  (1=1,2).

Because of minimality, W has a trivial nullspace. Accordingly, thanks to 13.2,

its closure W in the strong operator topology contains the identity operator

ButhEHl,

§2

1’x = Xﬁ Gy (G Ry x

]Z{ ckal(Ek) Rlx

2 oyny (B Ryx
k

(z ckﬂz(ik) )R2XX
k

= W2R2XX.

Now let W approach I to conclude that XRl = R2X.

N.B. V x € Hl'

Y

Iy ryxx| 12 < 2| Iy (B)R x| |2

> 2
| % (E)Ryx] |

it

2
| |7, ()R x| |



A
a]
N
=)
I._I
N
7
X
s

| 1x]|

A
N

13.4 THEOREM Suppose that X € B(Hl’Hz) intertwines ¢, and %.:

1 2
X@l(i) = @2(E)X (£ e .

Then there is a unique X € B(Kl,Kz) such that

~

XR, = R,X and fml(g) = wz(g)i (EeT).

Moreover,

X1 < %]

PROOF First, for all

gl,...,gn el

KyreeorX € Hyy

n
N <X.,X*¢. (E¥.)Xx.>
i,3=1 i 2217377
n
= T <x,,X*X0, (E¥E.)x.>.
i,9=1 i 1217373

Next, v £ €T,

X0 (E%) = 0, (%)X

(X0) (E%))* = (0, (E)X)*



cpl((t;*) Xk = x*q)z(g*)*

9, (B)X* = X*¢2(£) (ef. 9.7)

=>
X*X<I>1(€) = X*<I>2(E)X
= <I>l(€)x*x.
n
Consequently, in & Hl’ the operator
A = diag (X*X)
commutes with
- — *
= [@l(EiEj)] .
But
n

A,EeB(eH)+
n
AE € B( ® H)+.
So, vxXeE@®H
0 < <x,08x>

= 02251 2

1/ 2x>

= <=V, s

A

1a]] <=2, 5% %



IA

[2*x] | <, 5>

AN

1%]12 <x, 20
Therefore
n

T <x, , X*0,(E*E.)Xx.>
ij=1 1 2217377

2 n
< X <xX.,® *E, .
< || I i,jzl X, l(ElE])xJ>

The existence (and uniqueness) of X is thus guaranteed by 13.3 (and r = Hx]

= |x|] < 11xI].

13.5 REMARK This result implies that there is a "lifting map" X - i from

the set of operators that intertwine ¢, and ¢, to the set of operators that

1 2

intertwine ﬂl and Toe

# If X is a contraction, then so is i.

e If X is unitary, then so is i.
[Note: Suppose that X:Hl > H2 intertwines @l and @2 -~ then X*:H2 > Hl

intertwines ¢, and ¢, and its lift is i*:Kz > Ky.]

Let A be a U*-algebra — then 10.7 is applicable.

[Note: If ¢:A > B(H) is completely positive (or, equivalently, K® is positive

definite (cf. 11.10)), then ¢ = Apm is "the canonical representation" of ¢.]




Denote by CP(A,B(H)) the set of completely positive maps A -+ B(H) and for

3,0' € CP(A,B(H)), write ¢ > o' if ¢ — &' € CP(A,B(H)).

13.6 LEMMA Suprose that ¢ > &' — then there is a unique contraction
T € B(K,K') such that
TR = R' and Tn(E) = 7" (E)T (E e A.

PROOF In 13.3, take
®l=<I> (=><I>=ARTr, R:H » K)

9, = 8" (=> @' = A,m', R':H > K'),

r=l,andX=Itoproduce)~<:K+K' of norm < 1 such that
XR = R' and XT(E) = 1Y ()X (£ € A).

Now change the lettering and write T in place of X.

[Note: Using the notation of §8, put A(£) = nw(g)R — then

Kp(Ern) = o(g*n)

R*t(£*n)R

R*n(g)*m(n)R

A(E)*Aa(n) (cf. 8.11).

According to 8.13, the assumption that ¢ > ¢' (which is eqguivalent to the

assumption that K. > K<I>') entails the existence of a unique contraction T:K + K'

0
such that

i

A' (&) = TA(E)

or still,

m' (§)R' = Tm(E)R.



10.

This "T" is the same as the "T" figuring in 13.6. 1In fact, R' = TR (take £ = e).

As for the relation Tn = ©'T, it suffices to verify it on w(A)RH. But
T OTn(E)T(N)RX = Tr(En)Rx = 7' (En)R'x

_ T ETr(nRe = 7' ()" (n)R'x = 7' (En)R'x.]

13.7 IEMMA We have

T*T € (A" (cf. 7.10).

Put

Dq)(@‘) = T*T,

Then D<1>(®l) is called the Radon-Nikodym derivative of ¢' w.r.t. 0.

N.B. V & € A,

o' (E) = R'*7' (E)R"

R*T*7' (§£) TR

Il

R*7(£)T*TR

R*T*Tm(E)R  (cf. 13.7)

R*Dg (") (E)R

R, (01 ?n (&), (2" /2R,
[Note:

Tw(g*) = m' (E%)T
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W(E*)*T* = T*vn" (g*)*
or still,

T(E)T* = T*7' () .]

13.8 EXAMPLE Suppose that 9:A »~ C is a positive linear functional -- then

% is completely positive (cf. 11.23) and the GNS construction enables one to write

(&) = <a,n()a> (£ € A) (cf. 8.26 and 10.12).

o' < & => 0'(§) = <a,D (e )m(E)a> (E € A).

13.9 EXAMPLE Iet X be a compact Hausdorff space. Suppose that u is a Radon

measure on X —— then the assignment

f > fx fdu (£ € C(X))
defines a positive linear functional ©u on C(X). As such, <I>u is completely positive
(cf. 11.23). To explicate 10.7 in this situation, let Tru be the canonical repre-
sentation of C(X) on Kll = L2 (X,u), thus

ﬂu(f) = Mg,

where M, is the operator of multiplication by £. Here H11 = C and RU: Hu > Ku

sends a complex number z to the constant function on X with value z. It is then
immediate that

® (f) = R*1 (£)R

u UM u

and 'rru (CcX) )RuHu is total in Kll" Assume now that v is another Radon measure on X
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with
Sy fAu > Jy fdv (£ € C(X))
or still, & = ¢ -— then
u v
D<I> () = Du(\)) € wu(C(X)) (cf. 13.7).

D, (v) € {M:4 € L7 (X, },

M 5 the multiplication operator per ¢. Therefore, in suggestive notation,
D, (v) = dv/du € L7(X,),

which is in accordance with the facts since the Radon-Nikodym derivative is only

determined [u a.e.] (note that ||Du(\)) ||, = 1). Indeed,

@\)(f) fX fav

fX f(dv/dp)du.

Given ¢ € CP(A,B(H)), put
[0,8]1 = {0 € CP(A,B(H)):9 = &'},

Then [0,¢] is a convex set.

[Note: Vv &',¥' € [0,9¢] and V t € [0,1],

to' + (1 - t)y' € [0,9]

Dg(te' + (1 - £)¥') = Dy (2") + (1 - £)Dy(¥').]
Iet A € m(A)' and define a linear map <I>A:A -+ B(H) by

2,(E) = RAT(EIR (£ € A).
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13.10 LEMMA If ¢, =0, then A = 0.
PROOF Bearing in mind that w(A)RH is total in K, V x,y € H, we have
<m (&) Rx,Ar (n) Ry>
= <x,R*m (&) *Am (n) Ry>
= <x,R*m (£¥) Am (n) Ry>
= <x,R*Am(£*n)Ry>
= <x,0, (E*n)y>

= 0.

13.11 1IEMMA If A € w(A)' n E(K), then <I>A € CP(A,B(H)) ard, in fact,

@AE [0,2] (cf. 8.12).

[Note: Restricting A to w(A)' n E(K) rather than just E(K) does not conflict
with 8.12. The point is this: Every completely positive ¢ gives rise to a positive
definite kernel KQ:A x A > B(H) but there may be positive definite kernels |
K:A x A » B(H{) that do not come from a completely positive ¢. In particular: If

E € E(K) is arbitrary, then

R*7 (£) *Em(n) R

KE(E,n)

is a positive definite kernel and K

v

KE but in general, KE z Kq), for some

o' € [0,0].]

N.B. There are two other elementary points.

OIfAl,AZETr(A)'andifOsAlsAzsI,thenOsch
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'IfAl,AZETT(A)'andifOSQD <9 < 9, thenOsAlsA

13.12 THEOREM The arrow
m(A)' n E(K) » [0,9]

that serds A to <I>A is bijective.

PROOF To establish surjectivity, take a o' € [0,¢] and let A = D®(<I>') —— then,

as observed above, V £ € A,

®' () = R*D (¢")T(E)R,

13.13 REMARK Turned around, the arrow
[0,9]1 » w(A)' n E(K)

that sends ¢' to D(D(@') is bijective.

13.14 EXAMPLE Take A = B(H) (dim H = n) but, in a change of notation, let
K play the role of "H" in the foregoing theory and take it finite dimensional
(dim K = m). Define
o € CP(B(H),B(K))

by

I

_ tr(Aa)
(DT(A) ~ T n

K (A € B(H)).
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Given x € H,y € K, let

Px,y:K - H
be the operator
Px,y = <y,— >X (cf. 1.10).

Fix an orthonormal basis

€1reeer for H

_ fl,...,fm for K.
Then
n m
® (A) = ¥ I V%AV, (A € B(H)),
T i=1 k=1 ik ik
where
1
V- = e P -
kg oty
In fact,
n m
z z V* AV
i=1 k=1 i

1 bom

=— 3 I V¥ AL ,yve,
/o i=l k=l KK
1 b m
/A i=l k=1 K e
1 B m

=5 i bX <fk,y><e Ae. >fk

1 k=1
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1 B m
=3 izl <ei,Aei> k=z]_ <fk,y>fk
- trr(lA) IKY
=0 (A).
Iet RT be the map
K>H& K& H
that sends y € K to
n m
'=-Z-l kil Viky R fk 2 e,

and let

mB(H) >~ B(H® K& H)
be the x-representation of B(H) on H® K& H that sends A ¢ B(H) to

AQIK@H.

Then the definitions imply that <I>T =bpm is the canonical representation of <I>T.
T

Suppose now that ¢ € CP(B(H),B(K)). Claim: 3 C®>0 such that

To see this, note first that

- .Z_ Pe.’e. &Pe_’e‘ € B(H& H)
i,j=1 "1'7] 1’73

5

is the orthogonal projection of H & H{ onto the subspace determined by

e;Re. €5 (Hat.

e

51 [

1
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Since ¢ is completely positive, the operator

n

1
(0 & 1,) (=% T P 2P )
H 'n i,9=1 ej_,ej ei,ej

=
I

n

Loo(p ) &P
i3m0 % S

1

€ B(K & H)

is positive. In addition,

<fk®e,M (fzﬁe)>

n
1
=C-<f @e, I 0P, )P (£

R e.)>
o,B=1 AL o€ J

£

n

Y <f Re.,oP JE, @ P
o, B=1 k i e,reg £

S

e.>
eq,eB J

n
T <f ® S <I>(P e )fi’, [+] <e8,ej>ea>

B

ocB—lk €’ ®g

n

T <f, @ e.,d(P V£, & e >
-1 k i ea’ej L o

S|

n
== 3 ,@(P YE ><e. ,e >
a=1 k oc’ej L1 a

Sl

1
= 2 <E,,0(, )€

i'
So, VA E€E B(H) and Yy € K,

R¥(A 3] M@)RTY

n m
b v <e.,Ae.><f Qe M (f Qe)>P
1,551 k01 + ) K £

Il
I

£Y

k'L
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n m
1
= = b T <e.,he.><f ,®(P YE,5<£,,v>f, .
n? 1,951 k,e=1  + 3 KU epey bk
Write
n
A= % <ei,Ae.>Pe e.’
i,3=1 1 €108y
Then
m
y= I <f,,vf
=1 ETH
=>
m
oAy = X <f£,y><1>(A)f£
£=1
m m
= ¥ <f,,y> I <f ,0@)f,>f
=1 Yk K £k
n m
= X L <e,,he.><f ,0(P YE ><£,,v>E, .
i,91 k,e=1 3 k ei,ej L7 k
Therefore
_1
R?(A [+] M(D)R_[y = —n—2— oAy
or still,
M 1
R*(A & )Ry = —5—— 0(A)y.
T~ 2
i : n?| | |
Since
M<I>
T
IHQ -ﬂ-l\—,%-]—re T{(BH)Y' n E(K & H),
it follows that
C.¢ =29
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if
2
c, = 0%l ]|
[Note: Set
' = é—~®.
0]
Then
M

13.15 RAPPEL A nontrivial *-representation m:A -+ B(K) is topologically

irreducible iff w(A)' n L(K) = {0,I} or still, iff m(A)' = CI.

Iet & € CP(A,B(H)) be nonzero —- then ¢ is said to be pure if [0,9¢] =

{td:0 < t < 1}.

13.16 IEMMA The pure elements of CP(A,B(H)) are those ¢ for which 7 is
topologically irreducible.

PROOF Suppose that ¢ is pure -- then

m(A)' n E(K) 1}

IA
ﬁ
IA

{D¢(t®):0

{tI:0 < t < 1}
=>

m(A)' n LK)

{0,1}.
Therefore © is topologically irreducible. Conversely,

m(A)' =CI



20.

m(A)' N E(K)

{tI:0

I
(—r
IA

1}

[0,0] = {t3:0 1}.

IA
(-'-
IA

Il

13.17 REMARK Let V:l! > H be an isometry ( => V*V = I) —— then
® pure => V*V pure.
In fact, the canonical decamposition of V*¢V is

V*R*TRV = (RV) *nRV.
[Note: Since T is topologically irreducible, it is automatic that w(A)RVV

is total in K.]

13.18 EXAMPLE Let X be a compact Hausdorff space —- then the pure elements

of CP(C(X),B(H)) are the functions ¢:C(X) -~ H of the form

o(f) = £(x)A xeXx,

where A € B(H)+ has rank 1.

13.19 REMARK Consider the setup of 13.14 — then cI>T is not pure unless

H =K =C. Indeed, the cammutant of

m(B(H) = B(H) & CI

KeH

B(H® K & H)

B(H) & B(K & H)
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is

CI, 2 B(K @ H).

H

13.20 LEMMA Fix & =2 0 in CP(A,B(H)) -- then the extreme points of the

convex set [0,9] are the cDP @enA)' n LK) (cf. 3.1).

We shall now return to where we started. So let T be a *-semigroup and

suppose that ¢:T - B(H) is a function which is representable, i.e., ¢ = ARTT
(R € B(H,K) and w:T » B(K) a minimal *-representation of I on K) — then there

is an arrow X - X from (M "' to ©(l) "' subject to }~<R = RX (cf. 13.4).

[Note: By construction,

i(; T(ERe;) = I MEIRKx;  (E; € Tyx; € )]
1 1

N.B. }~{ € {RR*}'. In fact,

(X*) = (X)* (cf. 13.5).

Therefore

XRR* = RXR*

R(RX*) *

R(X*R) *
= RR*X.

Thus the range of the arrow X - X is actually w(I')' n {RR*}'. As such, it

~

is a *~homomorphism. Furthermore, X = 0 iff RX = 0.

It
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13.21 IEMMA The arrow X - X is surjective.
PROOF Write R = (RR*)]'/ZW, W:H > K a partial isometry and
Wi (RR%) /2 = (rré) Y Amr = (rre) /2,

Given T € m(T)' n {RR*}"', put

3
!

W*TW € B(H).

RX = (RR*)V/Aux
= (RR*)]'/ZWW*'I‘W
= &0 Y m

T (RR*) V5

= TR.

And V £ €T,

X0 (E) = XR*7(E)R

WFTWR*T (£)R

WrTW (RR) L% (£) R
= wT (RR%) /20 (£) R
= w* (RR%) /21 (£) R

R*1(E)TR

R¥T (E) T (RR*) 1/ 2

!

R*T (E) (RR*) Y/ 21w

R*T (E) (RR*) Y/ Amrvrw

i
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R*7 () RX

(&) X.

Therefore }~( = T,

13.22 IEMMA Suppose that Ker R = {0} -- then the arrow X - X is a
*—1isomorphisms:

o(T)' = w(I)' n {RR*}'.

PROOF In view of 13.21, the claim is that X = 0 => X = 0. To get a contra-

diction, say X 2 0. Choose x € H:Xx = 0. But

~

X=0=>XR=0=>RX=0=>Rx=0=> X< = 0... .

