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INTRODUCTION

My original set of lectures on Mechanics was divided into three parts:
Lagrangian Mechanics
Hamiltonian Mechanics
Equivariant Mechanics .
The present text is an order of magnitude expansion of the first part and
is differential geometric in character, the arena being the tangent bundle rather
than the cotangent bundle. I have covered what I think are the basics. Points
of detail are not swept under the rug but I have made an effort not to get bogged

down in minutiae. Numerous examples have also been included.

ACKNOWLEDGEMENT Many thanks to Judith Clare Salzer for typing the manuscript

with great campetence and dispatch.



§1. FLOWS

Let M be a connected C~ manifold of dimension n. Fix a vector field X on
on M —— then the image of a maximal integral curve of X is called a trajectory
of X. The trajectories of X are connected, immersed suhmanifolds of M. They
form a partition of M and their dimension is either 0 or 1 (the trajectories of

dimension 0 are the points of M where the vector field X vanishes).

A first integral for X is an £ € C (M) :Xf = 0.

[Note: The set of first integrals for X is a subring C;: M) of COO(M) .]

1.1 LEMMA 1In order that f be a first integral for X it is necessary and

sufficient that £ be constant on the trajectories of X.

Recall now that there exists an open subset D(X) < R X M and a differentiable

function ¢X:D(X) + M such that for each x € M, the map t ~ ¢X(t,x) is the trajectory
of X with qJX(O,x) = X,
l. vxeM,

I, (X) = {t eR:(t,x) € DX}

is an open interval containing the origin and is the damain of the trajectory
which passes through x.
2. VtER,

Dt(X) = {x € M: (t,x) e D(X) }

is open in M and the map



¢t:X - ¢X(t,X)
is a diffeamorphism D_(X) » D_, (X) with inverse bt
N.B. If (t,x) and (s,q)X(t,x)) are elements of D(X), then (s + t,%x) is an
element of D(X) and

¢x(s,¢x(t,X)) = ¢X(s + t,%x),
i.e.,

bg © 0 (0) = 6, (0.

One calls cpx the flow of X and X its infinitesimal generator.

[Note: X is said to be camplete if D(X) = R x M. When this is the case,

each q>t:M + M is a diffeomorphism and the assignment

RxM

+ tex = ¢t(x)

(t,x)

is an action of R on M. Therefore ¢, = id,, ¢_, = ¢;l.]

1.2 EXAMPLE TakeM=5,x=x2%£——thenD(X) = {(t,x) € R x R:1 - tx > 0}

and ¢X(t,x) = l_-—x_tx_’ thus X is not complete.

1.3 REMARK Every compactly supported vector field on M is complete.



1.4 IEMMA Suppose that X is a vector field on M — then 3 a strictly

positive C” function £ on M such that £X is camplete.

A one parameter local group of diffeamorphisms of M is a pair (U,¢) subject

to the following assumptions:
1. U is an open subset of R x M containing {0} x M such that vV x € M,

(R x {x}) N U is connected.
2. $:U~>Mis a c” map such that ¢(0,x) = x and
o(s,0(t,x)) = ¢(s + t,%).
E.g.: The pair (D(X) ,¢X) determined by a vector field X is a one parameter

local group of diffecmorphisms of M.
In practice, reference to U is ordinarily omitted and the one parameter local

group of diffeomorphisms of M is denoted by {d)t}.

[Note: One also drops the appelation “"local" if U = R x M.]

1.5 LEMMA Suppose that {q)t} is a local one parameter group of diffeomorphisms
of M — then there exists a unique vector field X on M such that

(DX ,0y) > (U,0).

[Note: Per {qbt}, X is its infinitesimal generator and v £ € C (M),

f(cbt(x)) - f(x)
(Xf) (x) = lim .1
t >0 t




§2. TENSOR ANALYSIS

Let M be a connected C~ manifold of dimension n,

M) = 8 P
p,g=0 9

its tensor algebra.
0 o0 1 1 ] ] oo
[Note: Here, DO(M) =C (M), DO(M) = P (M), the derivations of C (M) (a.k.a.
the vector fields on M), and Dg M = Dl (M), the linear forms on Dl (M) (viewed as

a module over Coo(M) ).

2.1 REMARK By definition, Dg M) is the €7 (M)-module of all C (M)-multilinear
maps

P gq
DL x -ee x D G) x D) x --e x D 0D > C70M).

Its elements are the tensors of type (p,q).

In what follows, all operations will be defined globally. However, for
computational purposes, it is important to have at hand their local expression
as well, meaning the form they take on a connected open set U ¢ M equipped with

coordinates xl, .o .,xn, or still, on a chart.

Iet T € Dg(M) — then locally

1 eee] J 3j
r=rt P . el mxlie-exd,

ox ox



where
i ...i
T T . )
3y ig
i i
= T(ax L,...,dx P, ~§3—-,..., _2?_) e cw)
)34 1 oxX q

are the camponents of T.

Under a change of coordinates, the camponents of T satisfy the tensor

transformation rule:

ifee-dit

T P
R
317 3g
Hooo Gy g dg i
_x s oxPaw s owxd
T ENT 3 s AL
ax T 'axpaxl ox 4 1 E

2.2 EXAMPLE The Kronecker tensor is the tensor K of type (1,1) defined by

K(A,X) = A(X), hence



2.3 EXAWPIE Iet X,Y € D-(M) — then locally

X = x a_l_ (XF = <x,ax*>)
X

y=v3 2 (¥ = <y,dx’>)
'axJ

IX,Y] = (XJin -3y 2,
[Note: The bracket

[, 1:0700 x ptony » oh ()
is R-bilinear but not C°°(M) -bilinear. In fact,

[£X,9Y] = £9[X,Y] + £(Xg)Y - g(Y£)X.]

A type preserving R-linear map
D:D(M) > D(M)
which commutes with contractions is said to be a derivation if v Tl'TZ DM,
D(Tl ) T2) = D'I‘l %] T2 + Tl 2] DI‘2.

The set of all derivations of D(M) forms a Lie algebra over R, the bracket
operation being defined by

[Dl'DZ] = Dl ° D2 - D2 ° Dl'



2.4 REMARK For any f € C (M) and any T € D(M), fT = £ & T, so D(fT) =

£(DT) + (Df)T. In particular: D is a derivation of c”(M), hence is represented

on C (M) by a vector field.

2.5 IEMMA ILet D:D(M) - D(M) be a derivation — then V T € bguM),

1
DIT(A ,...,AP,Xl,...,Xq)]

_ 1 p
= (DT) (A, ee., ,xl,...,xq)

p N
+ I T(Al,...,DAl,...,Ap,Xl,...,X )
i=1 !

q
+ 5 rul,. .,

j=1

Ap,xl,...,ij,...,xq).

[Note: This shows that D is known as soon as it is known on COO(M), Dl(M),

and Dl(M) . But for w € Dl(M) ’

(Dw) (X) = D[w(X)] - w(DX),

so functions and vector fields suffice.]

2.6 EXAMPLE There is a canonical identification

plan = Hom (0T 00,0M00),
c M)

namely T - 'f', where



TX(A) = T(A,X).

This said, let D:D(M) -~ D(M) be a derivation -~ then
T € Di(M) => DT € D?‘L(M).

thus it makes sense to form [;I' and we claim that

~

(D) (X) = DIX - T(DX).
In fact,

(DI) (X) (A) = (DT) (A,X)

= DIT(A,X)] - T(DA,X) - T(A,DX).
On the other hand,

(DTX) (1) - T(DX) (A)

DITX(AN)] - TX(DA) - T(DX) (A)

D[T(A,X)] - T(DA,X) - T(A,DX).

2.7 THEOREM Suppose given a vector field X and an R-linear map
6:07 (M) » 0' () such that
S(fY) = (XE)Y + £8(Y)
forallfecC M, Y€ Dl (M) —— then there exists a unique derivation

D:D(M) =+ D(M)

such that

D|C°(M) = X and D|D- (D) = 6.