13.23 REMARK If ®(e) = I, then R*R = I (cf. 9.14). Therefore Ker R = {0}

and 13.22 is applicable.

The assumption that R has a trivial nullspace has certain consequences. E.g.:
T topologically irreducible => w(I)' = CI => ¢ topologically irreducible.

[Note: Vv £ €T, 9(§)* = ¢(&*) (cf. 9.7). Therefore o(I') c B(H)SA ard the

statement that ¢ is topologically irreducible means that the only closed subspaces

of H which are invariant under (') are {0} and H.]

13.24 EXAMPIE Take I' = A, a U*-algebra. Let & € CP(A,B(H)) and assume that
$® is pure and unital -- then m is topologically irreducible (cf. 13.16), hence 9 is

topologically irreducible.
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Write CPU(A,B(H)) for the subset of CP(A,B(H)) consisting of the completely

positive unital maps ®:A -+ B(H) — then it is clear that CPU(A,B(H)) is convex.

13.25 EXAMPLE If ¢ € CP(A,B(H)) is pure and unital, then ¢ is an extreme

point of CPU(A,B(H)). Thus consider a convex decomposition ¢ = >\l<1>l + >\2<I>2

(0 < )‘1’>‘2 & >‘1 + >‘2 = 1), where CI>1,<1>2 € CPU(A,B(H)) — then

0 < )\l@l < }\l@l = tl<I>
=>
_ 0 < )\2<I>2 < ¢ B >\2<I>2 = t2<1>.
But
<I>l(I) =§(I) =1 )\l = tl @l =0
=> =>
<I>2(I) =9(1I) =1 >\2 = t2 <I>2 = 9,

Therefore ¢ is an extreme point of CPU(A,B(H)).

13.26 LEMMA Suppose that & € CPU(A,B(H)) is an extreme point of CPU(A,B(H)) —

then the map
m(A) ' > B(H)
A —> R*AR
is injective.
PROOF Assume that R*AR = 0 and without loss of generality, take A selfadjoint.

Fix s,t € &0:

]
s}
A

SA + tI <

NS,
-
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and put
X = gA + tI.
Then R*R = I, so
%— I<+tT < % I,
thus 0 < £ < 1. Now form
- *
<I>X R*X1mR
- * -
~ ;g = R¥(I-X)TR.
Obviously,
¢ = @X + (DI—X
or still,
o = t(t To,) + (1-t) ((1-t) To_ )
X I-X'-
But
<I>X(e) = tI
_ @I_X(e) = (1-t)I.
Therefore
I T |
=t <I>X = (1-t) q)I—X'
Consequently,

R*XTR = tR*TR = R* (£tI) TR
=> X = tI (cE. 13.10)

=>tI=8A+tl=>sA=0=>A=0.

13.27 REMARK In 13.26, take H finite dimensional -- then it is a corollary
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that 7(A)' is finite dimensional.

As it happens, the converse to 13.26 holds as well.

13.28 IEMMA If ¢ € CPU(A,B(H)) and if the map

m(A)' > B(H)

A —> R*AR

is injective, then ¢ is an extreme point of CPU(A,B(H)).

PROOF Consider a convex decomposition & = A0, + A <I>2 (0 < A

19 v A 172 &

Ay + A, =1) — then >‘l®l e [0,8], so 3 A € ﬂ(A)':chDl = R*AnR (cf. 13.12), hence

1 2

A R*AR

|

lI = R* ()\lI)R

>
H
I

'S

Therefore

A, = R*(}\lI)ﬂR = A

1%1 ?

1

=> 0, =0 =09, =0.

13.29 RAPPEL Iet T:A > B(H) be a *—representation -- then m(A)H is total
iff the only x € H with the property that m(§)x =0V § € A is x = 0.
[Note: Therefore

m unital => w(A)H total.]
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13.30 EXAMPIE Suppose that m:A -+ B(H) is a unital *-representation —- then
T € CPU(A,B(H)) (cf. 11.6) and in view of 13.29, its canonical decamposition is

"r=q" (R=I), thus 7 is an extreme point of CPU(A,B(H)) (cf. 13.28).

[Note: This shows that in general an extreme point of CPU(A,B(H)) need not

be pure (m is pure iff 7 is topologically irreducible (cf. 13.16)).]



§14. MATRIX STATES

Given operator systems
S < B(H)
T < B(K),

denote by CP(S,T) the set of completely positive maps S -+ T and by CPU(S,T)

the set of completely positive unital maps S - T.

14.1 EXAMPIE Let @:Mn(g) - Mm(g) be a linear map —— then ¢ is completely

positive iff it has the form

nm
o(a) = .Z ViAVi (A e Mn(g)),
i=1
nm
where the V, € M (C), so @ is unital iff I V. = I.
i n,m = o7 i

[Note: CPU(M (C),M (C)) is a convex set. What are its extreme points?

Answer: Those ¢ which admit an expansion

£
= *
() iil VIAV, (A€M (Q),
L
subject to £ < nm, I Vivi = I, and {V;’.:Vj:l < i,J < £} linearly independent
i=1

(= 2% <m = £ <m).]

If 9,0' € CP(S,T), write & > @' provided & - &' € CP(S,T).



14.2 IEMA If ¢,6' € CPU(S,T), then ¢ > @' iff ¢ = ',

PROOF Assume that ¢ - ¢' is completely positive -~ then

|| = o"|] = |]o(@) - &' (T)]] (cf. 12.15)

= 0.

Let & € CP(S,T) be nonzero —— then ¢ is said to be pure if ¢ > o' => @'

td(0 < t < 1).

14.3 LEMMA Suppose that & € CPU(S,B(K)) is pure —- then ¢(S)' = CI.

PROOF The range of ¢ is a *—closed subspace of B(K), hence its cammutant

®(S)' is a *x-subalgebra of B(K). But
(S)' =0(S)''T = ((S)y")'',

so 9(S)' is a W*-algebra, thus the linear span of the projections in ®(S)' is

norm dense in &(S)'. This said, fix a nonzero P € ¢&(S)' — then

1
Il

PP + (L - P)O(TI - P)

¢ = PPP => PP = t9 (0 < t<1)

=> P

]
rr
—

I
\%
t
N
o

Therefore ¢(S)' = CI.
[Note: It follows that

3(S) ¢ B(K)gy

is topologically irreducible (cf. 13.24).]



Let S < B(H) be an operator system —- then a state on S is a positive linear
functional w:S > C such that w(I) = 1 (cf. 12.4 and 12.5), thus CPU(S,C) is the
set of states on S (recall that positive linear functionals are campletely
positive (cf. 12.13)).

N.B. View CPU(S,C) as a subset of S* (the dual of S) and equip S* with
the weak* topology — then CPU(S,C) is bounded and weak* closed, hence is weak*
campact (Alaoglu).

[Note: CPU(S,C) is not empty (cf. 14.5 infra) and convex. So, thanks to
the Krein-Milman theorem, CPU(S,C) is the weak* closed convex hull of its extreme
points.]

14.4 RAPPEL If X is a linear subspace of a normed linear space X and if

0
Pgi¥y > € is a bounded linear functional, then there is a bounded linear functional
p:X + C such that ||p|| = [|eyl] and o[X, = oy.

14.5 ILEMMA IfAESSAand if A € g(a) (the spectrum of A), then 3 a state
w € CPU(S,C) such that w(d) = A,

PROOF For all complex numbers a and b,

|xa + b| < |]aA + bI}].
Therefore the prescription

wo(aA +b)=Xa+b
defines a bounded linear functional w, on the linear subspace {aA + bI} of S with

HwOH = wy(I) = 1. Now apply 14.4 to get a bounded linear functional w on $ such



that |]u]] = ||up|| and

w(A)

It
>

(a)

I

Yo

w(I) = wg (1)

il
=

Then w is positive (cf. 12.5), thus o € CPU(S,C).

14.6 THEOREM Let A € S. Suppose that w(A) = 0 vV state w — then A = 0.
PROOF If A is selfadjoint, then o(d) = {0} (cf. 14.5). But either ||A|| or
- ||a]| e o@), so ||a]] = 0=>A=0. If A is not selfadjoint, write
A=ReA+ /-1 ImA (ReA,ImMAES).
Then vV w,

w(@) =0

0 = w(Re A) + V=1 w(Im A)

w(Re A) =0
((Sgy) < R)
_ w(ImAa) =0
=>
T ReA=0
=> A = 0.

ImA=20



14.7 LEMMA 1et w € CPU(S,C) —— then w is pure iff w is an extreme point

of CPU(S,C).

PROOF  That

"pure => extreme"
can be gleaned from 13.25 (matters go through with no change if A is replaced
by S8). As for the converse, viz.

"extreme => pure",

suppose that 0 < w' < w (w' € CP(S,C)), thus 0 < w'(I) = w(I) = 1 and

[lw']] = w'(T)  (cf. 12.4),

sow'(I) =0=>w'" =0, while w'(I) =1 =>w=0w' (cf. 14.2). On the other hand,

if 0 < w'(I) < 1, then we can write

w = Alwl + )\sz,
where
- >\1=w'(I), >\2=l—w'(I)
1 1
“’1=’rl‘”'r ‘”2"‘72 (W= w").

Since Wy sy € CPU(S,C) and since by assumption, w is an extreme point of CPU(S,C),
it follows that w; = wor still, w' = )\lw, as desired.

[Note: Therefore every state is a weak* limit of convex cambinations of

pure states.]

14.8 THEOREM Let A € S. Suppose that w(A) = 0 V pure state w -— then

A =0 (cf. 14.6).



14.9 THEOREM Every pure state w on S can be extended to a pure state w on
B(H) .

PROOF Iet Sw(B(H)) be the subset of S(B(H)) consisting of those states that
extend w —— then Sw(B(H)) is not empty (cf. 12.6). Moreover, Sw(B(H)) is a weak*

closed convex subset of S(B(H)), thus is weak* compact, so by the Krein-Milman
theorem is the weak* closed convex hull of its extreme points. Fix one such

extreme point w. Claim: ® is a pure state on B(H). Bearing in mind 14.7, consider a
convex decomposition w = Ajw; + A0, (0 < Aprd, & At Ay = 1), where

wy /0, € S(B(H)), and restrict this data to S:

w= | = Ay |8 + w8
=>

51[3 = (7)2|S = w

51,52 € Sw(B(H))

A matrix state on S is an element ¢ € CPU(S,Mn ).

[Note: According to 12.15,

Hell = [le@1] = }iz}] = 1.1

14.10 REMARK CPU(S,Mn(C)) is not empty. Proof: Take any state w:S + C



and consider

@w(A) = w(A)In Aaes).

14.11 IFEMMA Suppose that $:8 > C is a linear map —- then ¢ is a matrix

state iff <I>n is positive.

View CPU(S,M (C)) as a subset of B(S,Mn (C)) and equip B(S,M, (C)) with the
weak* topology (Mn((_l) = B(g“)) (cf. §12) — then CPU(S,Mn(g)) is weak* compact,

hence, being convex, is the weak* closed convex hull of its extreme points (Krein-
Milman) .

[Note: It can happen that CPU (S,Mn (C)) has no pure elements at all (recalling
13.16, take S = C(X) (X a compact Hausdorff space) and consider CPU(C(X) 'Mn (C)(n > 1)).
This is not a contradiction since an extreme point of CPU(S ’Mn (C)) need not be pure

(the proof in 14.7 that "extreme => pure" breaks down if n > 1).]

14.12 RAPPEL If ¢ € CP(S,M_(C)), then 3 a ¥ € CPU(S,M_(C)) such that

2@) = oMYZv@em? @mes).

[Note: For the details, see the Appendix to §12.]

14.13 THEOREM Suppose that $:S Mn(c_:) is a pure matrix state -- then ¢ can

be extended to a pure matrix state 0:B(H) - M (©).



PROOF Iet S(D(B(H)) be the set of completely positive maps B(H) - Mn (&)
that extend ¢ — then S@(B(H)) is not empty (cf. 12.22), convex, and its elements
are wnital. Fix an extreme point ¢ € S (B(H)) (such exist ...). Claim: o is
pure. To see this, we first argue as in 4.9 and deduce that ¢ is an extreme point

of CPU(B(H),M (C)). Owing now to 13.26, the map

T(B(H))' M (Q) (= B(E))

A — R*AR

is injective (here, o = R*R is the canonical decomposition of 3). To conclude

that ¢ is pure, one has only to establish that m is topologically irreducible (cf.

13.16), which is equivalent to showing that dim m(B(H))' = 1 or still, that
dim{R*AR:A € T(B(H))'} = 1.

So let P € m(B(H))"' be a projection —— then R*PR is a scalar multiple of the

identity. In fact, ¢, € [0,8] (cf. 13.11), where

o, = R*PTR.
Write (cf. 14.12)

3 = M7, @,m =1,
which,; upon restriction to S, gives:

- \1/2 = - \1/2
¢ = o, (T) (WP]S)QP(I)

=>

1/2

IA

3 @72 @, 195,02 = g0 (0

tPsl)



o,(I) = t,I
R*PR = 1.

14.14 REMARK This argument is completely general: Any pure & € CPU(S,B(K))

admits a pure extension ¢ € CPU(B(H),B(K)).

14.15 EXAMPIE ILet S ¢ Mn (C) be an operator system and suppose that

o € CPU(S,M (C)) is pure —— then m < n and 3 an isometry ’\7:§m > gn such that

®(A) = VAV (A € 9).
Thus choose E:Mn (©) > M (C) per 14.13: % = R*7R. But, being topologically
irreducible, T is unitarily equivalent to the identity representation:

T (B)

U0 (A EM Q).

Therefore

3(a) = R*U*AUR (A €M (Q).

AndV=U1-iisanisonetryfrom_C_2m->_C_:n (=>m<n).

Iet ¢ € CPU(Mn((_i) ,Mn(C)) —— then, in the notation of 14.1,

®(a) =z VAV, (A€M (Q),
i

where

I ViV, = I.
1



Write

and let

Then

Note too that

14.16 REMARK FIX

d

FIX

<
I

V' <

A € FIX

is an operator

10.

{A:0(a) = A}
{v,,vi}.

FIX;.

=> A¥* ¢ FIXq).

system. However, in general, FIX

an algebra. E.g.: Define ®:M, ) ~ M3 (C) by

is4

11

21

31

contains no nontrivial subalgebras.

315 213 43
dyy 33 = 0
a3y 833 0
T a 0 0 -
{ 0 b 0
0 0 a+b
B 2

a

: a,b € C}

0

is not
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[Note: One choice for the Vi is

1 0 0 0 0 0

v, = 0 0 0 |, V,= 0 1 0
_ 0 0 0 0 0 0
0 0 0 0 0 0o

vy = 0 0 0 PV, = 0 0 0
/2 o0 0 0 /72 o |.

Here V' = CI.]

14.17 IEMMA The following conditions are equivalent: (i) FIX v';

(ii) FIX, is a unital x-algebra; (iii) A € FIX, => A*A € FIX..

o] o) (0]
PROOF It is clear that (i) => (ii) and (ii) => (iii). So assume (iii) is

in force and let A ¢ FIX(D:

o
IN

2 [V, [A,Y;)*

= AA* + O(AA*) — O(A)A* - Ad(A%*)

AR* + PA* - AA* — AR¥

[A,Vi] =0 (v i).
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Analogously,

[A,VE] = 0 (v ).

Therefore A € V', which implies that F:LX@ is contained in V', hence is equal to V'.

14.18 EXAMPLE Iet S c Mn (C) be an irreducible operator system. Suppose that

€ CPU(Mn (&) ,Mn (C)) has the property that FIX, > S —- then it can be shown that

0

FIX, = M_(Q),

thus, as a corollary, the identity map on S is pure.

APPENDIX

The following result is a "pure analog" of the lemma in the Appendix to §12.

IFMMA Suppose that ¢ € CP(S,Mn((_Z)) is pure —- then 3 m < n, a pure element

v e CPU(S,Mm(_(_:)), and a linear map y:g_:n > C_:m such that

®(@) = y*¥(Aa)y (Ae€S).
PROOF Put T = 0(I). Assuming that T #z 0, let m be the dimension of the range
of T (thus m < n) and write (_:n = Ker T ® Ran T. Denote the orthogonal projection

of C_Zn onto Ran Tby P — then P € &(S)' (exercise), so

L]
i

PoP + (I-P)%(I-P)

I\

PoP.
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Since PoP is completely positive and ¢ is pure, 3 t € [0,1]:

PP = to

PO(I)P = t2(I) =>t =1

PoP = @.

With respect to the decomposition (_:n =Ker T® Ran T, T = 0 @ R, where

R:Ran T + Ran T is selfadjoint and has strictly positive eigenvalues. Set

- T+=0€BR]'/2

_ T_=O$R_l/2.
Then

PT, = T,P, PT_=TP
and

Fixanisometryw:c_im—rgn for which Ren W= Ran T (hence P = WW*, I = W*W). Define
¥ € CP(S,M (C) by

= W*T_OT_W.

Y(I) = W*T_o(I)T_W

Il

WAT TT W

1l

W*PW
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WW*W

IT

il
-~

¥ € CPU(S,M (Q)).

We claim next that V¥ is pure. To check this, suppose that ¥ > ¥', thus

WYW* > WY'W*,
But
WYW* = WWXT_oT WW*
= PT_OT_P
= T POPT_
= T T

]
¢ = T+W W*T+

7Y
o
IA

1] i
T+W W*T+ =t (0 1)

WY'W* = tT OT

2=
I

¥'I

il

WYWY "W
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W (£T_0T )W

£ (W*T_oT_W)

= tV¥.

Therefore ¥ is pure. Finally, let vy = W*T+:

* = *
YRy = T WYWAT

I

T, WW*T_OT_WW*T,

T,PT_OT PT_

il

T,T_PSPT T,

= POP



§15. COMPLETELY BOUNDED MAPS

Iet H be a complex Hilbert space — then an operator space is a linear

subspace S < B(H). In particular: Every operator system is an operator space.

15.1 EXAMPIE If Hl and H2 are complex Hilbert spaces, then B(Hl’Hz) is

an operator space.

[The arrow

is an isometric embedding of B(Hl,Hz) into B(Hl ® H2) .]

15.2 REMARK Every Banach space A "is" an operator space. To see this, equip
its dual with the weak* topology and let X be the closed unit ball -- then X is a

compact Hausdorff space and there is an isometric embedding A -+~ C(X) ( ¢ B(l’,2 X))).

The notion of "completely bounded linear map" between operator systems carries
over without change to operator spaces.
So let S and T be operator spaces and denote by CB(S,7) the set of completely

bounded ¢:S - T —— then
[el] < [le]] 4, => CB(S,T) < B(S,T).

And, when equipped with the cb-—norm, CB(S,T) becomes a normed linear space.



15.3 LEMMA Suppose that T is complete -- then CB(S,T) is complete.

15.4 THEOREM (Wittstock) ILet S < B(H) be an operator space, K a complex
Hilbert space. Suppose that $:S -+ B(K) is completely bounded -- then ¢ admits

a completely bounded extension Y:B(H) ~ B(K) with [[o]] 4 = |[¥|] -

This result is in the Hahn-Banach mode (cf. 12.22 for its completely positive

analog) and various proofs are known, one of which will be detailed below.

15.5 THEOREM Iet S < B(H) be an operator space, K a complex Hilbert space.
Suppose that ¢:S » B(K) is campletely bounded — then 3 a complex Hilbert space X,

a unital x-representation m:B(H) -~ B(X), and operators Rl,R2 € B(K,X) such that

o(A) = RITT(A)RZ @aeds.

Moreover,
YIRSt
[Note: Therefore
Hry U TR = 1el] .
In fact, Hﬂ”cbs 1, so
el g < TRl TR,

Iet us grant 15.5 for the moment and put

¥@) = R{ﬁ(l—\)R2 (A € B(H)).



Then ¥ extends ¢ and [[o|| 4 = ||¥[[g,, from which 15.4.

We shall now turn to the proof of 15.5, which requires some preparation.
Iet E be a vector space over R — then a function p:E + R is sublinear

if v a,b €E, plath) < p(a) +p(b), and vaecE, vt=z=0, p(ta) = tp(a).

15.6 RAPPEL If p:E + R is sublinear, then 3 a linear f:E - R such that

Va€EeE, f(a) < p(a).

Let E_ be a cone in E — then a function q:E_ > R is superlinear if

Y a,b € E+, g(a) + q(b) < g(atb) and V a € E+, vVt =z 0, g(ta) = gq(a).

INTERPOLATION PRINCTPLE Iet q:E, > R be superlinear and let p:E ~ R be

sublinear. Assume: V a € E, g(a) < p(a) —— then 3 a linear f:E » R such that
qg(a) < f(a) (a € E+)
f(a) < p(a) (aen.

[Put

r(a) = inf{p(ath) - g(b):b € E+}.

Then r is sublinear, -p(-a) < r(a) < p(a) for all a € E, and r(-b) < —g(b) for

all b € E_. Consider any linear f:E - R such that f(a) < r(a) (a € E) (cf. 15.6).]

Given an element

T=2Ak@ Vi



in the algebraic tensor product S & K and an element T € B(K,H), write
T = % AkTyk,
k
thus Tt € H.

Given finite sequences

T.:1

i l,....ne S K

yi:i =1,...,n €K,

write {ri} < {yi} if v T € B(K,H),

: T AT R A

15.7 IEMMA We have: {Ti} < {yi} iff 3 an element [Aij] € Mn(S) of norm
<lsuch that vi=1,...,n,
T. = Zl: Ai- @ yjo

1
j J

N.B. The map ¢:S » B(K) induces an arrow ¢:S @ K » K, viz.

&;(T) 5(2 A 8 yk)
k

L oA)y .
. MY

It will be convenient to divide up the proof of 15.5 into steps.

Step 1: It follows from 15.7 that

{r;} < {y;} = i ||<I>(Ti)[|2



2 2
< 1ol 5 1y, l12.
1

Step 2: Iet E be the set of all functions ¢:B(K,H) + R such that for some

finite sequence Yyreser¥y, in K and all T € B(K,H),
2
lom] <z ||y, [|°.

i

Then E is a vector space over R and the subset E+ of positive functions is a cone
in E.
Step 3: Define p:E > R by
. 2 2
p(9) =:an|®ch§ Hyy 1153,
where the inf runs over all finite sequences Yyrees ¥y in K such that ¢(T) <

z lITinIZ for all T € B(K,H) —— then p is sublinear.
i
Step 4: Define q:E_ > R by

a(9) = sup{Z ll%(Ti)}lz},
i

where the sup runs over all finite sequences TyreessTy in §$ & K such that

T i]TTi||2 < ¢(T) for all T € B(K,H) — then g is superlinear.
i

Step 5: Since
q(9) =p@®) (b E€E),

the Interpolation Principle implies that 3 a linear f:E - R such that

—oale) < £(¢) (¢ €E

£(¢) < p(9) (¢ € E).



Step 6: Extend f by linearity to a function on the complexification
E + /-1 E and denote it still by f. Write F for the set consisting of all functions
F:B(K,H) - H such that the map T ~ ||F(T)| |2 lies in E. Noting that the function

T + <F, (T) ,F,(T)> lies in E + /-1 E, put

<F11F2> = f(<Fl(")rF2(’)>) (Fl,FZ & F).

This prescription defines a pre-inner product on F, hence, in the usual way, leads
to a Hilbert space X.

Step 7: Given an element y € K, define Fy:B(K,H) - H by Fy(T) = Ty -— then
F_€ F, thus

y
2 2
FF2> = [ lellg, Tyl

so there is a linear operator V,:K + X with [[Vl[[ < ||e| ‘cb such that V,y is the

equivalence class of Fy in X.

Step 8: Up to equivalence classes, define a unital *-representation
T:B(H) +~ B(X) by

T(A)F(T) = AF(T).

Step 9: VAieS, VyieK,
2
|!§ °@)y; 17 = £(¢),
where

(@12
1

Consequently,

||§ o)y, < lli m(A)V,y; ]



and the recipe

L o(a)yy

Vo (2 m(A V) yy)
1 1

IA

extends to a linear operator V2:X -+ K of norm < 1.

In

Step 10: Obviously, ||Vi|| [[v,|| < [|¢|}g4- 2nd, by construction, v A € S,

i

VZTT(A)VlY oAy (y € K).

To complete the proof of 15.5, one has only to change the notation: Iet

— - vk

R =V

R, = V;.

15.8 REMARK Unlike the completely positive case, there are no known conditions

that force the data to be unique up to unitary equivalence.

15.9 THFEOREM Iet S be an operator system. Suppose that ¢:8 +- B(K) is

completely bounded —— then 3 completely positive maps <I>l,<I>2,<I>3,<I>4 from S to B(K)

such that

®=0 —@2+/:T(<I>3-<1>

l 4).

PROOF Put (cf. 15.5)

o
i

L = AR, + RMTR, + Ry)

©
|

2= 4R, - RY*TR, - R))

and



0y = 4"1(R2 + /I R)*(R, + VI R))

b, = 47 Ry - FLR)*1(R, - /T R)).

Let V be a complex vector space —- then M (V) is an M (C) bimodule w.r.t.

matrix multiplication.

Notation: Giwven A € Mn V), Be Mm(V) , Write

A 0
A®B= EMn_'_m(V).
Assume now that for eachn € N, ||| is a norm on M_(V) -- then V is said
to be a matricial normed space if
QVAEMn(V) &VBEMm(V):
- a 0 —
— moact| 311,131 |_).
0 B ntm
e Va,BEM(C) & VAEM (V):
a8l < lafl Hall, [18]].

If V,V' are matricial normed spaces and if ¢:V -+ V' ig a linear operator, then

v n, there is an induced arrow <I>n:Mn V) - Mn (V') and ¢ is said to be completely
bounded if

o]l = sul]]e || e W



is finite. In addition, 9 is a complete isometry provided ¢ is invertible and

I

15.10 EXAMPLE Every operator space S <« B(H) is a matricial normed space.

[The norm on Mn (S) is, of course, the norm which it inherits as a subspace

n
of M (B(H)) = B{ & H).]

15.11 THEOREM (Ruan) If E is a matricial normed space, then 3 a complex

Hilbert space H, an operator space S ¢ B(H), and a complete isometry ¢:E - S.

[Note: I am going to omit the proof of this result but, in essence, what it

says is that a matricial normed space can be regarded as an "abstract operator space".]

Iet S and T be operator spaces —— then V n, there is a linear identification
Mn(CB(S,T)) = CB(S,Mn(T))

and the cb-norm on the RHS can be transferred to a norm |

-]].. on the IHS.
n

15.12 LEMMA CB(S,T) is a matricial normed space.



§16. OPERATIONS AND CHANNELS

Iet H be a complex Hilbert space — then the weak* topology on B(H) is the
initial topology determined by the elements of B(H),, i.e., is the smallest top-
ology for which each )\ € B(H), is continuous. Accordingly, a function f£:X -+ B(H)
from a topological space X to B(H) equipped with the weak* topology is continuous

iff v X € B(H),, the composition A o £:X + C is continuous.

16.1 RAPPEL Let {Ai:i € I} be a bounded increasing net in B(#), and let A

be its supremum —- then

Ai > A in the strong operator topology

and

Ai + A in the weak* operator topology.

16.2 IEMMA Iet H and K be complex Hilbert spaces. Suppose that ®:B(H) - B(K)
is positive —- then ¢ is weak* continuous iff for every bounded increasing net

{Ai=i € I} in B(H) s

o( sup Ai) = sup @(Ai).
iex iel

PROOF Assume first that ¢ is weak* continuous:
Ai - sup Ai (weak¥*) (cf. 16.1)

ier

o(A.) ~ d(sup A.) (weak*).
i . i
1eT



On the other hand, {@(Ai) :i € T} is a bounded increasing net in B(K),, hence

®(A.) » sup ®(A.) (weak*) {cf. 16.1).
i . i
1€l
Therefore

d (sup Ai) = sup fI)(Ai) .
i€T iel

Conversely, if ¢ has the stated property, then v positive A € B(K),, X ° @ is
weak* continuous (cf. 2.7). But an arbitrary element of B(K), can be written as

a linear combination of four positive elements. So, V A € B(K) 4, X o & is weak*

continuous, thus ¢ is weak* continuous.

16.3 EXAMPLE Suppose that ¢:;_.l (H) - gl(H) is linear and positive (T = 0

=> ¢(T) =z 0) -=- then ¢ is bounded: 3 C¢ > 0 such that

oy = cyllml]y (T €Ly t).

Tet ¢ = ¢*r thus

0:Ly (H)* > Ly (H)*

or still,

®:B(H) ~ B(H) (cf. 1.4).

Explicated: v A € B(H) &« VTE I__.l(H),

tr(®(A)T) = tr(Ad(T)).
Then

(B(H),) < B(H),.

Moreover, ® is weak* continuous. For, in the notation of 16.1,



-+ tr((sup Ai)¢(T)) = tr (o (sup A)T).

iel iex
I.e.:
<I>(Ai) »> d(sup Ai) (weak*) .
jer
Meanwhile
®(A,) »> sup 0(A.) (weak?*).
i . i
1€1
Therefore

® (sup Ai) = sup <I>(Ai).
i€l i€T

And this implies that ¢ is weak* continuous (cf. 16.2).

Assume henceforth that H is separable and let K be another complex Hilbert
space, which we shall also assume is separable. Iet m:B(H) - B(K) be a unital

*~homomorphism, so ||m@)]|] < ||A|| @& € B(H)).

16.4 RAPPEL There is an orthogonal decomposition

K=K,® @& Kk'

0 kex

where K0 and Kk are t—invariant.

e The restriction m, of 7 to KO annihilates the elements of L, (H), thus

0
o is actually a representation of the quotient B(H)/L_(H).
¢ The restriction of M of 7 to I(k is unitarily equivalent to the standard

representation of B(H{) on H, so v k, 3 a unitary operator Uk:H > Kk such that



v Ae B(H),
A= U]’éﬂ(A)Uk.

[Note: The index set k is at most countable.]

Suppose that ¢:B(H) > B(H) is completely positive and let ¢ = ARTr be its
canonical decomposition.

[Note: Recall that m:B(H) - B(K) is a unital *-homomorphism and K is necess-
arily separable (even finite dimensional if this is the case of H).]

Denote by PO the orthogonal projection of K onto Ko and by Pk the orthogonal
projection of K onto K, . Put

Vg = PR (H ~ Ky

0

Vk=U]’£PkR (H—*Kk—»H).

If « is finite, matters are straightforward: Vv A € B(H),

d(A) = R*1(A)R
= R*(P,.T(A)P, + % P, 7m(A)P, )R
0 0 KEw k k
— * * *
= R POTT (A) POR + I R PkUkAUkPkR
kek
= \7’6170 (A)V0 + k): V]’;AVk.
K

N.B. Take H finite dimensional and recover 14.1 (n =m & s = 0).

The situation when k is countable, say « = {1,2,...}, is more complicated

because there are issues of convergence.



16.5 IEMMA V A € B(H), the series

L V*Av
kel k'k
is weak* convergent.

PROOF It suffices to establish this for an effect E € E(H), thus 0 < E < I.

Put

EneB(H)+andEnsE

In addition, v X € f,

Il

*
<x,VkEka> <ka ,Eka>

IA

<ka ’ ka >

= <X, ViV x>

e}
IA

IA

i
ks
]
o



Therefore

1lim En (weak*)

n >
exists (cf. 16.1).
[Note: The conclusion of 16.5 is order independent, i.e., if k = {kl,k yeeel

is another enumeration of k, then

z
isn i i

converges weak* to

T Viav, .]
=1 Kk
Iet
P =P + I P
(n) 0 k<n k
Then
*
P(n) > I (weak¥*)
and v A € B(H),
n
* - % %
R P(n)'lT(A)P(n)R VOTrO (A)Vo + kil VkAVk.

By the above, the RHS converges weak* to

VET (A)V, + T VFAV,
00 0 k=1 Kk

and we claim that the LHS converges weak* to

R*T(A)R ( = ®(A)).



16.6 IEMMA Iet R € B(H,K) — then
T € L; () => RIR* € L, (K)

and v X € B(K),

tr (R*XRT) = tr (XRTR*).

From the definitions, P commutes with m(A), so

(n)

P(n)vr(A)P(n) = P(n)'(r(A) > m(A) (weak¥*).
In 16.6, take
X = P(n)Tr(A)P(n).
Then V T € I;.l(H),
txr (R*P ) T{A)P M) RT)
= tr(P(n)Tr(A)P(n)RI'R*)

-+ tr(m(A)RTR*) .
But
tr(m (A)RTR*) = tr(R*m(A)RT) (cf. 16.6).

And this settles the claim, T € I_._..l(H) being arbitrary.

To recapitulate:
16.7 THEOREM Suppose that ¢:B(H) - B(H) is completely positive -- then 3
Vk € B(H) (k € k) such that

®(A) = V’c‘,"fro(.A)V0 + ké( V]’éAVk (A € B(H)).



[Note: The series converges in the weak* operator topology (and in the strong

operator topology) .]