PROOF Define D on Dl M) by

(Dw) (¥Y) = X[w(¥)] - w(sY)

and extend to all of DP(M) via 2.5.



§3. LIE DERTIVATIVES

Iet M be a connected C manifold of dimension n.

3.1 LEMMA One may attach to each X € Dl (M) a derivation

LX:D(M) - D(M)

called the Lie derivative w.r.t. X. It is characterized by the properties

LE = X, LY = [x,Y].
PROOF TIn the notation of 2.7, define §:DY(M) + DL (M) by

§(Y) = [X,Y].

Then

S (£Y) [X,£Y]

i

fIX, Y] + (XE)Y (cf. 2.3)

(Xfyy + £[X,Y]

(XH)Y + £6() .

3.2 EXAMPIE Iet T € Di'(M) -— then in the notation of 2.6,

[X,EE'Y] - r/I\‘[XIY] 4

(LT (¥)

where

~

LXT

h



Owing to 2.5, VT € DS(M),

1 p
XIT(Ty oo ARy e e X ) ]

_ 1 p
= (LXT) (A yene, A ,xl,...,xq)

p N
+ 3 T(Al,...,LXAl,...,Ap, Lo ¥
i=1

g
+ I T(Al,...,

p
Ry L35 SYTIRNT . SYRIRYS SR

[Note: If w € Dl(M) , then

(L) () = X(¥) - w([X,¥]).]

Locally,

i ee-j

1 P
(L) )

ieeedi

Xa’l‘l

jl"'qua

i, ai,---i
—XlT 2 P L= ee
’a Jl.-.jq

[Note: Fran the definitions,



3.3 REMARK The symbol

il.”ip
(LXT) jl"-j

is usually abbreviated to

q

j_l...j_

P
LXT . ..
Jl. - njq

3.4 EXAMPIE ILet K be the Kronecker tensor (cf. 2.2) — then

Lk = 0.
Indeed,
i ad _ i a 1
LKy = X067y 5 = X 8% + g0,
i i
=0-X.+X
0 r] r]

3.5 THEOREM FixanXEDl(M) -—thenVTEDg(M),

d_o'p = ¢r LT
It t,t=t0 toLx



[Note: The tacit assumption is that Dt (X) is nonempty, the relation being
0

valid in Dt (X). Accordingly, if X is complete,
0

d * _ *
Fe T = Op LTl

3.6 EXAMPIE Take X camplete -- then
* —
¢tx =XV t.

[In fact,
a X %
gt 04X T 0 LK
*
= d)t[X,X] = Q.

* *
But ¢0 = ldMX = X.]

Consider now the exterior algebra A*M —— then LX induces a derivation of A*M:

LX(OL/\B)=LXOL/\B+Q/\LXB.

3.7 RAPPEL 1, is the interior product w.r.t. X, so

X
1X:A*M -+ N*M
is an antiderivation of degree -1. Explicitly, V a € APM,

1x0n(Xl,...,Xp_l) = oe(X,Xl,...,Xp_l) .



And one has
- _1\P
'I.X(Otl A uz) = 1309 A ay + (-1) oy A 10
Properties: (1) 5% ° e = 0; (2) g © 1y + ly °ly = 0; (3) lgpy = 1
(4) ley = flx.
We have
OI_X= 1X0d+do 1X.
=L - L
‘T xw T x
Therefore
T gedmack
Ly e ww=1%° Ly
3.8 EXAMPIE v f € C (M),
LonL = fLXOL + af A Qe
[For
fooc = ledOL + d1fX0L
= f1xdoz + d(leOL)
= o + fdi, o

f’LXdOL + df A1

X X



o

f(lxd + dlx)oc + df A 1y

il

fLXoc + df A 1Xoc.]

If ¢:N -+ M is a diffeamorphism, then

* *

¢ La=1L 4, ¢a
d X

6" 0"
1,0 =1 , ¢ a.
X ¢ X

If :N>Misa C. map and if X is ¢-related to ¥, then

*L _ *
0] <& = IY® o
* *
0] 1Xoc = 1Y<I> Ol

[Note: Recall that
xeotm & ¥ e ot

are said to be ¢-related if

d@(Yy)=x Vy€EY

o (y)

or, equivalently, if

Y(f o 9) =Xf o &

for all £ € C (M) .]



§4. TANGENT BUNDLES

Let M be a comnected C- manifold of dimension n,

TrM:'IM +~M
its tangent bundle -- then the sections Dl (M) of ™ are the vector fields on M.

N.B. Suppose that (U,{xl,...,xn}) is a chart on M —- then

((my) _lU, {ql, ces ,qn,vl, e,V

is a chart on ™.

[Note: Here

(i = l,o.o,n)-

And, under a campatible change of coordinates,

3 _a3xd 3, a3
_‘-8,\,1 L) T

o 3’ G- ov)
5 _ I 9
- v ’
ot wt v
where
. i
<i_ 3 A
qu
=>
Wt 54



If f:M>NisacC. map, then there is a cammtative diagram

Tt
™ > TN
wl oo |
M > N .
f
4.1 EXAMPLE We have
TTI'M
™™ > ™
C R
™ > M .
™

[Note: Local coordinates on the open subset ((TI'M) —'lU) of TIM are as

Tr_l
™

follows: ql = ql © Mgy’ vi=vto T’ dql,dvl.]

Let X € DL(mM) — then

X:™ > TIM
and T ° X = id,I,M. Locally,
X=AJ.8 19

— + B - -
o v



4.2 EXAMPIE Consider the one parameter group of diffecmorphisms ¢t:'IM -~ ™

defined by dp (X'Xx) = (x,etXX) (Xx € TXM) —— then its infinitesimal generator

A€ Dl (M) is called the dilation vector field on TM. ILocally, d>t sends

1
(ql,...,qn,vl,...,v ) to (q e ..,qn,etv ,...,etvn), so locally,

Denote by TZM the submanifold of TTM consisting of those points whose images

under T and TwM are one and the same -~ then [ € Dl(‘IM) is said to be second

order provided I'M c T2M or still, if T‘!TM o ['= idTM. Locally, therefore, a

second order I' has the form

V13i+cl’ai.
e v

[Note: To ascertain the transformation rule for the Cl, write

\7i ] + 61 P
oG oot
o 9 av3 3 ~i o) 5
¥ (—q— 9+ I
3 o 5 avd ot ovd
. j j .
= I d .+(avi~ +'¢)viC1) 9 .
qu 3g v av)
is vt o3, vt 23y 3
=v N + ( Y, C]) -7
3q Yol 3\73 v



i
+

357 993

. i .
l_ BV. {"J

or still,

i 'avi j 8i~'
ct=2_) + 4 ¢l
35’ 9

4.3 REMARK Suppose that T’ € Dl (T™M) is second order ——- then an integral

curve y of T is a solution to

from which the term "second order”.

Given an X € D ™), let {¢ t} be the one parameter local group of diffecmorphisms
of M associated with X — then {T¢ t} is a one parameter local group of diffecmor-

phisms of ™. Denote its infinitesimal generator by X' (cf. 1.5) — then X' is

called the lift of X to ™. Iocally, if

x=xla——i-,
X
then
T i ) F,1 d
X =(Xl°TT)—-+V(_X.°T\')———..
Maql ¢ Mavl



Example:

<_8._i) T = _@_T
ax g

[Note: Ilet s,IM:'I'IM > TIM be the canonical involution -— then

Ty © Sty = Ty

So, YX € Dl(M),

3
[
n
o
52
!
3
=
o
s,

I
H
=

=2
[+]

s}

A

™
And, in fact,
Spy © TX = X'.]
4.4 IFMMA Vv X € Dl(M),
[A,X'1 = 0.
4.5 TEMMA Iet X,Y € D'(M) — then
x', Y"1 = [x,Y]".