We want now to impose an assumption on ¢ that, among other things, will serve

to eliminate "TTO" from 16.7.

Assumption: ¢ is weak* continuous —— then 16.2 is in force, hence
o(a;) » o(sup A;) (= sup <I>(Ai))
ier ieT

both weak* and strongly.

16.8 IEMMA Iet {Ai:i € I} be a bounded increasing net in B(H)+ and let A
be its supremum —— then Vv X,Y € B(H),
@(X*AiY) > ¢ (X*AY)

in the strong operator topology.
PROOF Write

*
(X AiY)

|
5]

(X + Y)*Ai(x + Y))

T (X - VA (X - V)

L o(x + T v x + AT N)

+—‘/—f-l—c1>((x - /—TY)*Ai(X - /=17Y)).



16.9 LEMMA mw:B(H) - B(K) is weak* continuous.
PROOF Use the notation of the proof of 9.11, replacing u by Ai’ ¢ by X,

and n by Y to get

<7T(Ai)f,g>
=71z <<I>(X*AiY)f(Y),g(X)>.
XY

Bearing in mind that I I is actually a finite sum, it then follows from 16.8 that
XY

L L <<I>(X*AiY)f(Y),g(X)>
XY
converges to
I Z <d(X*ay) £(Y) ,gX)>.
XY
IT.e.:
<Tr(Ai)f,g>
converges to

<t (A)E,g>.
Therefore ’IT(Ai) converges to T(A) weakly (recall that F(B(H),H) is dense in K).
But {'n(Ai) :1 € I} is an increasing net of positive operators, hence Tr(Ai)-> 7 (A)

strongly (cf. 10.1) and

m{A) = sup ’IT(Ai) .
ieT

Consequently, 7T is weak* continuous (cf. 16.2).

[Note: The net {Tr(Ai) :i € I} is norm bounded:

Hr@p I < {1211 < [{aff.
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This said, there is a generality to the effect that if {Ton} is a norm bounded net
in B(K) with the property that
<TY.y'> > <Ty,y'> (v,¥" €Y),

where V¥ < K is dense (or just total), then Tu + T weakly.]

Armed with this result, it is then easy to see that KO consists of the zero

vector alone. In fact, this is automatic if H is finite dimensional, so take H
infinite dimensional and, to get a contradiction, assume that 3 y, € K;:| lyol | = 1.
Put

wO(A) = <y0,1T(A)y0> (A € B(H)).

Since 7 is unital, wO(I) = 1. Moreover, w, is weak* continuous. Proof:

0

wy(A) = tr(Pyoﬂ(A)) (A € B(H)).
Therefore
I= v P
PeP (H)
=>
wO(I) = I wO(P) =0 (cf. 2.6 and 5.1).

PEP(H)

16.10 THEOREM (Kraus) Suppose that 9¢:B(H) - B(H) is completely positiwve

and weak* continuous — then 3 Vk € B(H) (k € k) such that

o(a) = I VIAV,

(A € B(H)).
kek kk

[Note: The series converges in the weak* operator topology (and in the strong

operator topology).]
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16.11 REMARK For each T € Ql(H) , the series

TV, TV*
kEKkk

is trace norm convergent. For if m > n and T is positive, then

I} 2 vmvx - & Vv V||
xem K K o kK k'L

m
Iz v v |
kn+1 £ K1

m
=tr( X v, TV*)
k=n+1 k™k
m
= tr( I VAV T)
k=n+1 k'k
=tr{(( L VAV, )T - tr(( 2 V*Vv)T).
k<m k'k k<n k'k

But I V]’EVk converges weak* (cf. 16.5). Therefore the sequence I Vk'IV]"é is
k<n k<n

Cauchy in the trace norm, thus

TV, IV*
kek Kk

makes sense (it is order independent). The extension of these considerations to

an arbitrary T € L, () is immediate. So, if ¢:L; (H) > Ly (H) is defined by the rule

o(T) = ¥ V. TVH,
kek koK

then ¢ is linear and positive. Furthermore, its dual ¢*:Ly (H)* > Ly (H)* can be
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identified with ¢ (cf. 16.3).

An operation is a campletely positive weak* continuous map ®:B(H) - B(H)
subject to the constraint &(I) < I.
[Note: The weak* continuity is automatic if H is finite dimensional.]

N.B. An operation is contractive:
[1e]] = |]e@|] =1 (cf. 11.27).

The effect corresponding to an operation ¢ is, by definition, &(I).

16.12 EXAMPIE If E € E(H), then the assignment A -~ EY/2Ar'/2 is an operation

and the associated effect is El/ 2El/ 2 = E.

16.13 IEMMA Iet Vk (k =1,2,...) be a sequence in B(H). Assume: V finite

subset F c N,

L Vv < I,
KEF k'k
Then the prescription
d(A) = I VHAV, (A € B(H))

defines an operation.

16.14 EXAMPLE Suppose that the Vk are positive —- then the Lﬁders operation

associated with the Vk is the prescription

A+ 3 v]1</zzav}l{/2 @A € BH)).
k=1
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A channel is a unital operation ¢:¢(I) = I.

16.15 EXAMPLE If U € U(H), then the assignment A - U*AU is a channel.

[Note: More generally, if Ul””'Un € U(H) and if )\l,...,xn € [0,1] with

n
b3 >‘k = 1, then the assignment
k=1

n
A+ I U*AU.
I WA,

ia a channel.]

16.16 EXAMPIE Fix a positive trace class operator T # 0 — then the assign-

ment

| tr(am)
tr(T)

ia a channel.

16.17 EXAMPLE Take H = gn and let U(m) = U(gn) —- then the assignment

*
A~ fU(n)U AUAU

ia a channel, call it ¢__.
av

[Note: Here, dU is normalized Haar measure on lU{(n). Since d)aV(A) U0 =y (A)

Oq)av
for all U0 € U(n), 3 a linear functional A:B(H) =+ C such that

CDaV (a) = A(A)T.

tr(a) = tr(@aV(A))
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A(A) tr (1)

A(A)n

5 () = L&)

av n I.]

Let ¢:B(H) » B(H) be an operation -- then by 16.10,

®(a) = ¥ Vv*av,,
kek K7k
where
L VA, <1,
kek k'k

a condition which carries with it some additional structure.

16.18 RAPPEL Iet K be a complex Hilbert space -- then W € B(K) is a

coisometry provided WW* = TI.

16.19 ILEMMA Suppose that T € B(H) is a contraction ~- then 3 a complex Hilbert

space KT containing H as a closed subspace and a coisometry W € B(KT) such that

H is W-invariant and W|H = T.

16.20 THEOREM 3 a complex Hilbert space K containing H as a closed subspace

and coisometries LUMS B(K) (k € k) such that Wsz =0 (k 2 £) with WkH c H and

W |H = v, vk

K
PROOF Iet HI< =® H and define T € B(HK) by
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T(xl,xz,. ee) = (lel,szz,. o).
Then T is a contraction, so 16.19 secures KT > HK and a coisometry W € B(KT)
such that H_ is W-invariant and W|f_= T. Write K, = f_® H' — then w.r.t.

this decomposition of KT, the matrix of W is

vy 0 0 ...oX
v, 0 0 ... X
0 0 0 ... ¥ .

Here Xk:H"' > H and Y:H* + H. Because WW* = I, we have
K K K
vk * =
Vk ? + kaﬂ s I

In addition,

Il
o

- ke

YY* = I.

If Y*Y = I, then all Xk = 0 and the Vk are coisometries with orthogonal initial
spaces, thus matters are trivial. Otherwise, Y*Y = I and there exists a collection

Z, € B(H:) of coisometries which have orthogonal initial spaces. Iet K=H & Hi

and define Wk € B(K) by

Wk = .
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Then the Wk are coisometries with the stated properties.

Since Wk is a coisometry, w]*;wk is an orthogonal projection. On the other hand,

W}’éWkWEWK =0 k = £).

Therefore

I WM e L(K).
kek k'k

Define now a map 0:B(K) - B(K) by stipulating that

OB) = I W*BW (B € B(K)).
kex kk

16.21 IEMMA O is a *—endomorphism.

Given x,y € H and A € B(H), we have

i

<x,PH6(APH)y> <PHx,kz W]tAPHwky>
eK

= 3 <WxXAW y>
kex K k

= ¥ <V x,AV, V>
ke K k

= <X, ¥ VZAV y>
ke kk

= <x,0(A)y>

o(n) = P,O(BP,) [H.
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2
<X,PH@ (APH)Y> = <XIPH@(®(APH) )y>

<PH.X, z W*G) (ap

YW, y>
Lex H L

I <W,x,0(AP, )W,y>
Lex £ H £

= I <V,x,0(AP,)V,y>
fec £ H "¢

= 5 <V,x, T WAP,W
o ek WERP, W V oy >

I L <WV,x,APM V,y
ke Lek e S Y

I I <VV ,AV

ke Lex NG
=<x, L I VEV*AV Voy>.
kex Lex

On the other hand,

<x, 02 (B)y> = <x,0(0(a))y>

<x,d( I V*A )y>
kex

=<x, X <I>(V*A )y>
kek

<x, T ¥ VEViAV, V,y>.
kek Lex LkkE

Therefore

2 _ 2
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16.22 THEOREM Suppose that ¢:B(H) -~ B(H) is an operation —— then 3 a
complex Hilbert space K containing H as a closed subspace and a *-endomorphism
0:B(K) > B(K) such that vn €N,

o'(a) =P, (8P [H (& € B(H).

[This follows from the foregoing by iteration.]

Although I shall omit the details, it should be mentioned that it is possible

to rework 16.20 so as to ensure that

S VM. =T => ¥ WW = I.
kee ¥ kex KK

Consequently, if ¢ is a channel, then 0 is unital and

I=0(I) = PHO(PH)[H.



§17. SEMIGROUP THEORY

This is a vast subject, a small portion of which will be reviewed below.

Iet X be a camplex Banach space — then initially, a (one parameter) semi-
group on X is just a collection of bounded linear operators Tt:X -+ X parameterized
by £t > 0 such that

TSTt = Ts+t (s,t = 0).

17.1 EXAMPIE The "trivial semigroup" is the prescription Tt =1 (t =0).

N.B. Typically, X is a complex Hilbert space H or a unital C*-algebra A

(e.g., B(H)).

17.2 EXAMPLE Take X = C —— then the prescription th = e_tz (t = 0) defines
asemigroupanthlzl\/t>0.

17.3 EXAMPLE Take X = QZ —— then the prescription

_zl_—z+z ot Z, — 2 S
_ 71 2 -t 71 2
T, = 5 + e 5 (t 2 0)
Z, 1 -1

defines a semigroup and



T = v t>0.

Starting with {Tt:t > 0}, one then proceeds to impose various continuity
conditions.
First, consider the following topologies on B(X).

The norm topology: A net T, (i € I) in B(X) converges to T iff

|, = T|] - o.

The strong topology: A net Ti (i € I) in B(X) converges to T iff

vx€X, ||T,x - || > 0.

The weak topology: A net Ti (1 € I) in B(X) converges to T iff v A € X*

&V X EX, A(Tix—'Ix) -+ 0.
Returning to our semigroup {Tt:t > 0}, one says that it is norm continuous,

strongly continuous, or weakly continuous according to whether the map

TR
==

0 > B(X)

t—>Tt

is continuous when B(X) is endowed with the norm topology, strong topology, or

weak topology, respectively.

17.4 IEMMA A semigroup {Tt:t > 0} is strongly continuous iff it is weakly

continuous.



Because of this, it suffices to consider strongly continuous semigroups

only (norm continuous semigroups being a special case).

17.5 EXAMPIE Take X = C[0,1] (sup norm). Put T0

= I and for t > 0, write
t t
(th) (x) = x£f(x) - x~ log x £(0) (0 <x<1),

letting (th) (0) = 0 =~ then {Tt:t > 0} is strongly continuous on ]0,~[ but is
not strongly continuous on [0,~[. In fact,

lim ||T [] = «.

t>0 °©

17.6 IEMMA Suppose that {Tt:t > 0} is strongly continuous -- then 3 constants

a€Rand M 2 1 such that

iz || < me*

for all t = 0.

PROOF V x € X, the function

t—>Ttx (0 < t<1)

is in C([0,1],X), hence

Sup HTtXH < .
0st<1

Therefore, by the uniform boundedness principle, I M > 1

3

|th|| <M (0<t<l) (T

If now a = log M and if for a given t > 0, n is the least integer > t, then



il = (e, )P < o < i = we?E,

17.7 EXAMPIE The function t -+ ||T, || need not be bounded. E.g.: Take

X=§2andlet

- 1 £ -
'I‘t=
_O l_.
Then
lim ||T_ || = .
'l;--)ool tl

17.8 EXAMPIE The function t - ||T, || need not be continuous. E.g.: Take

X = 1210,1] and let
f(s + t) (0 <s+tc<l)

(T, (s) =

— T =

]
-

(0

IA

t <1)

17.9 I1EMMA A semigroup {Tt:t > 0} is strongly continuous iff v x € X,

lim Ttx = X.

t >

PROOF The necessity is obvious. To establish the sufficiency, fix t0 > 0 and




let x € X -~ then

lim ||T, .. x - T_x|]|
ho  Soth %

I

lim ||T, (T, x - x) ||
mo B

A

HTtOH 1]"1118 HThX _XH =0,

from which continuity on the right. As for continuity on the left, take h < 0

and write
HTt0+hX - TtOXll
= | |Tt0+h G = T ||
SN
< C| lT__hx - x|,
where

T <C (0 <tzst,) (cE. 17.6).
t 0

17.10 IEMMA Suppose that {Tt:t > 0} is strongly continuous -- then the map

[0,0[x X » X
(t,x) ~» Ttx

is jointly continuous.



PROOF Take s = t and note that

gty = ||+ []erg = Tpx]|

A

|,y - Tl

tX x||.

A

gl Hy - <l + [zl [l

17.11 RAPPEL Assuming that the semigroup {Tt:t > 0} is strongly continuous,

let Dom 1L be the set of all x € X for which

Ttx—x

lim T

t->0
exists and define L on Dom L by the equality

Tx -x

_ . t
Ix lim £ .

t>0

Then Dom L is a dense linear subspace of X and L is a closed linear operator

(nbounded in general). In addition,

xEDoan=>TthDomL

and

d - -
a’E TtX = LTtX = TtLX.

Finally, vxeX & vt >0,
fthdseDomL
0 7s

and

Tx - x L(/’E Tsxds)

i

fg TSLxds if x € Dom L.



[Note: L is called the generator of the semigroup {Tt:t > 0}.]

17.12 REMARK As a complement to 17.4, let w-lim stand for limit in the
weak topology on X —— then it can be shown that the set of X such that
Tx-x

. t
w-1lim €

t»>0

exists coincides with the set of x € X such that

T -
tX X

Hn ———

t->0
exists and the linear operators defined thereby are identical. In brief:

"weak generator" = "generator”.

17.13 IEMMA If {T;::t z 0} and {TE:t > 0} are two strongly continuous semi-

groups with the same generator L, then T{__ = TE vt 20.

PROOF Fix t > 0, let x € Dom L, and define £:{0,t] > X by

— L "
f(s) = T Tex (0 <s<t).
Then
_ .
£(0) Ttx
_ f(t) = T;_x.
On the other hand,
d f£(g) =~ T' ITMx + T L
ds t-s s t-s s



Therefore f£(s) is constant on [0,t]l, so Tt': = T,E on Dom L. But Dom L is dense in

t — mn
X, thus Tt = Tt.

Given L € B(X), put

Blﬁs
o]

®
il
ESE:

Then the series on the RHS is norm convergent and the assignment t - etL defines

a norm continuous semigroup with L as its generator.

17.14 EXAMPLE ILet X = C — then
-0 1 ~ cos t sin t

L= =>etL=
-1 0 _ =-sint cos t |,
0 17 ~ cosh t sinh t —

L= =>etL=
1 o _ __ sinh t cosh t |,
Tl 1 T 1+t t -

L= =>etL=
-1 -1 -t l1-t .

17.15 IEMMA Every norm continuous semigroup {Tt:t > 0} is of the form

Tt=etL (t > 0)



for some bounded operator L € B(X).

[Note: We have

Tt-—I

t

lim ||
t=+0

- L|| = 0.]

17.16 EXAMPLE Let X = B(H) (H a complex Hilbert space). Fix H € B(H)SA

and put

A = e/—_l tH, - V-1 tH

(t = 0).
Then {'I‘t:t > 0} is norm continuous and its generator L is given by

1A = /=1 [H,3].

17.17 REMARK There exist strongly continuous semigroups {Tt:t > 0} such

that the series

converges only for t = 0 or x = 0.