Given an X € Dl (M), define a one parameter group of diffeomorphisms cpt:'IM -+ ™
by

¢t(x,Vx)= (x,V + tX ) (V€ T.M)

and let X' be its infinitesimal generator (cf. 1.5) —— then X' is called the

vertical lift of X to ™. ILocally, if

X = Xi @_T ‘
ax™
then
v _ Ll d
X = (X o TTM) _I .
oV
Example:
(_3___ vV_39 _
axl avl
4.6 IEMMA V X € Dl(M),
nx] =-x.
4,7 IEMMA let X,Y € Dl(M) -= then
x7,Y'1 = 0.

4.8 ILEMMA Let X,Y € Dl(M) ~—- then

x’,Y"] = [x,v1".



Let ¢:M » M be a diffeamorphism -— then T¢:T™ -+ ™ is a diffeomorphism and

there is a commutative diagram

> M .

¢

[Note: Classically, T¢ is called a point transformation.]

4.9 LEMMA let ¢:M > M be a diffeamorphism — then for any second order
re Dl (M), (T¢),I is second order.
PROOF In fact,

Tn, © (T9) T

1

Try © TD¢ © T o (T)

T(my © T¢) o T o (mg) L

]

T(p o m,) o T ° (T~

oT o (T¢)—l

T o T’n‘M

Ii

T¢ o idpy o (7o)

T o (T¢)

]

id'IM'



§5. THE VERTICAL MORPHISM

Let M be a connected C* manifold of dimension n,
mE > M
a vector bundle — then 7 is a surjective submersion and the kernel of

Tn:TE - ™

is called the vertical tangent bundle of E, denoted VE.

5.1 REMARK Take a point p € E and put x = m(p) — then the fiberEx='rr_1(x)

is a submanifold of E containing p, hence TpEx c TpE and, in fact, TpEx is precisely

the kernel of Tﬂp:TpE > TxM' Iet us also note that 'I'E‘.x can be identified with

Ex X Ex’ so VE can be identified with E XM E, the latter being defined by the

pullback square

pr,

E x_ E > B

> M.

There is a commutative diagram

T
—_—>

s B
2:1

TE
TrEl
E _

i



and a pallback square

thus there is an arrow

™ - E X, ™.

5.2 ILEMMA The sequence

0~»VE -»>TE ~»E XM‘IM~>0

is exact.

Now take E = ™ — then a vertical vector field is a section of VIM.

Accordingly, to say that X € Dl(’IM) is vertical amounts to saying that

TwMoX=O

or still,

X(Eom) =0V £ec (M.

Therefore the bracket of two vertical vector fields is again vertical. Locally,

the vertical vector fields on ™ have the form

Bl"a_'_j': -
ov



N.B. VXE€E Dl ), X' is vertical but not every vertical vector field is

a vertical lift (e.g., 4).

5.3 IEMMA If T € 171('I‘M) is second order, then for every X € Dl(M), the
bracket [T,X'] is a vertical vector field.

PROOF It need only be shown that v £ € C (M),

L (femwm)=0.
[r,x") M
But
L (f o W)
[r,x" M
=L.(L (Fom)) =L (L.(fom))
r XT M XT T M

Il

LF((Xf) o WM) - LXT(LI'(f ° WM)),

which reduces matters to the equality

LXT(LI'(f ° 'ITM)) = LI.((Xf) ° TrM).

Working locally, write

X’:Xia—-.
Bxl

Then

9(f o 'H”M)

(X£) o m, = (X~ o m,)

oq



LF((X:E) ° 1TM)
. a(f o m,)
= vj Q__j_. (xt o ﬂM) _____j:__b_’l_)_
o) oq

On the other hand,

i k, 1 3
XT= (X o) 2+ vi(xh, o m) 2o
M aql kK M avl
=>
LXT(LI‘(f o TTM))
. 0(f o m)
=L M )
X7 g’
. . A(f o m)
=VJ(XlOTTM) aj iNl
3q oq
. . 9(f o w,)
R o my e P M
’ W an
. s 9(f o m,)
=VJ(Xl°'ITM) 3' iM
3 5q
. ME o W)
+v3(x]'j ° 'nM) iM
r aq
a(f o 'TTM)



[Note: For a completely different proof, see 5.19.]

Bearing in mind that
VI‘.M:"IMXMm,
consider the exact sequence
0+meIME'ITMY>'H/IXM'D'I+O

provided by 5.2 —— then

Ty W T PRy

I
=

pry o v

5.4 LEMA VX E DM, uovoXEeD (M.

PROOF In fact,

TrTMouovOX
=prl°\J°X
=7rTM0X
=1dTM.

SX=poveX (X€ED(M).



S:7T (M) > DT (T)

is called the vertical morphism.

N.B. It is clear that

SeHm _  (0T(m,0N(m).
c”(m)

Therefore S can also be regarded as an element of Di (™) .

5.5 LEMMA SZ=0and

Ker S = Im S,

the vertical vector fields on T™.

5.6 LEMMA Locally,

s(AlB——i—+ B* a_i) =A19—i .
oq oV’ v

[Note: If S is thought of as lying in D]l_ (TM) , then its local expression is

—a-—r 2 dql.]
1
ov

5.7 LEMMA vxeDl(M),



5.8 REMARK Iet T € Dl(TM) — then T is second order iff ST = A.

[Note: The set SO(T™M) of second order vector fields on ™ is an affine

space whose translation group is the set of vertical vector fields in Dl (™) .1

The vertical morphism does not respect the structure of Dl (M) as a Lie

algebra. Instead:

5.9 IEMMA V X,Y € Dl('IM),

[sX,8Y] = S[sX,Y] + S[X,sY].
PROOF It will be enough to consider the following possibilities.

® Both X & Y are vertical lifts.
®Both X & Y are lifts.

® X is a vertical lift and Y is a 1lift.

Since 8 annihilates vertical vector fields,

sx’ =0
sy’ = 0,

which settles the first possibility. Turning to the second,

[sx',sY'1 = [XV,Y'] (cf. 5.7)
=0 (cE. 4.7).
And (cf. 4.8)
sisx’,¥"] = s[x’,¥"] = six,¥1V = 0

s[x',sy"] = sIX',¥'1 = S[¥,x]¥

I
e

i



Finally,
s[x’,Y"1 = six, Y1V =0
while
- vV T T
s[sx’,Y'] = S[0,Y'] =0
s[x’,sy'} = s[x’,¥'] = o.

5.10 REMARK Aanalogously, V X € Dl (™),

SX = S[A,X] + [SX,Al.

By definition,

(LXS) (Y) = [X,8Y] - S[X,Y] (cf. 3.2).

Therefore

SOLXS+LXS°S=0.

Proof:

S((LSY (X)) + (LgS) (SY)

= s([X,sY] - SIX,Y]) + [X,8%Y] - S[X,sY]

S[XISY] - S[XISY]

= O.

[Note: Recall that S2 =0  (cf. 5.5).]



Consequently,
(L S) (¥) = [SX,8Y] - S[SX,Y]
= S[X,SsY] (cf. 5.9)
= 5((L8) (V))
= - (LXS) (sy),
l.e.,
~ s Lgs
Lex5 =
- LXS o S.
5.11 IEMMA We have
LAS = - 8.

5.12 EXAMPIE For any T € Dl('IM) of second order,

S=- LAS

= - LSI"S (cf. 5.8)

- S o LTS = LFS o S.



10.

5.13 ILEMMA V X € Dl(M),

5.14 EXAMPIE If X € Dl(M), and T € Dl(TM) is second order, then

s[x',T] = x".
Indeed,
L S=0 (cf. 5.13)
X
=>
s[x’,Tl = [X,sI]

[x,A]  (cf. 5.8)

li

X' (cf. 4.6).

5.15 ILEMMA Fix T € Dl('IM) of second order and suppose that X € Dl(']M)
is vertical — then

(Lrs) x) = X.

PROOF There is no loss of generality in working with a vertical 1lift:

(L.S) x") = [r,sX"] - SIT,X']

1l

[r,0] + SIX',T] (cf. 5.5)

X (cf. 5.14).



11.

5.16 ILEMMA Fix T € Dl (TM) of second order and suppose that

(LI.S) X) = X.
Then X is vertical.

PROOF In fact,

SX = s((LS) (X))

- (LFS) (8X)

l

- 8X (cf. 5.5 and 5.15)

SX = 0.

Therefore X € Ker S, hence X is vertical (cf. 5.5).

Write V(TM) for the vertical subspace of Dl (TM) . Combining 5.15 and 5.16

then leads to the following important conclusion.

5.17 SCHOLIUM If T € Dl (™M) is second order, then the operator

Ll..S:Dl (™) > DF (M)

has eigenvalue +1 with V(TM) as eigenspace.

5.18 ILEMMA V X € Dl(M).
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5.19 EXAMPLE If X € 0'(M) and T € UF(TM) is second order, then

sIxT,T1 =0 (cf. 5.3).

Indeed,

—
6]
0

0 (cf. 5.18)

sIx', Tl = [X',sT]

[x',A] (cf. 5.8)

1

0 (cf. 4.4).

5.20 IEMMA For any second order I' € Dl(TM),
2
(LFS)
is the identity operator.

PROOF In view of 5.17, (LI‘S) 2 is the identity on vertical vector fields,

thus it suffices to show that

X' (XxeDm).

2,7
(LI‘S) (xX")
To begin with,

[r,sX'] - s[T,X']

T
(LpS) (X7)

il

[r,x'] + s[x',rl1  (cf. 5.7)

r,x’1  (cf. 5.19).



13.

But

s’ + IT,X"1)

= SXT + S[PIXV]

XV - s[x’, Tl (cf. 5.7)

=%’ -x’  (cf. 5.14)

+ [T,XV] € V(M)  (cf. 5.5)
X'+ (LpS) x") € v(m™)

T T
(LI‘S) X + (LI‘S) X))

=X + (LpS) x")  (cf. 5.15)
(LFS)Z(XT) =X'.

Maintaining the assumption that T € Dl (™M) is second order, put

1
Vp=7 (T +L8S), H

=1 (1 -
T =3 (T LFS)’

r
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Then

’ r Vo, +H, =T,

1N

And, as has been seen above,

VFDl(TM) = V().

On the other hand, we call HI.Dl (TM) the horizontal subspace of Dl (™M) determined

by T' and denote it by HI‘ (M) . Therefore

primy = v(m o Ho (1)

5.21 REMARK Since

(L) (1) = [T,ST) = SIT,T]

[T,A] (cf. 5.8),

it follows that T is horizontal iff [A,T] =T.
[Note: The difference

is called the deviation. It is necessarily vertical:

S(IA,T) - T) = sS[A,T] = ST

= A=A

O.
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Here
S[A, T = = S((LFS)(F))
= ST (cf. 5.12)
= A (cE. 5.8).
Locally,
- i 9
A=V —5
'avl
I'= Vl _a___{ + Cl ‘a‘—j‘:
_ oq v
=>
. . j .
[A,T] = v5 _a_l_ A
oV v
So
[A,T] =T
<z=D>
iacd 5 .
vV — = 2C 3=1,...,n.]
i
oV
Given X € Dl(M), put
X = HI,XT,

thus

=2 & - (L) (1)

)

ov



le.

& - [1,X'])

|
N| +

Do

' + [x7,TD,

and, by definition, X is the horizontal lift of X to ™. Locally, if

X = Xl a—i-
ox
and
I'= Vl é"—i'l‘ Cl L .
g v
then
X = e my &P,
ox
where

5.22 REMARK In general,
X" = % + X

To see this, observe that v £ € c” ’
(07 = (£ o mHX’

(0P = (£ o m)x",
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but, generically,

(£X)7 2 (£ o ﬂM)XT.

[Note: Locally, matters are manifest.]

5.23 IEMMA v X € vl(M),

s = ¥,

PROOF We have

s = % (sx' + s[x’,T])
=% (x' + SIX',T1)  (cf. 5.7)
1, v v
=5 X" + X)) (cE. 5.14)
= X",

5.24 REMARK Let

1
r t3

g
Il
0

“‘I'(LI‘S) ) o Vie

Then v X € DX (M),
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5.25 IEMMA Let X,Y € Dl(M) -— then

s, = 1x,v1V.
[Note: 1In general, [X,Y]h % [Xh ,Yh] but
stix,1? - 2,

six, v - spd, v

x,Y1V - s YY) (cf. 5.23)

[XIY]V - [XIY]V

=0,

x,v1® - Y e vim .

There is one final point, namely for any diffeomorphism ¢:M -+ M,
(Tdp)y © S =85 o (TP),-

Take now a ' € SO(T™) —- then (T¢),I € SO(TM) (cf. 4.9), so (cf. 5.8)

A = gsT

S(T¢) T

(TP) ,ST = (T¢) LA,



§6. VERTICAL DIFFERENTIATION

Let M be a connected C~ manifold of dimension n,

s:ot(m > ot
the vertical morphism —— then S operates by duality on A*IM, call it S*, thus

S* = £ (f € CT(TM))

= B,
S*oc(Xl,...,Xp) = o (SX ,...,SXP) (o € A" TM).

[Note: Iocally,

S*(dgh) = 0, S*(av') = dg'.]

N.B. V £ € C (™),

S* (Gf) = a—f-i aq.

ov

Given X € Dl (™), define 1XS* by

(1XS*) (o) % (S*a) .

6.1 IEMMA We have

1S = 5% o 1.



PROOF On elements of C (TM), this is obvious, so let o € AP (p > 0) —

then

(15*) (@) (X +ee X )

= 1X (S*a) (X500 ’Xp—l)

= S* (X, X ,e0,X

1 o-1)

OL(SXrSX AR R] 'SXp'-l)

i

(ISXOL) (sxl, .o ,sxp_l)

= Q%
S (1sxa) (Xl’ oo ’Xp'—l) .

[Note: Therefore

X € Ker S(= V(TM)) => 1XS* = 0.

In particular:

1,S*

0.1]

L =0 (fecC(m))

ard for p > 0, put

P

T, 0(XsseeerSXipeeo,X ).
=1t e *p

(68(1) (Xll coe lxp) =



[Note: Locally,
i, _ i _
ds(dq } =0, Gs(dv ) =dg.]

N.B. V£ € c (),

|
8.

6S(df) =

[Note: Globally,

(Ss(df) s*(af).]

6.2 ILEMMA We have

S*O(SS=0.

6.3 IRMMA V X € Dl(TM),

1Xo 65—680 1X=1SX.

PROOF On elaments of Coo(’IM) , this is obvious, so let a € AP (p >0 —
then

(12 (6500 ) (Xyyeee 'Xp-l)



= (8 (1ga)) (Ry - eeiX )

(60) (X,X1r00 00X

p—l)

ol
—-— iil ('I.XO(,) (Xl'...'SXi'...'Xp_l)

p-1
l""'Xp-l) + .Z o(X,X ,...,SXi,...,X

a(8X,X E 1 p—l)

p1
- ii]_ OL(X,Xl, P ,SXi, PN 'Xp-l)

oc(SX,Xl, eee 'Xp-l)

= (ISXOL) (Xl, .o ’Xp—l) .

6.4 IEMMA We have

GSoLA—LAOG =39

Define now

ds: A*™ > A*TM

ds=ds°d—d06s.



[Note: Locally,

i, _ i, _
dS(dq ) =0, dS(dV ) = 0.]

N.B. Vv f € C’(m),

af = Lo agt + ot
le| v
=>
de= (5Sod—do (Ss)f
= 6S(df)
of i
=—=dg .
‘avl
[Note: Globally,
dsf = §*(df), ds(df) = = d(s*(df)).]

6.5 IEMMA ds is an antiderivation of A*TM of degree 1.
PROOF Write
and observe that &g is a derivation of A*™ of degree 0 while d is an antideriva-

tion of A*M of degree 1.