17.18 THEOREM Suppose that {Tt:t > 0} is strongly continuous with generator
L such that

at
[T ]| < Me

for some a e Rand M > 1 (cf. 17.6). Let L' € B(X) and specify that

Dom(L + L') = Dom L.
Then L + L' is the generator of a strongly continuous semigroup {T;::t > 0} for
which

HTe| | sMexpla+ ML)t (t 2 0).
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And in ncrm,

(t/n)L' )nx

e .
Ttx = lim (Tt/ne x €X).

n > o

[Note: The "bounded perturbation" L + L' is necessarily closed. If L' is

not bounded, then L + L' need not be a generator (e.g. take L unbounded and con-

sider I + (- L)...).]

N.B. There are integral equations

| t Tt
T{x = T, x + f 0 Te-gl Tsxds
(x €X).
T'x =T, X + ft T'L'T,_ xds
t t 0 "s "t-s

17.19 IEMMA Maintain the notation of 17.18 —— then 3 C > 0 such that
HTt—T;:]l <tC (0 <tcs<1l).

PROOF In fact, V x € X,

I

t
[Tex = Tix[| = ||/g T _ L' Texds]]|

t
f0| |Tt__sL'Téx| |ds

IA

A

t swp ||z || sw [T || [[z']] [|x]].
Osus<l O<u'<l u'

[Note: One can construct examples of strongly continuous semigroups

{T_:t > 0}
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such that

l—

L -T]sct (0st=s1),

yet
Dole ﬂDomL2= {0},

thus L1 and L2 do not differ by an element of B(X).]

17.20 EXAMPLE Iet X = ¢, (the elements of X are all sequences {cn} (c, € C)

such that lim c, = 0, equipped with the sup norm). Define a strongly continuous

n-»>x

semigroup {Tt:t > 0} on X by

_ , /=1 nt
Tt{cn} = {e cn}.
Then
L{cn} = {/-1 nc_},
where

Dom L = {{c } € ¢ :{/~I nc } € cj}.

Perturb L by L1:1 € B(X):
] o
Ln{cn} - {0,...,0,ncn,0,...}.
Then L + L}'1 is the generator of a strongly continuous semigroup {TI'1 gt 2 0}
(cf. 17.18) and V x = {cn} € Dom L, we have
H(L+Lr'1)x—LxH = HLr'le =n|cn| +~ 0 (n » »).
I.e.: L+ Lr'1 converges pointwise to L on Dom L. Still,

t
[y ] = &,
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sovt>0, 3x€ X:{TI‘1 tx} does not converge (uniform boundedness principle).

If A € B(X), then its dual A* € B(X*):

(A*1) (x)

AAx) (x € X,\ € X*).

And

| 1ax]]

[al].

17.21 RAPPEL Iet A be a densely defined linear operator on X -- then its
dual A* has for its domain the set of all A € X* with the property that the linear
functional x + )\ (Ax) is norm continuous on Dom A, A*)\ € X* being, by definition,
the extension of this linear functional to X.

o If A is densely defined, then A* is weak* closed (hence is norm closed).
e If A is closed and densely defined, then A* is weak* densely defined

(as well as weak* closed).

17.22 REMARK If X is reflexive, then the weak and weak* topologies on X*
coincide, so if A is closed and densely defined, then Dom A* is a norm dense linear

subspace of X*.

N.B. In addition to the norm topology, the strong topology, and the weak

topology, B(X*) also carries the weak* topology: A net Ai (1 € I) in B(X*)

converges to A iff vy x € X & V A € X%, <x,Ai>\ - AX> > 0.

[Note: Technically, this is the "point weak* topology" but for simplicity,

we shall omit the adjective "point" from the terminology.]



13.

Suppose that {Tt:t > 0} is a strongly continuous semigroup on X with
generator L —— then {TE:t > 0} is a semigroup on X*.

[Note: If {Tt:t > 0} is norm continuous, then so is {T;:t > 0}:

LRI LA RIE

& £

17.23 ILEMMA {Tf__:t > 0} is weak* continuous.

PROOF One has only to observe that

|<x, (Ti’_il - T;_iz)»] |<(Ttl - T )%,

2

IA

LA S IRENE

If X is reflexive, then it follows from 17.23 that the semigroup {T;::t > 0}

is weakly continuous, hence is strongly continuous (cf. 17.4), but this fails to

be true in general.
17.24 EXAMPLE Take X = Coo(l_k) and define Tt by
(th) (x) = f(x + t).

k =
Then thSx 6x+t and

TEs, - s 01 =2 (£ =0).

Therefore the semigroup {Té:t > 0} is not strongly continuous (cf. 17.9).
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Since L is closed and densely defined, L* is weak* closed and weak* densely

defined.

17.25 I1EMMA Dom L* is a T;—:i_nvariant linear subspace of X* and for all

A € Dom L*,

*Tk) = TRT R
LTt)\ TtL)\.

17.26 IEMMA VX € X &V A € Dom L¥*,

t
<x,Tjé>\ - > = ‘FO <x,T;L*A>ds (t > 0).

PROOF We have

i

<x,T1’_i)\ - > =<T x - x,\>

t
= <L(f§ T xds),\>  (of. 17.11)
= <ft T xds,L*\>

0 "s ’

—_ t *
= fo <TSx,L A>ds

—_ t *T %
= fo <x,TsL A>ds.

[Note: Analogously, V x € bom L and vV A € X¥,

1

t o (it
<Lx,f0 TSAds> <L\f0 Tsxds) PA>

<Ttx - X A>

<x,T1’§>\ - >
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t %
fo TSAds € Dom L*.]

Iet Dom L;‘v be the set of all A € X* for which

)~
Tt)\ A

lim s

t~>0
exists (weak¥*) and define szr on Dom Lv”; by the equality

T”é)\—)\
L‘:?\= lim _—E'—‘o
t~>0

Then L* is called the weak* generator of the semigroup {Tf::t > 0}.

17.27 THEOREM The dual L* equals the weak* generator L;‘V.

PROOF We shall begin by showingthatL*cL:v. So fix A € Dom L* —— then

vV x € X,
. 1 . 1 t
lim T <x,T}’é>\ - > = lim F fO <x,T§L*>\>ds
t->0 t >0
= <x,L*)>.

Therefore )\ € Dom L:v and L‘y\ = L). Conversely, for any A € Dom L:I and for any

x € Dom L,
<x,IL*)> = lim -]l<xT*)\—>\>
"W ' t it
t >0
= lim = <T, X - X,A>
t—»Ot t

<ILix,A>.
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Therefore )\ € Dom L* and L*) = Lx:?" i.e., L‘t’ c L*,

17.28 REMARK In the reflexive case, {T’t:t > 0} is strongly continuous and

its generator is L¥*.

17.29 EXAMPIE Contrary to what obtains in the strongly continuous situation

(cf. 17.13), the weak* generator of {Tjé:t > 0} need not determine {T{_j:t > 0}

uniquely within the class of all weak* continuous semigroups on X*. E.g., consider
the setup in 17.24, thus X* = M(R). With Lebesgue measure as the reference, each

u € M(R) admits a decomposition u = Moo + Mg into an absolutely continuous part
and a singular part, so in obvious notation,

MER) = MR, & MEB),

where both M(R) . and M(R)  are closed in M(R) and invariant under Tg. Given

o > 0, define a weak* continuous semigroup Ai by

Qo mk %
Ao = TEu, o+ ToeHe

Then t -~ A:u is strongly continuous iff u = Moo Therefore the maximal subspace
of M(R) on which each Ai is strongly continuous is the same for each o, i.e., is
M(R) ac’ and on this space, the action does not depend on o, hence all the Az

have the same weak* generator (see 17.30 infra).

[Note: The theory developed below implies that {Tt:t > 0} is the only

strongly continuous semigroup on X whose dual has weak* generator L¥*.]
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Iet

= {nex: lim ||TEA - A]| = O}
t->0

Then x° is T%—invariant and we put
o _ o
T, = TEIX.
N.B. XO is a norm closed linear subspace of X*. Proof: Suppose that

A > A O €x°) — then
n n

HlTEx = Al = JITRA - TfA + T80 = A+ A = Al

A

e = A 1+ Tz = A (] + [ = Al

IA

el 1 = Al + Hm =[]+ 1 - ]

Ty = A+ Ty = a1+ Ty = AL
Choose C > 0:

lIT || <C (0 £t <1) (cf. 17.6).

Given € > 0, choose N:

€
Py =M< sy
and choose t(g,N) < 1:

0 <t < t(e,N) => HT:_ —->\NH <%.

£

€ €
HTEA =AM < Cormmy * 3% 3oy

=e (0 £t < t(g,N)).
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17.30 IEMMA Dom L* is contained in X°.

PROOF Let A € Dom L* — then V x € X,

l<x,T§A - 2>

= |/ <=, TAL*A>ds] (cf. 17.26)

IA

fg |<Tsx,L*k>lds

< S5 11T xl] ||T*a| |as
<t(sup || | []xl] |z
O<s<t

[1Tin = Al] < tCsup [l | D ]|zl |
O<s<t

Therefore

Dom L* < X7,

Accordingly, the norm closure Dom L* is contained in Xo but even more is true.

17.31 LEMMA We have

Dom L* = XO.

PROOF let ) € Xp -- then Vv x € X,

<, /& T0Ads - 2|
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< s [TE - Af] | Ix]]
O<s<t
=>
II—IEIET*)\ds—A[[s sup ||T*A - A|| > 0as t+ 0.
S Ossst °
But
Lt pends € Dom ¥ (cf. 17.26)
t 0 S - - -

Therefore X € Dom L.

Because XO is a nom closed linear subspace of X*, it is a Banach space and

from the definitions, {T?__:t > 0} is a strongly continuous semigroup on XO (cf. 17.9,
bearing in mind that v t, ||T%[] = [T, |]).

17.32 REMARK If X is reflexive, then x° = x* and {T;;:t > 0} is strongly

continuous, a point that has been noted earlier.
6] . 0
Let L~ be the generator of the semigroup {Tt:t > 0}.

17.33 1EMMA Dam LO is weak* dense in X*.

PROOF In fact, Dom L* is weak* dense in X*, hence the same is true of XO

{cf. 17.30). But Dom LO is norm dense in XO.

To relate LO to L*, introduce the part of L* in XO, viz. the operator L*/XO
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whose domain is {\ € Dom L*:L*\ € X°} with L*/XO\ = L*).

17.34 L1EMMA Lo is the part of L* in XO and L* is the weak* closure of LO.

17.35 EXAMPLE Take X = L' (R) and define T, by

il

(th) (x) fx+t).

Then X* = L"(R),

(T5) (0) = ¢(x - t),

and XO = BCu (R), the bounded uniformly continuous functions on R. Here the generator
L is differentiation and Dom L is the set of all £ € L (R) which are absolutely con-

tinuous subject to f' € Ll (R). However, Dom LO #z Dom L* (consider the function

x =+ |sin x]|).

17.36 IEMMA Iet A € X* — then the following conditions are equivalent:
(i) ) € Dom L*;

(ii) lim sup £71]|TEA = A|] < o
v 0

(iii) lim inf £ 7] |22 = A[] < e
£ 40

PROCOF That (i) => (ii) is contained in the proof of 17.30 and (ii) => (iii)

is trivial, so assume (iii).  Choose a sequence tn ¥ 0 and a constant C > 0:

%—HTEX—AIIsCVn.
n n
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Then the linear functional x - )\ (Lx) is norm continuous on Dom L. Proof:

[A(Ix) | = | lim l——<Ttx—x,X>|
n-+oon N
Z ol qin L
= | lim T < TE A - 2>
n-><« nmn n
< C||x]].
Therefore ) € Dom L*.
If x € Dom L, then
Tx -x=/°TIxds (cf. 17.11)
£ 0 s ’ :

T - x| | <t swp [|T|])]|x]]
Oss<t

—_
=>

lim sup t_l| T x = x[] < .
40

Nevertheless, in general, this can not be reversed.

17.37 EXAMPLE Take X = C_(R) and define Tt by
(th) () = £(x + t) (cf. 17.24).

If £ € C_(R) is absolutely continuous with derivative f' € L (R) but £f' ZC_(R),

then

lim sup €| |1 £ - £]| < ||£']
t40

.
o

Still, £ & Dom L.
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17.38 RAPPEL Suppose that L:Dom L -~ X is closed and densely defined —- then

the resolvent set p(L) of L is the set of all complex numbers z such that

zI - L:Dom L »- X is bijective -- then
- -1
R(z:L) = (2I - L)

is a bounded linear operator on X (closed graph theorem).

[Note: The spectrum o(L) of L is the complement in C of p(L).]

Suppose that {Tt:t > 0} is strongly continuous with generator L such that

I || < me2®

for some a € Rand M > 1 (cf. 17.6).

17.39 LEMMA The spectrum of L is contained in {z:Re z < a}, hence the

resolvent set of L contains {z:Re z > a}.

17.40 IEMMA If Re z > a, then

1

(zI - L) x = [} e 2t

Ttxdt x e X).

[Note: Therefore

(2T - 07| < MEe z - a7t

17.41 THEOREM (Post-Widder Inversion Formula) V x € X,

_ . n n n - . _ E ~Nn
TtX = lim ('_'t— R('E.L)) X lim (I o L) X

n - o n > o

uniformly on campacta in t.
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Iet H be a complex Hilbert space — then in what follows, it will be a
question of a semigroup {Tt:t > 0} on the Banach space B(H) which is weak* contin-
uous.

N.B. Recall that B(H) can be identified with the dual of ;_Jl H) (cf. 1.4).

So, to say that {Tt:t > 0} is weak* continuous amounts to saying that the function

R, ~ BBH)

t—>Tt

is continuous when

B(B(H)) = B(;.l(H)*)
is endowed with the weak* topology, thus VA € B(H) & Vv T € gl(H) ’

lim tr((TtA)T) = tr((Tt A)T).

t -~ tO 0
In particular: V x,y € H,
lim tr((TtA)Px’y) = tr((Tt A)ley)
t > t0 0
or still,
1i tr (P = tr (P
S TCwaxy TP axy
0 0
or still,

lim <y, (TR)x> = <y, (T, A)x>.
t >t 0

17.41 1EMMA Suppose that {Tt:t > 0} is weak* continuous ~- then 3 constants
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a€Rand M > 1 such that

at
HTl] =< ve

for all t = 0.
PROOF We first claim that | ITt|| is bounded in some neighborhood of the

origin:3 § > 0 and M(S) = 1:

[T ] <M@)  (0<t=9).
Asaure not, thus there would exist a sequence t, > O:tn > 0 and | ITt || > n.
n

So, by the uniform boundedness principle, 3 A # 0 in B(H) such that {| ]Tt All}
n

is unbounded. Put An = Tt A and let x,y € H — then
n

<y,Anx> > <y,AxX>.

Therefore the sequence {Anx} is weakly convergent to Ax, hence 3 C, > 0:vn,
llaxl| < c,

which, by another application of the uniform boundedness principle, implies that

3C > 0:V n,

a Il = c,

a contradiction. Proceeding, given t > 0, write t =k + 1 (0 <t < §,k € Z>o):

i

Mt = Hlegp |

I

HTk(g ° TTII

A

TENTRRE AT
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M(d)k+l

IA

t/$

IA

M(S)M(S)

= 1(8)e?t (a = s 109 M(5)).

17.42 1EMMA Suppose that {Tt:t > 0} is weak* continuous. Assume: V A € B(H)
and Vv x € fl,

lim [[(T,2) =) - 2x|| = 0.
t >0

Then V A € B(H) and vV x € H,

Lim  [[(T2) (x) - (T, A) x)|] = o.
t->t0 0

[One can argue as in the proof of 17.9 (continuity on the left at t0 >0
being secured by an application of 17.41).]

[Note: The condition

lim [T ) (x) - (T, ) ) ]| =0
t > t, 0

is weaker than strong convergence which would read

lim ||T,A - T, A]| = 0.]
t—>t0 t t0

17.43 EXAMPLE Suppose that {Tt:t > 0} is weak* continuous. Assume:
vV £,T :B(H) > B(H) is 2-positive and HTtIH <1~ thenvAcBH and Vv x € H,

lim | (TA) (x) - 2x|| = 0.
t->0
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To see this, start by writing

2
I I (TtA) x) - AXI !

I

<(TtA) (x) - Ax, (TtA) (x) - Ax>

]

<X, (TtA) * (TtA) (x)>

- 2Re <Ax, (TtA) (x)> + <Ax,Ax>.

But

(TtA) *(T tA)

IA

|7 T| [T (a*8)  (cf. 11.24)

IN

T, @*A) (|[T.I]] < 1.