6.6 ILEMMA We have

dods+dSOd=0.



PROOF 1In fact,

dods+dsod

=d°(Gsod—d°68)+(6s°d—d°68)°d

=doch°d—d° Gs°d

6.7 IEMA v f € CT(TM),

*, =
8 AS*Af = 0.
PROOF Bearing in mind that the LHS is a 2-form, let X,Y € UF(TM) — then

(GSdS*df) (X,Y)

]

(ds*df) (sX,Y) + (ds*df) (X,SY)

N

Loy ( (S%dF) (1))

- Ly ((8*df) (8X)) = (s*df) ([SX,Y])

4

LX( (s*df) (sY))

= Lo, ((8*df) X)) - (s*df) ([X,SY])



= L, @E(sY))

- L (@£ (s%%) - dE(SISX, YD)

+ Ly (af (s2v))

- LSY(df(SX)) - df (S[X,5sY])

LSX(LSYf) - Lg [sX,Y] £

= Ly llgy®) - LS[X,SY]f

i

((sx) (sY) - S[SX,Y]

- (SY) (sX) - siX,sY])f

i

([SX,SY] - S[SX,¥] - S[X,SYNE

0 (cf. 5.9).

[Note: Recall that 82 =0 (cf. 5.5).]

6.8 LEMMA We have



But

d.f = dd.f
—_— *
dSS df

- - *
(68 od-do SS)S daf

= SSdS*df (cf. 6.2)

=0 (cf. 6.7).

And then (cf. 6.6)

I

2
dS(df) ds(dsdf)

= - ds(ddsf)
= d(dgf)

= 0.

6.9 LEMMA We have

*
S* o dS

0 and dS o S* = 5% o d.

Moreoever,
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6.10 LEMMA We have

- ods+dS°1=6

A A~ Ss

dSQLA‘LAOdS q*

il
on

PROOF To discuss the first relation, let f € c” (TM) -- then

(1A ° dS +ds ° IA)f

=1 Adsf

*
1ASf

0 (cf. 6.1).

(1A o dS +dS ° IA)df

lAdS (af) + dS(Af)

1A(— d(s*(df))) + S*(d(LAf))

I

(- LA + dlA) (s*(af)) + Gsd(LAf)

Il

- LAés(df) + cSSLA(df)

((SS ° LA - LA ° (SS) (af)

n

és(df) (cf. 6.4).
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6.11 REMARK - The analog of the identity

ly=1xgcd+dey

per ds is the relation

LSX + [GS,LX] =1y ° dS + dS ° 1y

6.12 REMARK let
Tenm _ (0N(m0),0t(m).
c (™)

Defining Sp in the obvious way, put

dT=(ST°d-d°<ST.

dodT+dT0d=0
but,ingeneral,d,%zo. Ontheotherhand,vxevl('IM)

b o dp = dp o L= g
E.g.: Take T=S, X = A — then

LAOdS_dSO LA=dLAS

4 oLA-—L od, =4d (cf. 6.10).
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[Note: If T is the identity map, then

8.0 =po (o€ APrm).

T
Therefore
dToc = cSTdoc - ddTOL
= (ptl)da - pdo
= da,
so dT = d.]

The image S* (A*IM) is called the vector space of horizontal differential

forms on ™. It is ds-sta.ble (cf. 6.9).

N.B. Vv £ € C (T™), dgf is horizontal. In fact, d f = S*(af).

6.13 IEMMA Suppose that o is horizontal — then

O
)
l
e

PROOF Write a = S*3 —— then

A=t S* =08=0 (cf. 6.1)

)
Q
Il

SSS*B 08=0 (cf. 6.2).

Iet o € AlTM —— then o is horizontal iff locally,
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1 n 1 n i
Q= ai(‘q peeerd SV eae,V )dql.
So, YV w€E AlM, (TTM) *» is horizontal and

ds(('rrM) *w) = 0.

6.14 LEMMA Iet o € A'TM — then o is horizontal iff a(X) = 0 for all

vertical vector fields X on ™.



§7. THE FIBER DERIVATIVE

Iet M be a connected C manifold of dimension n,
ﬂb’,‘lzT*M + M

its cotangent bundle — then the sections Dl (M} of T*M are the l-forms on M,

i.e., AlM.

N.B. Suppose that (U,{xl,...,xn}) is a chart on M — then

(%) Y, ... ' /Py s e sP, )

is a chart on T*M.

[Note: Here
i=1,...,n.]
9
p:. & —=
i %t

Denote by hAlTM the vector space of horizontal l-forms on ™ and consider

the pullback sgquare

™ xM T*M 2 > T*M
prll l“ﬁ
™ > M .
m



Then one can identify hAlTM with the sections of Pryy thus there is an isamorphism
o ch =Ppr, o a fram hAlTNl to the vector space of fiber preserving C” functions

™ > T*M:

M .

[Note: For more details and a generalization, cf. 13.4.]

Locally, if

then

Let 0 be the fundamental 1-form on T*M.

7.1 LEMMA v o € hAtmM™,

F*0 = q.
o
[Locally,
0= pidql,
so
* i _ i
F*(p;dq) = (p; o F)d(g™ o F)



Given an £ € C*(T), the 1-form d f is horizontal: d f € nAlm.  put

Ff = Fd g then Ff:™ -~ T*M is the fiber derivative of f. The correspondence
S
f > Ff is linear and Ff = Fg iff 3hecm™: f-g=ho Ty
Locally,
_ of i
dsf I dq,
oV
thus locally,
quFf=ql, pioFf=—a—§-i—.
ov

[Note: Invariantly, Ff sends TxM to T;M via the prescription

_d
Ff (x,XX) (Yx) =3k f(x,Xx + tYX) =0 (XX,Yx € TXM) .J

7.2 REMARK Ff is fiber preserving but Ff need not be linear on fibers.

[Note: Ff is a diffeomorphism iff Ff is bijective on fibers.]

Each X € Dl (T*M) , i.e., each section X:T*M - TT*M, induces a fiber preserving

c” function Fy :T*M > T, viz. F, = Tr¥ o X. To a given H € c”(T*M), there

corresponds a vector field XH on T*M characterized by the condition 1 = — dH.

XHQ



Put FH = FXH —— then FH:T*M - ™ is the fiber derivative of H.
[Note: Locally,
- oH 39 _oH 9
XH Bpi aql aql api

Therefore, along an integral curve of XH, we have

dq- _ 8H_

dt Bpi

®; _ om

ac i
e

the equations of Hamilton.]



§8. LAGRANGTANS

Iet M be a comnected C manifold of dimension n — then a lagrangian is

simply any element L € C (™). This said, put

eL = dSL
wL = dGL.

N.B. From the definitions,

(FL)*0 = (Fcl L) *Q
S
= dsL (cE. 7.1).
Accordingly, if @ = do, then
*() =
(FL) *Q wL.

[Note: Recall that the pair (T*M,Q) is a symplectic manifold.]

8.1 IFMMA We have

(SSLuL = 0.

PROCF In fact,

- 5deSL

- guy,

cSSdeL (cf. 6.6)



dg6gdl  (cf. 6.9)

i

dS(cSS ad~-doe ch)L

%,

S

I

0 (cf. 6.8).

Iet

Il

Ker wp Xe Dl(‘IM):leL = 0}.

Tl'lenuiissymplecticiffKeer= 0.

8.2 ILEMMA W, is symplectic iff FL is a local diffeomorphism.

PROOF If wr, is symplectic, then

FL: (mIU)L) > (T*MIQ)

is a canonical transformation, hence is a local diffeomorphism. And conversely... .

1. is said to be nondegenerate if W, is symplectic; otherwise, L is said to

be degenerate.

8.3 EXAMPLE Take M = R — then

L(g,v) =

|
12

Lig,v) =

|
<



are both degenerate. For

_ oL
O = 5 A

so in either case, W = 0.