Therefore

2
(T () - Ax] |
< <X,Tt(A*A) (x)>

- 2Re <Ax, (TtA) (x)> + <Ax,Ax>

> <X, A*AX> = 2<AX,Ax> + <Ax,Ax>
(t > 0)

Maintaining the assumption that {Tt:t > 0} is weak* continuous, suppose further
that v t > 0, the map T,:B(H) - B(H) is positive and nomal’ — then {T,:t > 0}

gives rise to a predual semigroup {(Tt)*:t > 0}, i.e., a semigroup on B(H), or still,

~l-I_net ®:B(H) > B(H) be a positive linear map -— then ¢ is normal iff ¢ is

weak* continuous.
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on -I—‘l(H) (cf. 2.3). Spelledout, VAEBH) &V TE 1_[_41(H) ’

tr((T,A)T) = tr(A(T),T).

17.44 LEMVA The predual semigroup {(T,),:t = 0} is strongly continuous.
PROOF It suffices to show that {(Tt)*:t > 0} is weakly continuous (cf. 17:4):
*
VAEL M*&vTelL (H),

Lim  A((T),T = (T_ ),T) > 0.
t-*tO 0

But 3 a unique A € B(H) such that A = AA (cf. 1.4), so

lim  A((T)),T - (T_ ), T
t->t0 t t0

Lim  tr(A((T),T - ‘Tto’*T”

’(:—>tO

lim tr((TtA)T - (Tt A)T)

t-*t0 0

= 0‘

The dual {((Tt)*)*:t > 0} is precisely {Tt:t > 0} (cf. 16.3). Accordingly,
if L is the generator of {Tt:t > 0}, then L is weak* closed and weak* densely
defined. Its domain consists of those A € B(H) such that

t
t

TA-2A
lim ————
t~>0

exists (weak*). And, owing to 17.31,

B T = B,
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Dom L itself being characterized by 17.36.

[Note: In obvious notation, (L,)* = L.]

17.45 RAPPEL If Ai +~ A (weak*), then A:*L + A* (weak*) .

[vTeL (),

tr(TAY) = tr(T**A¥) = tr((@A,T*)*) = tr(AiT*)

» tr(AT*) = tr((AT*)*) = tr(TA*).]
Since T, is positive, V A € B(H),
TtA* = (TtA)*.

17.46 ILEMVMA Let A € Dom L. — then A* € Dom L and LA* = (LA)*.

PROOF By hypothesis,

T A - A
-+ LA (weak¥).

Therefore

- A)* * — Ak
(TtA A) _TtA A

t t

> (LA)* (weak*).
So, A* € Dom L and IA* = (LA)*.

[Note: If Vv t = 0, TtI=I, then T € Dom L, and Dan L is an operator system.]

17.47 RAPPEL The subset of B(B(H)) whose elements are the ®:B(H) -+ B(H)
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which are weak* continuous is a norm closed linear subspace of B(B(H)).

If {Tt:t > 0} is norm continuous, then a fortiori, {Tt:t > 0} is weak*

continuous. Supposing still that the Tt:B(H) -+ B(H) are positive, the relations

- Tt—I
Lim [|—5—-1L|| =0
t-+0
n .k
lim ||T, - 2 k=0
n->® k=0

imply that the T, are normal iff L is weak* continuous (cf. 17.47).

N.B. The semigroup {Tt:t > 0} is unital if TI=IVtz=>0.

17.48 FEXaMPIE Fix H € B(H)SA and let

2
ra=-L [y gX/2t Jlx /A1

» o © XHis (a € B(H)).
e R

Then {Tt:t > 0} is norm continuous and unital. Moreover, V t > 0, the map

Tt:B(H) + B(H) is positive and normal. Finally, the generator L is given by

Ia

1
- _2“ [HI [HIA]]

—% (H°A + AH® — 2HAH).

[Note: From the formula, it is obvious that I. is weak* continuous.]
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17.49 EXAMPLE If U € U(H) and A > 0, then the prescription

o]

n
A= 3 (Lrtl),— MY AR (A € B(H))
2o nl

defines a norm continuous unital semigroup {Tt:t > 0} whose generator L, is given by

IA = A (U*AU ~ A)

or still,
I_A=—%— (VFVA + AVMV — 2V*AV)

if V= /A U. And the T, are positive and normal.

17.50 REMARK Take H separable and suppose that the semigroup {‘I‘t:t > 0}
is norm continuous with the Tt campletely positive and normal -— then in the

terminology of §16, the Tt are operations if TtI < IV tand the T, are channels

1thI=IVt.



§18. GENERATORS

let X be a complex Banach space —- then a semigroup {Tt:t > 0} on X is said

to be contractive if v t, T,_ is a contraction (i.e., ||T

« tHsl).

18.1 EXAMPIE Take X = L2(R") and define T, by
-n/2 —]x—v|2/4t
(th) (x} = (4mt) S e = f (x)dx.
s
Then the semigroup {T it 2 0} is strongly continuous and contractive. Its generator

L is the laplacian

2 2
A:.@-——-I- P +L,
3%2 x>
Xl Xn
where
Dom A = {£:0f € L2@®Y }.

Here Af is understood in the sense of distributions, hence Dom A is the Sobolev

space w2 (gn) .

18.2 THEOREM (Hille-Yosida) Suppose that L:Dom L » X is closed and densely
defined —— then I is the generator of a strongly continuous contractive semigroup
iff
Y

pl) > Rgand |[GI -L 7| < x> 0.

[Note:

T ] < 1= a=o.



Therefore the conditions are certainly necessary (cf. 17.39 and 17.40). That

they are also sufficient is one of the pillars of the classical theory.]

Suppose that Li:Dom L -+ X is a densely defined linear operator —— then L is

said to be dissipative if VX €DonL & V r € 1_2>0,

.

ez - wx|] = ¢]|x]

[Note: Therefore rI - L is injective and
et -0 7] < = ]]x]|

for all x in the range of rI - L, or still, in (xI - L)Dom L.]

18.3 IEMMA If L is dissipative, then L admits closure.

PROOF Consider a sequence {xn

:x € Dam L}:

| x =+ 0
n

Ix > Y.

Claim: y = 0. To see this, note that v x € Dom L,
eI - L)x + (I - L)x|| 2 rf|rx + x|

=>

Il - xy + eI - Dx|| 2 r]]x]] (0> )

=>

| -y+x-Tx| 2 |[x]]

[ =y +x[] 2 [Ixl] 2 (& + ).



But Dom L is dense in X, hence y = 0.

N.B. The closure L is again dissipative.

18.4 LEMMA If L is closed and dissipative, then rI - L is surjective for
sone r > 0 iff rI - L is surjective for all r > 0.

PROOF Iet O c I_2>0 be the set of r such that rI - L is surjective. Take O
nonempty -- then

p(L) open => O open.

But O is also closed {(=> 0 = 13_>0) . Thus let r, € O:rn +r >0, Giveny € X, 3

X € Dom L:
n
And

-1

EN RIS TN]
-1
=r, lyll cc@3ac>0.

Now write

rml 1xn - me < Hrm(xn -x) - L(xn - xm) I

= Ilrmxn i S an + Lxml |

Ilrmxn—y—-lxm—an+Ixm||

= %, - v - Ix ||

= | lox, = rnxnl |



= |z, -l Tl
< Clry - 1|

to see that {xn} is Cauchy, so X >X

Because L is closed,
X€E€EDomL and Ix = rx - y.

Therefore

rx -Ix=(rI - Lix =y

Ran(rI - L) = X

= r € 0 => 0 closed.

18.5 IFMMA If I, is dissipative and if rI - L is surjective for some r > 0,
then L is closed.
PROOF In fact,

(rI - 1) 7T € B,

hence rI - L is closed, which implies that L is closed.

Given x € X, its duality set is defined by
P = D, exra @ = ||x]]1% =[x 1%
x ~ 7 x X )

[Note: D(x) is not empty (Hahn-Banach).]



E.g.: If X = H, a complex Hilbert space, then D(x) = {x}.

18.6 LEMMA Suppose that L:Dom L -+ X is a densely defined linear operator ——

then I, is dissipative iff v x € Dom L, 3 )\X € D{x) such that

Re XX(LX)

N

0.

PROOF Assume first that the stated inequality is in force. Take x € Dom L:

|[x|| = 1 and choose )€ D(x) accordingly (=> A (x) = lle2 = H>\Xll2 = 1) —- then

vr >0,

[T - )]

] 16T = xl|

[\

[)\X((rI - L)x) |

[\

Re )xx((rI - I)X)

Re (r>\x (x) - >‘x (Ix))

v

r,

which is the implication in one direction. Proceeding to the converse, fix x € Dam L:

||x]] = 1 and assume that

for all r > 0. Choose

and put

Then

[T - x|| =z ¢

A€ D((rI - L)x)

A
r

Ny = l >\rH *

r < | (I - Lyx||



|}

In, (T - L)x) |

rRe n (x) - Re T]r(LX)

< min{r ~ Re n_(Ix), rRe n_(x) + ||1x||}

1
Re n.(Lx) < 0 and 1 - = | 1x] | < Re n_(x).
Iet n be a weak* accumilation point of the net {nr} (r ~ ©). So:

Re n(Ix) < 0 and 1 < Re n(x),

with, of course, ||n|| =< 1, thus

1<Renx < |nx]| <|lxll=1

n e vx.

Put >‘x = 1n to camplete the proof.

18.7 RAPPEL Given x € X, an element )\ € X* is called a tangent functional

at x if A (x) = ||A]] |]x}].

Write T(x) for the set of tangent functionals at x — then D(x) < T(x).
[Note: The contaimment D(X) c €T(x) is proper if x =z 0. For if )X € D(x),

then 3 € T(x) but 3 £ D(x).]

18.8 IEMMA Suppose that L is dissipative — then VX €Dam L & V A € T(x),

Re A(Ix) =< O.



PROOF Fix x € Dom L and let XA € €(x). Put

A

=TI

Then v r > 0,

(T + L) (x) || 2 Re n((I + rL) (%))
= ||x|| + rRe n(Ix).
Therefore
Re n(lx) < limsup% (@ +) & - =D,

r¥0

Consider now any v € Dom Ls

@ +L @ s [lx+ oyl + rlly - 1%]|

A

|[(T - L) (x + xy) || + r]]y = Ix]||

=[] + 2¢[ly - 1x|| + £°| |1y |-

IA

Therefore

Re n(Lx) < lim sup = (2r||y - Ix|| + 2| [Ly| )
ry0

il

2|y - Ix

But Dom L is dense in X, hence

Il
=
.

Re n(Ix)

18.9 LEMMA Sumpose that {Tt:t > 0} is strongly continuous and contractive --

then its generator L is dissipative.

PROOF Take any x € Dom L and let )\ € T(x) —— then



. 1
AMIx) = lim = A(T, x - x)
t->0t t
= Lim § (0 - [ ]l D.
t->0
But
nwga | s [Al] |l |
< ATz T
< [T =l
Therefore
Re A\(Ix) < 0

and one may quote 18.6.

18.10 EXAMPLE Let A € B(X) — then A - ||Al|T is dissipative. For

|lexp(e(@ ~ ||a[[D) }]

| lexp(tA)exp (- t][a[|D) ||

IA

|lexo(ta) [| ||exp(- £||A][D) ]

AL 1Al

A

18.11 THEOREM (Lumer-Phillips) Suppose that L:Dam L + X is a densely defined
linear operator —— then L is the generator of a strongly continuous contractive

semigroup {Tt:t > 0} iff L is dissipative and for same r > 0, Ran(xI - L) = X.



PROOF The necessity follows from 18.2 and the fact that p(L) = 1_3> As for

0
the sufficiency, 18.5 implies that L is closed. But L closed and dissipative forces

the surjectivity of rI - L for all r > 0 (cf. 18.4), thus p(L) > R, and

0

||(rI-L)_l|| s-ll;(r>0).

One can therefore apply 18.2.

18.12 EXAMPIE If X = H, a camplex Hilbert space, then a densely defined L
is the generator of a strongly continuous contractive semigroup {Tt:t > 0} iff
v x € Dom L,
Re<x, Ix> < 0
ard for all r > 0,

Ran(rI - L) = H.

Suppose that L:;Dom L - X is a densely defined linear operator -~ then we shall

call L a generator if L is dissipative and for all r > O,

Ran(rI -~ L) = X.

18.13 EXAMPIE If L and L* are dissipative, then L is a generator.
[In view of 18.3, L admits closure, hence L makes sense, and, as mentioned

there, L is dissipative, so matters reduce to proving that v r > 0,

Ran(rI - L) = X

or still, v r > 0,

Ran(rI -~ L) X.



10.

To get a contradiction, assume that 3 r > 0:
Ran(rI - L) = X.
Then, by the Hahn-Banach theorem, 3 X =z 0 in X* such that

<(rI - L)xX,2>=0 (x € Dom L) .
Therefore A € Dom L* and

<x,(rI - L¥*)\>

0 (x € Dom L) .

But Daom L is dense in X. hence (rI - L*)) = 0, which violates the injectivity of

(rI - L*) (by hypothesis, L* is dissipative).]

18.14 THEOREM Iet L be a generator and suppose given a linear operator A with
Dom A > Dom L
subject to
||ax|| < aflx|| +bl|x|| (x € Dom 1)
for some a > 0 and 0 < b < 1. Assume: Either A or L + A is dissipative — then
L + A is a generator.

[Note: The domain of I. + A is Dom L.]

It will be convenient to proceed via a series of lemmas.

18.15 IFMMA TIf A is dissipative, then L + oA is dissipative for all o = 0.

PROOF According to 18.8, vx € Dam L & V A € T(x),

Re A (Ix) < 0.

But, being dissipative, the same holds for A, thus V x € Dom L & V A € T(x),

Re A((L + ad) (x)) < O.
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Therefore L + oA is dissipative (cf. 18.6).

18.16 LEMMA If L + A is dissipative, then L + oA is dissipative for all
o = 0.

PROCF In fact, Vv A € T(x) (x € Dom L),

Re A((L + oA) (x))

i

oRe A((L + A) (%)) + (1 - a)Re A (Ix)

< 0.

Therefore L + oA is dissipative (cf. 18.6).

18.17 IEMMA If O < ap < %5, then L + oA is a generator.

PROOF To begin with, Yx€ X &V r > Q,

|

rA(T - rL)'lxll

< allr( - rL)—lx|! + b||rL(I ~ rL)—lx[

But

|J2L(T - r1) “lx] |

||- rL(T - rL)—lx||

1[((T - rL) - D (T - L) x| |

i

[T - (-~ rL)'lx[{.

So, bearing in mind that

1
[

[T -z | <1,

it follows that
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||7AT - ) x| | < (ar + 2b) | |%]].

Now choose ry such that ocl(ar +2b) <1l for 0 <r < r, and put
A = o rA(I - rL) *
r 1 *
Then
||Ar|| < oj(ar + 2b) <1
=>
(I -2a)"T e B
. .
Therefore

Ran(Il - r(L + ozlA))

Ran((T - Ar) (I - L))

Ran(I - Ar)

Dam(I - A )T = x.
Y

Since L + o,A is dissipative, 18.5 implies that L + oclA is closed, thus by 18.4,

1
rI - (L + oclA)

is surjective for all r > 0. Consequently, L + onlA is a generator.

1 .
18.18 LEMMA If O < oy < FH* then L + onlA + oA 1s a generator.

PROOF V x € Dom L,

A

lax|| < af[x|] + bl |x]]

al |x[| + b||Ix - o)Ax + o Ax]|

IA

IA

al %[ + bl | @ + oyA)x|| + bo, | |ax]|

1l
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IA

allx|| + b | @+ amx|| + 3 ||2x]]

IN

| [Ax]|| < 2a||x|| + 2b|| (L + oclA)xH.

From here, one may argue as in 18.17 to conclude that L + oclA + OL2A is a generator.

Tteration then implies that

o 1
L+ (32 a)A (0<aq <-)
1 K R

is a generator. But

-n
1 1 1 1-2
et e F e + = .
2 4b Iy b
Therefore L + oA is a generator for all
-n
1 -2
0 <a < ) .
Since b < 1,
-n
n> > 0=>.]_'_%> 1.

Accordingly, L + A is a generator, the contention of 18.14.

18.19 REMARK It is an interesting point of detail that

18.14 => 17.18.

18.20 EXAMPLE The assumption that b < 1 in 18.14 camnot, in general, be

replaced by b = 1. E.g.: Let H be a canplex Hilbert space and let A be selfadjoint
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but unbounded — then v-I A and - V-1 A generate strongly continuous contractive

semigroups. On the other hand,
|| - /=L af| = [|/Tall,

so the conditions of 18.14 are met with a = 0, b = 1. However, v-1 A + (- /-1 A)

is the zero operator on Dom A, thus is not closed, thus is not a generator.

18.21 REMARK If A* is densely defined, then b = 1 is permissible in 18.14

provided the conclusion is modified to read: L + A is a generator.

If A is bounded and dissipative, then 18,14 implies that L + A is a generator.

Proof: V x € Dom L,

| |ax] |

IA

ALl [l

AT [1xl] + bl1x|| (0 <b <1D).

IA

18.22 EXAMPIE ILet X = B(H) (H a complex Hilbert space). Consider a con-

tractive semigroup {Tt:t > 0}. Assume that {Tt:t > 0} is weak* continuous and, in
addition, that Vv t > 0, the map Tt:B(H) > B(H) is positive and normal -~ then the

predual semigroup {('I‘t) x:t = 0} is strongly continuocus (cf. 17.44) and contractive

(H(Tt)*ll = H((Tt)*)*H IthII < 1). Suppose now that A € B(H) is the dual of

an element T of L, (H): A=T* — then T - ||T| |1 is dissipative (cf. 18.10), thus

L, + T~ ||T]]|T

is a generator, so L, + T is the generator of a strongly continuous semigroup
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(c£. 17.18). Therefore

(L, +M*=L+Aa
is the weak* generator of a weak* continuous semigroup on B(H).
[Note: The growth bound on the semigroup per L, + T is exp(]|T||t), hence
the growth bound on the semigroup per L + A is exp(||a]]t).]

The formulation of 18.11 simplifies if L is bounded.

18.23 THEOREM Iet L € B(X) - then the norm continuous semigroup {etL:t > 0}

is contractive iff L is dissipative.
Of course, we need only deal with the sufficiency, the crunch being 18.27 infra.

18.24 RAPPEL Iet L € B(X) — then the frontier 3¢ (L) of the spectrum o (L)

is contained in the approximate point spectrum of L.

[Note: This means that given z € 30(L), 3 a sequence x_ € X:Han =1 and
lim ||ix - zx || = 0.]
n > n n

18.25 ILEMMA Suppose that L € B(X) is dissipative —— then
30(L) < {z:Re z < 0}.

PROOF Fix z € %0(L) and choose the x, as above. Put >‘n = )\x {cf. 18.6), thus
n

Re An(Ixn) < 0.
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}\n(an - zxn) >0 (nh > «)
%(an) - zkn(xn) ~0 (n-»> )
An(an) -z>0 (n~> o)

Re kn(lxn) >Rez (n > ),
Therefore Re z < 0.

- 2 _ 2 _
[Note: Recall that A (x) = ||x ||“=|[A []"=1, so

A (x - zx )|

IA

]| [l - 2 ||

lx, =z || >0 (@ >=).]

18.26 RAPPEL Iet L € B(X) —— then the set of z € ¢(IL.) such that z is not an

eigenvalue and Ran(zI - L) is closed but not all of X is an open subset of C.

18.27 ILEMMA Suppose that L € B(X) is dissipative -- then p(L) > R o
PROOF V r > 0, rI - L is injective, hence r is not an eigenvalue. On the

other hand, rI - L is bounded, thus closed, so (xrI - L) "l is closed. But

(rI -~ L)_l:Ran(rI - L) » X

is bounded. Therefore its domain Ran(rxI - L) is closed. And, in fact,
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Ran(rI - L) = X (otherwise, use of 18.26 would lead to a contradiction of 18.24).]

18.28 RAPPEL Iet a,b be two points in a Banach space E — then the function

t>|la+tb|]| (t€R
has a derivative on the right and a derivative on the left at every t, € R.
In 18.28, take E=B(X), a=1I, b =1L, t0= 0 —— then
lig LJI*Ftnll -1
£40 t
exists.
Notation: Given a unit vector x € X, fix A € D(x) (=> A_(x) = ||x] |2 =
2
||>\xl| = 1) and put
o) = sup _ Re XX(Lx).
x:||x]] =1
18.29 IFMMA v L € B(X),
o) < Lim HL*+ I =1
40
PROOF We have
|\ (x + tIx) | = |1 + tRe ) _(Ix) + /-1 t Im )\ (Ix)]

2,1/2

((1L + tRe >\X(Lx))2 + tz(Im >\X(Lx))

1+ tRe )\X(I_x) + o(t).
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Therefore
A Gx+ tIx) | - 1
Re A (Ix) = Lim c .
£40
But
I (x + ) | < [ [T + tnyx]]
< |l + tn]].
Therefore
Re )\ (Iz) < lim MI* L] -1
X £40 t
=>
o) < Lim HI+ L[] -1
£40 t

18.30 LEMMA Iet L € B(X) and suppose that

|I+tL||—-ls0.

lim !
o

Then L is dissipative, hence {etL:t > 0} is a norm continuous contractive semi-

group (cf. 18.23).

PROOF For O(L) < 0, thus one may cite 18.6.
[Note: To establish that L is dissipative, it suffices to work with unit

vectors (see the proof of 18.6).]

Now specialize and take X = B(H) (H a complex Hilbert space).

18.31 THEOREM Iet L € B(B(H)) and assume that L. is *-~linear - then etL
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is positive for all positive t iff

LI + U*(LI)U > (LU*)U + U*(LU)

for all U € U(H).

The initial step is to reduce matters to when LI = 0. Thus let K = - LI/2
and define

L':B(H) > B(H)

L'A = KA + AK.

Then V t € R,
L}
etl' (aA) = etKAetK

L
and {etL :t € R} is a norm continuous group of positive maps on B(H). But in norm,

vVtz=0

SEHLY) (o (o (/D)L (£/m)L* ymy

lim
n >

(cE. 17.18).

t(L+L')

Therefore etL is positive for all positive t iff e is positive for all pos-

itive t. To complete the reduction, it remains only to note that

(L + L) =1I - L.I/2 - LI/2 = 0.
Obviously,

=> etL

IT =0 (1) = 1.

So, if et‘T'l is positive, then

[1eT] =1 (cf. 11.27).

Now let U € U(H):

«x,e ) e W) x>
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<etL (U) x,etL U)x>

ek |2

2 2
ISCHEIER

IA

(el ol D3]] |2

IA

IA

<X, %>

Lwn et < 1.
Differentiation at t = 0 then gives
0 = (LU*)U + U*(LU).
[Note: At this point, replace "L" by L + L' to get

0z ((L+LYUYU + UX((L + LY)U)
or still,

0 = (LU%)U + U*(LU)

- (LI/2)U*U + U* (- LI/2)U + U* (-~ LI/2)U + U*U(- LI/2)
or still,

LI + U*(LI)U = (LU*)U + U*(LU).]

tL

Conversely, since etL is unital, to prove that e~ is positive, it suffices

to prove that ||etLH < 1 (cf. 11.13) and for this, we shall apply 18.30. To begin
with,

[|T + tL]| = sup ||U+ tLu|] (cf. 11.26).
Uel (H)
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But

U + twu] ] = || (U + tL0) * (U + tw) ||

= ||T + £((LU*)U + U*(W)) + t2(LU)*LU||

which, for 0 < t < -z—l—ﬁl:ﬂ—, is

<1+ t2[L]|®  (see below).

So
[T+ )] s @+ 25?2
=
pp el -1 e+ Ao
£40 € £40 €

T

Therefore ||e <1 (cf. 18.30).

18.32 RAPPEL Iet T € B(H)SA —— then

7|} = sup |<x,Tx>
X€S (H)

The assumption is that
0 z (LU*)U + U*(LU)

and, from the definitions,
[[@ur)u + uxr@o) || < 2]|L]].

This said, given x € S(H), consider

<%, (T + t((LUNU + U* (1)) + t2(I0) * x>



Then
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= 1+ t<x, ((LUY)U + U* (L)) x> + £2<x, (LU) *Tx>.

1 + t<x, ((LU*)U + U*(LU))x> > O.

Thus, with this restriction on t, we have

[T + ((@U*)U + U*(LU)) + t2(LU)*LUH

sup  |<x, (I + t((LU)U + U*(W0)) + £ (LU)*L0) x> |
xeS (H)

sup <x, (I + t((LUX)U + U*(LU)) + 2 (LU) *LU) x>
XES (H)

sup 1 + t<x, ((LUX)U + U*(LU))x> + £2<x, (LU) *LU>
XES (H)

sup 1 + t2<x,(LU)*LUx>
x€S (H)

IA

1+ t2|[L|[2.

in



§19. DISSIPATIONS

Fix a complex Hilbert space H. Iet L € B(B(H)) and assume that L is *-linear.

Consider the following conditions.
1. etL is positive (t > 0).
2. (rI - 1)} is positive (r > Nzl .
3. B*(LA)B 2 0 if AB = 0, where A € B(H) , B € B(H).
4. v A€ BH g,

LA2 + A(LI)A = (LA)A + A(LA).

19.1 THEOREM We have

4 =>3=>2=1=4,
The proof is spelled out in the lines below.

19.2 IEMMA Assume 4, let A € B(H) let w € S(B(H)), and suppose that

4
w(A) = 0 — then w(La) = 0.
PROOF Vv B € B(H),
w(vAB) = 0 = w(BY/A) (cf. 2.9).
But

IA + vA(LI)/A > (L/A)/A + /A(L/A)

w(Id) + w(/ALI)VA) > w((L/A)/A) + w(/A(L/A))



w(La) = 0.
19.3 RAPPEL ILet T € B(H)SA — then T € B(H)+ iff v w € S(B(H)), w(T) = 0.

4 =>3: V€ SBMH),
w(B*AB) = 0.

On the other hand, w(B* B) is at least a positive linear functional, thus on the

basis of 19.2,
w(B*(LA)B) > 0.
But

B*(LA)B € B(H) gy

SO

B*(IA)B > 0 (cE. 19.3).
3 => 2: It will be enough to show that if A € B(H)sA and if (rI - L)A € B(H)+,
then A € B(#),. To this end, write A=A’ - A". Since A'A" = 0, we have
A~ @ah)a™ > 0. 1In addition,

A (I - L/r)(A)A

o
N

= A AA - A (L/r) (A)A
=a @t -a)a -2 @ @t - AT

- @3 -2 @wr @hHaT + AT/ @A



@) < @)+ 2w/ ahat
<A (I/r) A )A .
If A = 0, then
-3 -3
Ha™|]” = |@a) 7|

In

A" (L/r) (A )A ||

IA

lel] |1a7])°

127113,

A

a contradiction. Therefore A = 0, so A = A" € B(H) L+

[Note: The map

(eI - ) L:BH) > BH)

is %-linear, hence respects B(H) SA.]

2 => 1: This can be seen by writing

o = 1im (I - f—lL)—n (cf. 17.41).

n > <«

19.4 ILEMMA Assume 1 and further that LI = 0 — then V A € B(H)SA'

2% > (1A)A + A1) .

PROCOF Obviously,

LI =0 => etL(I) = TI.

] = 1 (cf. 11.27), hence

So, if e is positive, then ||e

e@a?) > eT@?  (cf. 11.25).



Differentiation at t = 0 gives

1a% > (IA)A + A(IA).

1 => 4: As in the proof of 18.31, introduce L' and then pass to L + L'.

Since (I. + L")T = 0, from the lemma we have

(L +LYA% > ((L +LYA)A + AL + L)A)

or still,
a2 + (= 11/2)a% + A% (- 11/2)
> (IA)A + (- LI/2)A% + A(- LI/2)A
+ A(LA) + A(- LI/2)A + A2(- LI/2)
or still,

1A% + ALI)A > (IA)A + A(LA) .

19.5 REMARK Replace 4 by 4': VA€ B(H)SA,-

LA2 > (LA)A + A(LA).

Then the proof that 4 => 3 goes through under 4', thus 4' implies that etT" is

positive (t = 0).

19.6 LEMMA Suppose that LI < 0 - then LI is dissipative.

PROOF From spectral theory (cf. infra),
I (ex -LI)"lH < % (r >0).

So, ¥V x€ H,

| zT - L)x|| = |] (T = LI) (zT - LI)_"lyH



= |lyll-
But
et - D7y | < [er -7 |yl
< Uyll
r
=>
Hyll = 11T - L)x||
> 7| (eI - LD) Y|
=r||x|]|.
[Note: Write
-1 _ 1 T
(e =10 7= Jon =% Ty
Then

LI < 0 => o(LI) < Ry

1] (eI - L) 3| < sup Lo

reo(rr) £~ A

19.7 IEMMA Suppose that LT < 0 =- then V t 2 0,
e @ ] = 1.

tL(I)

PROOF The assigmment t -~ e is a norm continuous semigroup on #(not

B(H)...). Since its generator LI is dissipative (cf. 19.6), we have

11e® D <1 (cf. 18.23).



But

etL(I) = etL(I) .

19.8 THEOREM etL is a positive contraction for all t = 0 iff

122 > (IA)A + A(IA)

for all A € B(H)SA'
PROOF If the eJCL are positive contractions, then

etL(I)etL(I) <I

(LI)T + I(LI) <0
=> LT < 0.

So,VXeH&VAeB(H)SA,

<x,A(LL)Ax> = <Ax, (LI)AxX> < 0

A(LI)A < 0.

LA2 + A(LI)A

;t\)
v

v

(IA)A + A(TA) (cf. 1 => 4 in 19.1).

Conversely, the relation
1A% > (IA)A + A@A) (A € B(i)g,)
implies that the et are positive (cf. 19.5) and, on general grounds (cf. 11,27),

™| = [|e™

@ 1.



Now take A = I to get

LI > 2L => LI < 0.

Therefore
e @[] <1 (cE. 19.7).

Let A be a *-algebra.

e A x—dissipation is a *~linear map §:A - A such that

S(E*E) = S(E*)E + E*§(8) (E € A).

® A *—derivation is a *-linear map §:A > A such that

S(gn) = §(&)n + &8(n)  (E,n € A).

[Note: Recall that 6§ is x~linear if 6 is linear and §(§)* = §(£*) (thus
E=8&% => §(8)* = §(8)).]
N.B. While these definitions are the point of departure for a "general theory",

we shall deal only with the case where A = B(H), H a complex Hilbert space.

19.9 EXAMPLE If §:B(H) - B(H) is a *—dissipation, then

(1)

I

S(IT) = 26(I) => &(I) < 0.

19.10 EXaMPIE If 6:B(H) -+ B(H) is a *~derivation, then

§(T)

it

§(ITI) = 26(I) => &6(I) = 0.

19.11 THEOREM Suppose that §:B(H) - B(H) is a *—dissipation — then § is

dissipative.



PROOF Fix A € B(H) and let A € T(A*A):|[A|| = 1 (=> r(a*a) = ||a*a|| =
| 1Al 12) - then \(I) = 1 (hence ) is positive (cf. 11.12)). Proof: Write
A(I) = a + /-1 b and note that

a2+p°=m|? <1,
@-202+1p°= a1 - 22%8/][a]|% % < 1,
from which a = 1 and b = 0. This settled, define AA € B(H)* by

XA(B) = A (A*B).

Then vV B:||B|| = 1, we have

2, ® |7 = |a@*) |2

IA

A (A*A) )\ (B*B) (cf. 2.9)

IA

[al1% | 18]

||al]?

IA

ENIEREIE
On the other hand,
[1al1% = a@*) = n @ < |Iny]] 2]
1Al < gl
Therefore
w® = LAl = (a1 18]

Ay € T(Aa).



Next

But

since, e.g.,

2Re 1, (6A)) = A, (5(A) + T (8@

A(A*§(A)) + A (A*§(R))

AA*S(A)) + A((A*S(A))*) (cf. 2.9)

A(A*S(A)) + A (8(A)*An)

A(S(A*)A) + A(A*S(R))

N

A (S(A*A))

A2 1% - a*a)) + |[a][2A @) .

S(I) <0 => A(S(I)) < 0.

A(G(IIAHZI - A*A))

= - A58 (B = (| !AHZI - axa) 172

A= 8(82))

IN

A(- §(B)B - BS§(B))

- X(8(B)B) - X(BS(B))

1

=0'

[A(5(B)B) |2

< A@®HABY  (cf. 2.9)

)
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AG® 2 (Al [P @ - A@*a))

il

A (5 (B)2) (0)

= 0.
Therefore § is dissipative (see below).
[Note: v A € B(H),

Re XA((S(A)) < 0.

So
AT AL = Re 2, ()
<Re AT -r8)@) (r>0)
< PRI @ - eo) @ |
=>
LA < [T - o) @A) 1.

T.e.: & is dissipative.]