8.4 EXAMPLE Let g be a semiriemannian structure on M and take for L the

function

(X)) >3 9, (X X) (X €TM.
Then

FL(x,XX) (x,Yx) = gX(XX,YX) (YX € TXM) .
T.e.:

F‘I_,:gv’

thus FL:T™ - T*M is a diffeomorphism, so L is nondegenerate (cf. 8.2).

[Note: Suppose that X € Dl (M) is an infinitesimal isometry of g, i.e.,

Lxg = 0. Working locally, write

L(qll---lqnlvll---lvn) =% (gij ° "TM)V:LV]-

Then
Te _ & ij
&KL = (Cgyy o0 TTM)VVJ

+ (qg.

o T.1,.7 o i,,7.3
i3 T\'M) X' v)v’ + (gij TTM)V X'v)

- o i3
= (Xagij,a 'lTM)V A4

: . Lol o
+ (gij nM) (v]3(’k 'rrM)v + (gij o TTM)V (vi’x, ) TYM)



i3
(Xaglj,a ° TrM)v v

o [+ i j [+] [ i ]
+ (gkj My ()gfi MV VT + (g, ° M) (X(fj ™V v

]
(Lgyy © mPv'v

= 0.

Therefore

XL

0.]
There is a local criterion for nondegeneracy which is useful in practice.

8.5 LEMMA L is nondegenerate iff for all coordinate systems {ql, . o
Vl, R

det 2 0

everywhere.
PROOF On general grounds, W is symplectic iff wil is a volume form. Locally,

0, = A dq 4
L vt
hence locally,
= 8 L .| 82L j
Wy 3 dq NMg” + ——— dv /\d

Bq v av ov



But this implies that

2
u€ =% n! det aiL GUT A ee A @A A cee A A,

. vav

thus wg is a volure form iff
- 5 —
det BiL z 0
v v

everywhere.

8.6 EXAMPIE Take M = R” and define L:R°" » R by

n i, 2

1
L(ql,...,qn,v ,...,vn) = 7 m, (v2) -V(ql,...,qn),
i=1
where the m, € R are constants and V € Coo(l_gn) -— then
B 32L | = e m
det N = n’
vV

so L is nondegenerate iff m, # 0,...,mn z 0.

Given L, put

E, = AL - L.

Then EL is the energy function attached to L.

8.7 LEMMA We have

L%y, = GgFp-



PROOF Since eL is horizontal,

@
Il

1 0 (cf. 6.13).

AL

Therefore

(LA—d01)6

A
AL

=1 AdSL

(dS ° LA - ds)L (cf. 6.10)

dS(A - 1)L

dSEL.

Iet
1 _
D = xXevp (TM)”X“’L = - dE‘L}.

Then L is said to admit global dynamics if D, is nonempty.

8.8 EXAMPIE Take M =R (cf. 8.3).

- = = =+ 99 _ -
e If L(g,v) = q, thenmL—O, EL——L(A.L~V£—O), thu::-:DL is empty.



® If Ligv) = v, then w = 0, B, = 0 (AL =v & =v), thus D_ = D' (&).
8.9 LEMMA IetXGDL—-theanwL=0.

PROOF One has only to write

LXmL=(1X°d+d°1X)wL
==0+d(-d.E‘.L)
= 0.

8.10 REMARK B is a first integral for any X € D, . Proof: XE, = <X,dEL> =

- <X,1XmL> = - wL(X,X) = 0.

8.11 LEMMA If L admits global dynamics, then

<Ker % —dEL> = (.

8.12 IEMMA If L is nondegenerate, then L admits global dynamics: 3 a

(unique) T, € o1 (M) such that

And PL is second order.

PROOF The existence (and uniqueness) of FL is implied by the assumption that



W is symplectic. As for the claim that FL is second order, to begin with

1 © 8o m 8. 0 1, =1 (cf. 6.3).
I’L S S I‘L SI‘L
Therefore
8.1 = (1 o §, — 1 YW
S I‘L‘“L r, ° s T s ML
== 1o W (cf. 8.1).
L
But

IAwL = dSEL (cf. 8.7)

i

(dS +d o GS)EL

= SSdEL
== 8 1., w
S PL L
= 1. W .
ST'L L
Since W is symplectic, it follows that
SPL = A,

thus FL is secord order (cf. 5.8).

[Note: Working locally, write



Put
WD) = W5 (L)1,
where
Wi. 1) = —E—ZL— .
J v BVj

Then W(L) is invertible (cf. 8.5) and

2

= wow ™ (FE - 2L U
qu av7 Rle)

E.g.: In the setting of 8.6, suppose that m = l,...,mn =1 -- then L is

nondegenerate and

_ 9oV 3
aql vt

I
oq

Here is another illustration. Take M = R, fix nonzero constants m,g,£ and

put

L(q,v) = I% £2v2 + mgf cos d.

%L ,2 oL

m-—mﬂ,ﬁ=-m£smq

c= me3 ™ (- mgt sin q)

—%si.nq.
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8.13 IEMMA Tf T is second order, then for any L,

AL = 1I‘6L°
PROOF We have
16, = 6, ()
= dL(T)
= §*(dL) (T)
= dL(ST)

dL(A) (cf. 5.8)

=AL.

8.14 IFVMMA If T is second order, then

11‘“’L = - dEL <=> LFGL = dL.

PROOF Assume first that L[ = dL —-- then

L

11“(“1.. = ll"deL

(LI" -4 o 1F)8L

LI‘eL - leSL

dar, - dAL  (cf. 8.13)



ll‘

d(l - AL

= - dE .

On the other hard,

vy, = - B

(LI‘ -do IF)GL = d(L - AL)

Ll"eL - dAL =dL - dAL.  (cf. 8.13)

LI‘GL = dL.

Suppose that T € Dl (TM) is second order -—- then TI' is said to admit a

lagrangian L if

Ll"eL = dL

or still,

lpy, =~ dE .
[Note: The set of L for which L6, =dL is a vector space over R.]

N.B. Locally,

9 =8L. i

ov
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5L .. i . 3L i
Lo =L . (—)dg + — L.(dg)
I vt vt T

L &EDagt + L agtm)

ov ov

oL i
LI‘ (——1-) dg- + —5 dv

it

0=18 -da = (L,(E - Lyagt

LF(QI:-.- % _o (i=1,...,n.

vt Bql
Write
I = vj L + Cj é—-——
qu avJ
and let vy be an integral curve of T so that

j .
a( étY:(t))) = vJ (y(t))

A9 (Y(E)) _
3 - C(y(t)).

Then

d &L,

At s 1y )
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BZL

N

d_ (oI
(@ (vy(t)))
v &

%"

By ey ¥

v v

TP

v (t)

321,

J
m v- (v (t))

v (t)

5L,

]
aviavj C/(y(t))

Y(t)

L)

PBV

v (t) .

I.e.: Along Yy, the equations of Lagrange

3—t (?—L—i) -iIii—= 0 ({=1,...,n
A% og

are satisfied.

8.15 LEMMA A second order I' always admits a lagrangian.

PROOF Iet w € AlM and put

= *
dslr(wM) We
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Locally,
w = a,dx"
i
=>
*y = i
(TTM) W (ai o ﬂM)dq
=>
_ i
1F(TTM) *y = (ai ° 'ITM)V
=>
o (1. (m ) *w) .
. ' M 1
doin(m ) *n = ————e——— dg
ST'M vt
= (a; o TrM)dql
=>
= *
GL (ﬂM) w.
But
dL =

dlr (TrM) *y)

(LI‘ - lp° d) (TTM)*w
= LP(TrM) *y - IFd(ﬂM) *0)

= LI‘eL - 11..(TTM)*dw
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LI‘GL - dL = 11.,(TTM) *dw.

So, if w is closed, then L is a lagrangian for T.

8.16 REMARK Fix a second order ' —~ then the proof shows that each closed

1-form on M gives rise to a lagrangian for I'. Lagrangians of this type are termed

trivial and there may be no others. For instance, take M = 1_{2 and consider

13 20 3 0
T'=v —-—I+v -——2—+ (ql+q2)——-i-+ (qqu)___.

3q 3 v v

Then it can be shown that I does not admit a nontrivial lagrangian.

8.17 EXAMPLE Take M = R° and let

Then

t
|

=2 (hH?+ D

is a lagrangian for T, necessarily nondegenerate (cf. 8.5). Now fix real numbers

a,b,c and let
L= % (a(vl)2 + 2c (vlvz) + b(v2) 2) .

We have

_ JL 1 3L 2
8 ————ldq +——2dq

Vv’ v
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= (avl + cvz)dlq:L + (]:::v2 + cvl) dq2
=>

w, = (adv’ + cav?) dgt + (v + cdv') Mg

- (advt + cav?)agt () - (bdv® + cavl)dg? (I)

ML T
= - (avl + cv2)dvl - (bv2 + cv]')clv2
Accordingly, L is a lagrangian for T which, in view of 8.5, is nondegenerate iff
ab - c2 z 0.

8.18 EXAMPLE Take M = 1_32 and let

13 23 15 23
'=v —~—l—+v — -9 —73-9 5 -
oq og ov ov
Then
L, =3 (% + A% -3 (@2 + @A

=2 (2 - A% -3 (- @

are both nondegenerate lagrangians for T.
[Note: Another possibility is

L= vio? - 2.
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8.19 RAPPEL A l-form w € A]'M determines a C . function @:T™ - R, viz.

G(x,xx) =uw (X) (X € T;{M) .

T w
[Note: For use below, observe that Aw = O and Fo = w o Ty (™ ——b-é M > T*M),.]

8.20 IEMMA Suppose given nondegenerate lagrangians L, L'. Determine

I‘L, FL'

EDl(t[M)perS.lZ——thenwL=wL, a.ndI‘L I‘L, iffL'=L+(T)+C,where

w € A]'M is closed and C is a constant.

PROOF Assuming that L' = L + 0 + C, we have

EI.‘=AL'-L"
=AML+0+C) - (L+&+C)
=AL-L+ (Ad - @) ~-C
= AL -L+ (0 -) -C
=E ~-C.

NeXt,
e = (FL'*Q
= (FL + Fu)*Q

Il

(FL + w o 'ITM)*Q

I

* *
W + TTM(U.) ).
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And
w*Q = w*de

= dw*0

= dw (cf. infra)

= 0.
Consequently, W = 0. But

‘PL“’L = - dE
L AR X

Since EL' = EL - C, it follows that

1 =1 '
rL‘“L I"L.“i.

or still,
T G

Therefore I, =Ty The argument in the other direction is similar.

N.B. To check that w*0 = 0, it suffices to work locally:

d
ox

<

i
i,ou><:'ix

€
n

(p; ° w)dx’™
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w*e = w* (pidql)

(b; © walg" o w)

(pi o wd(x" o Trr"jl ° )

(p; ° w) axt

= w.

Given g € AZ’.[M, define S_ja € Dg (T™M) by

(S_J o) (XIY) = O&(SX,Y) .

8.21 ILEMA Vv X € DF(mv),

LX(S_I a) = (!3(8)_.(0& + S (L) .

Assuming now that L is a nondegenerate lagrangian, we have

L. (SJw.) = (L. S) ] +S 1 (L )
I W, Iy @, rL‘”L

(LI.LS) A Wy, (cf. 8.9).

On the other hand, according to 8.1,

GSwL = 0.
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Therefore S_[mL is symmetric, hence the same is true of LF (s wL) or still,
L

1
of (LTLS)_I(»L. So, Vv X,Y € D7 (™),

wL((LFLS) (x),Y) + wL(X, (LI,LS) (Y)) = 0.

Arnd this leads to the following conclusion.

8.22 LEMMA Vv X,Y € DM (T™),

wL(VI.LX,Y) + wL(X,VI, Y)

(X,Y)
L

wL(Hl..LX,Y) + wL(X,Hl..LY) = wL(X,Y)

w. (Vo X,Y) = w (X,H, Y).
LT, i T,

Consequently,
(V. X,V Y) = (X,H o V,Y) =0
LT T UL I
(H. X,H, Y) = (v o H, XY) =0.
e i e LT, Ty

N.B. X ard Y are vertical iff

X=V, X
I1L
Y=V, Y.
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So, v X,Y € V(TM),
1XwL(Y) =0,

which implies that L is horizontal (cf. 6.14).

8.23 IFMMA Given a horizontal 1-form o, define Xoc € Dl (T™M) by ly W =0 ==
o

then Xoc is vertical.

PROOF V Y € Dl(TM).

wL(VI‘LXOL’Y) + wL(Xoc’VFLY) = wL(XOL,Y)

or still,
(.uL(Vl-. XOL,Y) + OL(VI. Y) = wL(Xoc’Y)
L L
or still,
wL(vI‘LXon’Y) = wL(Xu,Y) (cE. 6.14)
=>
VI'LXOL = Xu.
I.e.: XOL is vertical.
Therefore the map
X > g,

fram vertical vector fields on ™ to horizontal 1-forms on ™ is a linear iso—

morphism.



22.

A lagrangian L is nondegenerate provided FL is a local diffeomorphism (cf. 8.2)

but there are important circumstances when FL is actually a diffeomorphism (cf. 8.4).
[Note: Take M = R and let L(q,v) = e’ — then L is nondegenerate but

E'I_.:f_i2 > 132 is not surjective, hence is not a diffeomorphism.]

8.24 LEMM Suppose that FL is a diffeomorphism. Put H =E; o (FL) 1 then

FH:T*M -~ ™
is a diffeomorphism and FH = (FL) “1. One has

(FL) Ty, = Xy
(FH) ,X,; = Ty

Furthermore, the trajectories of TL are in a one-to-one correspondence with the
trajectories of XH and they coincide when projected to M.
[Note: Explicated,

(FL) Iy, = TFL o T} © Ly~

= TFH © X, o (Fr)

g
.y
|
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1

ILocally, FL(ql, cee ,qn,v pees ,vn) is given by

qloFI=ql’p.°FI=3L"
i i
v

To calculate H in local coordinates, write

o]
!

E ° (FL) -1

1

AL e (FL) Y -1 o (FL)

L
Bvl

&Ly o w7t op e )t

o Fm)h L

-t L)Y - n e (L)L
v

it

p, (v o L™ - Lo m)7

1

Abuse the notation and let v* = v o (FL) % — then, since q; =q; ° (FL) —, we

18

have

H(ql, .o .qn,pl, oo ,pn)
i 1
= pivl - L(q foese ,qn’Vl, . ..,Vn) r
the traditional expression.
APPENDIX

The equations of Lagrange

=— () - —===20 (i=1,...,n
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are tied to the ql and the v' but there are situations where a change of variable

is advantageous.
If (U, {xl,...,xn}) is a chart on M, then

1

() 70, 4t o os@® v ™D

is a chart on ™. In §4, we took v© to be dxt viewed as a function on the fibers,

i.e., vh o= axt (cf. 8.19). However, instead of using the dxl, we could just as

well work with any other set {ocl, cese ,ocn} of 1-forms on U, say
oI =gl

5l o
jdX (ijC(U))I

subject to the requirement that

oclA.../\ocnzo

which forces functional independence of the at (= (flj ° 'TTM) VJ) .

N.B. Put

=i _ ~i
v =

Then in classical terminology, the v are velocities and the v are quasivelocities.

Define functions flj e C7(U) by

Then the matrices [flj] and [flj] are inverses of one another.

A.1 IEMMA We have



25.