19.12 LEMMA Suppose that §:B(H) - B(H) is a *-dissipation -—- then § is
bounded.

PROOF In fact, 6 is dissipative (cf. 19.11), hence admits closure (cf. 18.3)

or still, § is closed, thus is bounded (closed graph theorem).

[Note: In particular, *-derivations are bounded.]

19.13 REMARK If §:B(H) -+ B(H) is a *—dissipation, then § is the generator

of a norm continuous contractive semigroup {etd:t > 0} (cf. 18.23).
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19.14 THEOREM Suppose that §:B(H) - B(H) is a bounded *-linear map ~- then

§ is a *—dissipation iff v A € B(H),

etd t§

(a*a) > e (at)eto(m) (£ = 0).

PROOF Differentiation at t = 0 gives

§ (A*A)

v

S(A*)A + A*§(A).

Conversely, if § is a *-dissipation, then et(S is positive (cf. 19.5). Fix A € B(H)

and let

£t) = eo@ar) - PaneP @ (e 2 0).

ts § t3

£re) = setdara) - (setSar))et @) - o (a%) (st ()

e(t-s) §

£(t) - eO£(0) = S (

E f(s))ds

i

(t-8) § (t-s)§ 4

t t
- IO e §f(s)ds + fO e 3= £(s)ds

(t-s) §

fg e (558 @ar) 5% a))

- (555 S0 (a) - 5% (a*) (5% (a)))ds

v
o

£(t) > SFF(0) = 0

o ara) » @net@) w2 0).
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We shall now narrow the focus of 19.1.

Let L € B(B(H)) and take L #-linear —- then L is said to be conditionally

completely positive if v n € N and for all

Al,...,An € B(H)

XypeeorXy € H,

we have

n
Y o<x,,L(A*.)x.> >0
ig=r + T

whenever Alxl + see + Anxn = 0.

19.15 LEMMA L is conditionally campletely positive iff V n € N and for all
Byre-orP € B(H)

Byse-eesB € B(H),

we have

n

% B’.JiL(A’{A.)B. 20
i,3=1 7

whenever AlBl + eee 4+ Aan = Q.

Let Ln be the extension of L to Mn(B(H)) .

19.16 LEMMA L is conditionally completely positive iff v n € N and for all
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finite collections

A /B € Mn(B(H)),
we have
)X *T, (A*A,)B, =20
) gk n ék—li =L

whenever I = 0.
> Bl

[Note: The verification hinges on 11.5 and 11.9.]

19.17 THEOREM Let L € B(B(H)) and assume that I, is *~linear -— then etL is

completely positive for all positive t iff L is conditionally completely positive.
PROOF Suppose first that the et are completely positive. Fix n € N and let

AjreeesB € B(H)

Byreee/B € B(H)

subject to AlBl + .. + Aan = 0 -- then

n ol (a%A.) - A*A
Z Bt ( 1 1
i,3=1

J
T ) By

n
& omeTamos, 20
i,3°1 >
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n
¥ B*¥L(A%A.)B. =0 (t - 0).
g5 T

Conversely, thanks to 19.16,

AB = 0 => Q*Ln(é*é)g > 0.

tL
Therefore condition 3 of 19.1 is in force (details below), so e N s positive. As

this is true v n, it follows that etL is completely positive.
[Note: If A€ Mn(B(H))_'_, then A= /VA VA and AB = 0 <=> YA B = 0 (recall that

/A is the strong limit of a sequence of polynamials in A).]

19.18 THEOREM Iet L € B(B(H)) and assume that I is *-linear — then etL is

completely positive and contractive for all positive t iff vn € N and for all

Bjre--/A € B(H),

we have

[L(A}‘_Aj)] b3 [L(A;l.‘_)Aj + AiL(Aj)].

Here is an initial preliminary to the proof.

19.19 IEMMA ILet 9:B(H) - B(H{) be a bounded *-linear map — then ¢ is completely

positive iff v n € N and for all

Al""'An € B(H),

we have

o] | lo@adA)] = [s@N oM.
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PROOF That the condition is necessary is a consequence of 11.24 and 12.15

(lel| = |l |]). That the condition is sufficient is immediate: V x;,...,x € H,
n n
lell = <x., 0@ x.> 2 ||< c1>(Ak)ka2 2 0.
ig=1 = 7 k=1

So, if {etL:t > 0} is a semigroup of completely positive contractions, then

et e > [l

tL tL
[e (A;Aj)] 2 (A§‘_Aj)] (a¥)e (Aj)]

[L(AS-*_Aj)] 2 [L(Ai)Aj + A{L(Aj)].

To reverse this, some additional considerations will be required.
N.B. In its simplest form, the condition on L implies that the etL are

positive contractions (cf. 19.8).

19.20 IFMMA Let o € S(Mn(B(H))). Assume:

w([AzAj]) = 0.

w([L(A_:’.:Aj)]) > 0.

PROOF  Define A, € M _(B(H)) by

0

20 O
0 0 O

o
.
.
.
o
»
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Then w(A%A) = 0, thus v X € M_(B(H)),

wZRg) =0
(cf. 2.9).

* -
w (Z_—}O)_(O) 0

In particular: Vv KyjreeerX € B(H) ,
w([XiAj]) = 0

w([A;Xj]) = 0.

Therefore

w([L (A;-‘_Aj) 1

v

w([L(Ai)Aj]) + w([AS!‘_L(Aj)])

= 0.

19.21 IEMMA L is conditionally completely positive.

PROOF Fixn € N and let

Byr--- 0B € B(H)

yreeerXy € H

subject to Alxl + ee. + Anxn = 0 — then the claim is that

n
X <xi,L(A’.‘lA.)x.> > 0.
i, F1 J 3
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Iet

]
- n
x = . EBH
Xn

and let W, denote the associated positive linear functional:

0 @) = <xmo @ EN BH)).

Then
n n
wx([AzA.]) = ¥ <xX., = A}*_A.x.>
B3 J i= 4=1 J
= 0.
Therefore
*
w}_z([L(AiAj)]) 20 (cf. 19.20).
I.e.:

n
z <xi,L(A;.‘_A.)x.> > 0.
i, 41 373

Consequently, the etL are completely positive (cf. 19.17).

19.22 THEOREM Iet L € B(B(H)) and assume that L is *-linear -~ then

is completely positive and unital iff ILT = 0 and v n € N and for all

Al,...,An € B(H)
_ Bl,...,Bn € B#H),

n

* . * - A%
i, Fl

etL
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PROOF Suppose first that etL is completely positive and unital. The relation

n
LT = 0 being obvious, consider the asserted inequality. Put AO =1, By = - x AB, -
i=]1
n
then 3 AiBi = 0. Since L is conditionally completely positive (cf. 19.17),
i=0
n
I B*L(A*AL)B. = 0 (cf. 19.15)
.o b A Ny W
i, =0
or still,
n n
(- Z ABOHY*LI(- I A.B.)
. i7i . i
i=1 i=1
n n
+ (- I AB)* I L(A,)B,
i=1 =1 ]
n n n
+ ¥ B¥M(A¥)(- I A.B.) + L B*L(A*A.)B. = 0.
=1 *+ 7 =1 73 i,=1 t LI 3
But LTI = 0, hence
n
* * - * - *
‘ _Z Bi(L(AiAj) L(Ai)Aj AiL(Aj))Bj > 0.
i, Fl

As for the converse, LI = 0 => etL unital. Furthermore, if the inequality obtains,
then the matrix

* - * — *
[L@asA) - L@HA; - MLG)]
lies in M_(B(H)), (cf. 11.5), o e is completely positive (cf. 19.18).
Iet 9:B(H) » B(H) be completely positive. Fix K € B(H) and define

L:B(H) - B(H) by

IA = (A} + K*A + AK (A € B(H)).
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Then it is clear that L is *~linear and conditionally completely positive. The

converse is also true and is of pivotal importance for the theory.

19.23 THEOREM Suppose that L € B(B(H)) is #-linear and conditionally
completely positive —— then 3 a campletely positive map ¢:B(H) - B(H) and an
operator K € B(H) such that

1A = o(A) + K*A + AK (A € B(H)).

PROOF Fix X, € S(H), define K by

<y, ,Kx> = <X0’LPx0,yx>

1
T2 oty x KoY

and then define ¢ by

®(A) = LA - K*A - AK (A € B(H)).

To check that ¢ is completely positive, let

Al,...,An € B(H)
XyreeerX, € f,

and consider

n
*

i, j=1
or still,
n
i,jE-]_ <xi,L(A§‘_Aj)xj>
n n
- z <xi,K*A_;4Lfij.> - L <x, ,A*A.Rx.>,

i,5=1 3 oi,5=0 I
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which we claim is the same as

n
Y <x.,L(A*A . )x.>
i,yg0 + t 13
if
n
A = -

z p .
07 7 0y Kxexg
Granted this,
AOXO + Alxl + cee + Anxn
=~-AP X, — »++ —AP X
A1 Xy 1%y 0 X %, 0

+ A X, + <o + A X

171 nn
=T Alxl -ttt T Anxn +A1Xl oo Anxn
=0
=>
n
z <x.,L(A§A.)x.> >0,
i, g0 * 7

L being conditionally completely positive. Therefore ¢ is completely positive. As
for the claim, in the expression

n
j_’j.Eo <xi,L(A;.*_Aj)xj>

isolate

n&
<x0 ,L (AOAO) x0>

and
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n
T <x.,LA*A.)x.>
j=1 0 073"
n
*
i_E.l <Xi'L(AiAO)XO>'
We have
*
<x0 L (AOAO) x0>
n n
=<x.,L((Z A,P )*( L AP Y)yx >
0 i=1 T ¥%5:%g j=1 | Xj'XO 0
n
= L <x.,L(P A*A P )X >,
i,5=1 0 XqrX; 1] xj,xO 0
But
P A*A.P
XqrX; 173 xj,xoy
= *A.< .
PXO,XiAlAJ xo,y>xJ
= < *A.X.
PXO'Xi XO’Y>A1AJXJ
= *
<x0 'Y <xi ’AiAij >x0
= <Aixj_'Aij >Px0,xoy'
So
*
<X 'L (AOAO) X5>
n
= <Xn,LP XA YL <A.X.,A.X.>.
0 Xqr%g (4] i,5=1 b s iy
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Next

n

*
E <x0,L(AOAj)xj>

J=1

n
= - Y <X ,L(P A*A.)X.>
i,9=1 0 ForXy 1373

n
= - T <L(P A¥A L) *x. ,x.>
i,3=1 Xge¥y 137 707

n
= e *
I <L(A*A.P )xo,xj>

i,3=1 e LA

n
= - I <L(P )xo,xj>
¢ oa_ *
i,j=1 AinXi’XO

n
= - X <x0,L(P Y *x.>

.o * ]
i,i=1 AinXi’XO

n
= - z <x0,L(P )x.>.

o *
i,3=1 xO,Ainxi

Analogously
n

*
- z <xi 'L (AiAO) xo>
i=l

It remains to deal with

n n

- X <x.,K*A§€A.x.> - % <x.,A;.‘_Aij

1 1

i,5=1 HRE ¥ o

>
J
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or still,
n n
- T <Kx. ,A%A.x.> - L <A*A.x. ,Kx.>
95 o5
or still,
n n
- I <ARAX KX - L <A¥Ax, K>
i,j=1 3 ' ij=1 It J
or still,
n n
- T <x0,L(P )xi> - X <x0,L(P YX.>
s s * F == *
i,j=1 XO'AiAij i,j=1 XO'AinXi
n
+ = <x.,LP X > L <A*A.x.,x.>
2 70 Xn1¥q 0 i,3=1 i
n
+ = <x.,LP X > L <A¥A.x, ,X.>.
0 XqrXq 0 i,9=1 3171
Since L, is *-linear,
1P € B(H) anr
XO,XO SA
hence
<X ,LP X, >
0 XO’XO 0
is real. And
n
¥ <A*A.x.,xX.>
ig=1 t)T
n
= T <x,,A*A.x.>
. oL 1973
1,3=
n

L <A.X.,A.X.>
O T
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while

X <A’.‘Aixi,x.>
i3m0 I

n
= i’ji]_ <Aixi,ijj>.

We have thus accounted for

<xo,L(A’6AO)x0>.
What's left is obvious.

Put

H= % (K - K*).
Then

H € B()gp-

19.24 LEMMA Suppose that LT = 0 = then

IA = 6(A) —% (8(T)A + AO(T)) + /=T [H,A] (& € B(H)).

PROOF In fact, v A € B(#),

-%- (B(T)A + AB(I))
l * *
- 2 (& - MDA - AK - K¥)

((K* + K)A + A(R* + K))

N =

_%_ ((X - K*)A - A(K - K*))
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=-12- (2K*A + 2AK)
= K*A + AK.

19.25 REMARK Take H separable, consider the representation of I per 19.24,
and impose the additional condition that L is weak* continuous ——- then ¢ is weak*

continuous, hence in view of 16.10,

dA) = I VFAV

(A € B(H)).
kex K7k

Accordingly, V A € B(H),

= _1 - -
IA=-3 ké( (VA A + ARV - 2V¥AV, ) + /=1 [H,A].

[Note: This representation of L is, of course, far from unique.]



§20. DERTVATIONS

Fix a complex Hilbert space H. Let H € B(H)SA and given t € R, put

T A= oL tHy ~ V-1 tH

” (A € B(H)).

Then the assigmment t - Tt is a norm continuous one parameter group of *-automor-
phisms of B(H) and its generator L is given by

1A = /-1 [H,A] (cf. 17.16).

20.1 THEOREM Suprose that {Tt:t € R} is a norm continuous one parameter
group of *-automorphisms of B(H) -- then 3 H € B(H)SA such that vV t € R,

o1t - /-1 tH

TA = (A € B(H)).
The proof depends on two preliminary lemmas.
20.2 LEMMA Tet 6§ € B(B(H)) - then e O(t € R) is a one parameter group of

*=automorphisms of B(H) iff § is a *—derivation.

PROOF The derivative at t = 0 of the function
t > e aB*) = (efa) (et0p)*
is

§ (AB¥*)

(6A)B* + A(SB) *,
thus § is a *—derivation. To go the other way, assume first that 0 < s < t and

consider the function

s » oE8)8 (S8 (Sp) %),



Since § is a *-derivation, the derivative of this function vanishes identically on

[0,t], hence

et (ap*) = (%) (e 0p) .

I.e.: et(S is a *-homomorphism. An analogous argument shows that the inverse e'-t(8

has the same property, from which the assertion.
N.B. A x-derivation §:B(H) - B(H) is necessarily bounded (cf. 19.12).

20.3 IEMMA Suppose that §:B(H) - B(H) is a *—derivation —— then 3 H € B(H)SA
such that v A € B(H),

§(d) = /-1 [H,A].

PROOF Fix y € S(H) and define H € B(H) by

~

Hx = cS(Px’y) (v) (P = <y,— >X).

Given A € B(H), we have

(HA - AH) (x)

8By ) ) = ALSE, ) ()

@, ) (¥) - (AR, ) ()

= ((6A)P Y) (y) + (A(éP,

’ ’

y)) (y) - (A(cSPX’y)) (v)

((sn) Px,y) (y)

5A(ley(y) )

SA(<y,¥>X)

SA(x) .



Therefore
SA = HA - AH.
It remains to be shown that H can be modified to v/=1 H, where H € B(H)SA. To this

end, note that

~

HA* - A*H

It

S (A¥)

S (A)*

= A*PNI* - ;I*A*

or still,

Accordingly,

H - H*

H*
(2

)a - ACS)

|
N -

(HA - AH) +%—(AH’.‘-—H*A)

(HA - AH) +%‘-(;IA—A;1)

|
-

= GA,
2 we can take

H - H*
H=— ¢ 5

L )
/=T

Turning to the proof of the theorem, let § be the generator of {Tt:t € R} —

then the first lemma implies that § is a *~derivation and the second lemma implies
that
§ = /=1 [H,—].



Finally

TA = otoa = o/ 1 Ao L tH (cf. 17.16).

The assumption that {Tt:t € R} is norm continuous can be substantially

weakened but then matters become more technmical in execution.

20.4 THEOREM Suppose that {Tt:t € R} is a weak* continuous one parameter

group of #—automorphiasms of B(H) -— then

T.A = UtAU"é (A € BH)),

where t > Ut is a strongly continuous group of unitary operators on H.

N.B. Stone's theorem says that 3 a selfadjoint operator H (in general un-

bounded) such that v t,

20.5 REMARK It can be shown that if {T _:t € R} is a strongly continuous one

parameter group of *-automorphisms of B(H), then {Tt:t € R} is necessarily norm

continuous.
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