3 j d
= (£, o 1) -
8vl 1 M ij
d =5 d
—r = (f . © 1T) —_— .
s M I
A.2 EXAMPIE Locally,
R
A=V —l
v
_ 7 -3,k P
= (£ 3 o TrM)v (£ ;° 1TM) ——3\7]{
-3 _
v’
To minimize confusion, let
=i _ qi
Then
- -1 -n -1 -
((TTM) lU,{q ,...,qn,v Ty
is a chart on ™.
A.3 LFMMA We have
3 __ 3 9__ (7] k £ d
T = - + T (fkoTrM))(fKoﬂM)v ———5

aa gt ag v
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A.4 EXAMPIE Take M = R and suppose that o = ¢dx (¢ > 0). Let F € C*(RY) —

then
F(q,v) = F(q,¢(@v),
SO
oF oF £} 1 oF
— ==t — v =)
53 g 3q ¢ vV
g ¢ ov
E.g., consider
F(q,v) = %vz.
Then
- 2
F@ =1z (Y
¢ (q)
=>
L3 L@
oq q

A.5 ILEMMA We have

-17

VT av
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Now put
= _ 2k 3
X = &y emy) T
og
A.6 IEMMA We have
3
[-1 _-] = 0.
1 v
Define functions
kK s, -
Y5 € L
by
K _ =k 5k R ko
Yis = & o &, o my (Eq;“_ (£, o myp g‘fm )

A.7 IEMMA We have

N.B. The set

3 3 0 d
{X ’I..’X’——-—,.l" _}
1 n’ =1 o

is a basis for

M ((my v

A.8 EXAMPIE Take M = 53 and use spherical coordinates:



Iet

Then

Therefore

[f

i

r (r > 0)

9 (0 <6 <

28.

¢ (0 <o < 2m.

0 0
r 0
0 r sin ©
0 0
1/r 0
0 1/r sin 6
3
a&l
19
r 352
1 9
rsing .=3°
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And
= o, __lc = -, 1= = =.  cotfz
[X)/ %50 = = 2 X5 [X)/X5] = = £ X, [X),X3] = ~ =—X.
k
Consequently, the nonzero Yij are
T2 __.2 __1
Y12 Y1 T
3 _ 3 __1
Y13 Y31 T
3 _ 3 __cot?d
Y3 == Y325~ —¢ -

A.9 EXAMPLE Take M = SO(3) and let

q =9
q2=9
3

qa =y

be the local chart corresponding to the 3-1-3 rotation sequence (see the Appendix).

Put
— =1 . .
v =v¢smesmq)+vecosd)
=2 . .
=v¢smecosq)-vesm\p
\_73=v cos 6 +v,.
) ()
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Then
" sin 6 sin ¥ cos Y 0o
[flj] = sin 6 cos ¥y = sin Y 0
_ cos © 0 1
and
- sin Y/sin 6 cos Y/sin 6 0
[flj] = cos Y - sin Y 0
_ - cos 0 sin Y/sin 6 - cos 6 cos Y/sin @ 1
Therefore
~ X, = (sin y/sin 9) 9 _ 4 cos ll)a——— (cos 9 sin YP/sin 0)
1 =1 -2
aq oq
= . 9 . 9 .
X, = (cos Y/sin 8) — = sin Y —= - (cos © cos Y/sin 6)
2 -1 -2
oq aq
= 3
X = —3 .
~ 3 8&3
Here
[Xl'xj] = eljkxk'
thus
kK o €
Yi5 T €i3k°

Suppose that L € Cm('IM) is a lagrangian.
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A.10 LEMMA Locally,

_ oL i
6 ——i-(f

3 5 ° My da’.
v

PROOF 1In fact,

6L = dSL

S* (dL)

= S*(é-_l_l{ agt + 9—-1:‘-{

g ov

av)

= 9L _ S (dal) + 9L
-1 =
g oV

S* (d\_fi)

=1 -1
g v

s* (da’t)

= E_Ei‘ s*(d((fij 0 TrM)vj))
A4

_ AL i 3, (g 3
= 3\_75‘ S*(d(f 3 ° wM)v + (f 3 ° ﬂM)dv )

B(fi. o T..) , B(fi. o M) .
= g3 M gk 3 M gk
-1 k k
v Lo} LAY

oL
v

+

5% ( (,fij o ) avdy

_ oL i J
== (£ 3 o ’ITM)S*(dV )
v

N i
A
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oL i ol
— (£ 3 ° TTM)dq .
oV

[Note: Obviously,

i -5 i
(£ o mPaT = mhia™) ]

A.11 LIEMMA Iocally,

2 . \
_ ek 0L -1 -J
“i"(fjoﬂM);I-—i;,:Edq A dg

1,3 k 3 £k L =i =]
+ = (—:—A— (f . O T ) - ( . © T ) ) B dq A dq
2 aql M aqj i M k

J oV
+ (o _92Lk a’ A ag.
T
[Note: Write
- =i =i L
dg” = (£7, o mpmk(a™)

_ (=] m
_ dg” = (£ m° 'rrM)ﬂﬁ(oz ).
13 k 3 (K L =i =]
S 7, om) - — (£, o)) —-d9 A dq
2 aql 3 M aqj i M avk
_L g o LR _a A m
=3 (B o mp @&, o HM)(aai (£, o mp = (£%, o 1)) I o) A

= %_ Yoo K Trb";l(ocz) A ﬂﬁ(ocm) .]
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If T € SO(MM) is secord order, then

T = (fl. ° WH)GJ é:T-+ El 8_. ’
J 9q v
i.e.,
P=\_7—.+618T.
oV
Indeed,

_ .k =i -3 9
SI’—(fioﬂM)(ijTrM)vJ—é:_;E

-9
ov

A (cE. A.2).
Assume henceforth that L is nondegenerate. Determine PL per 8.12 -~ then FL

is second order and along an integral curve y of FL, the equations of Lagrange

%E (M’—i) - B—LI= 0 (=1,...,n
ov og

are satisfied or still, passing fram velocities to quasivelocities,

= (D) vy, —=—=XL (j=1,...,n).

A.12 EXAMPIE Take M = B? and use polar coordinates:

r (r > 0)

Q
It

0 (0 < 8 < 2m.

e}
]
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Put
- =1 1
vV =V
-2 2 2
_ =rv
Then
-3 0 -
i
£f7.] =
[J]
and
-1 0 —
=
[3]
0 l/J:'2

In cartesian coordinates, let L be

L@+ @5 - visleh

which in polar coordinates is

Tun?+ @3 - v

or, in terms of 51,512,\_71,\72:

=2,2
T @+ 3 Egliz - v@.

Write

_%(‘71)2+%(V)

=
!

F=-V' (=-dv/dr).
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Then the equations of motion are

d ik 9

that, when explicated, reduce to

Therefore

To return to ql

Accordingly,

3T - T =
F O - VY T =XTHF
SRS i1k~ 1
da 5T -ik T _ =
- (=) -VvY,, —==XT+0
g€ =2 i2 2k T 72
-, -2 2
t (‘_’1)3 + F@E@)
(a”)
_x‘rz—o.
. -2.2
rp=v% + e r@n .
(g oV
2 1.
=r,q =06, v =¢, v =g, note that
- 6 9
1T T i
(cf. A.3).
= 1 9
X, = = 2
_ 27278
- 3 8 3 2: 1 3
I =¢ (- 25— +1r8 (545
L or rBe r286
+ (o + F(r)) &
or
_ =3 - .2 3
—r§f+65—+(r6 +F(r))-—: 2

or
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A.13 EXAMPLE Take M = S0(3) (cf. A.9). Suppose that locally,
1 -1, 2 -2 2 -3, 2
L-—2— (Il(v) + Iz(v )7+ I3(v) ),
where the Ii are positive constants — then here

-i k .
S—t Ly - vlvij L -0 (5=1,23)
v oV

or, equivalently,

i
o
~~
|

=1,2,3).

But

Therefore

I
<

[Note: These relations are instances of Euler's equations (see the Appendix).]



§9. SYMMETRIES

Let M be a connected C” manifold of dimension n. Given a second order
1
Trep (M), put
1 1
DI.(TM) = {X € 0" (™) :S[X,T] = 0}.
[Note: ILocally, the elements of D%('IM) have the form

X=Al§-—_{+ (rah) 9——i—.]
oq AY

9.1 LEMMA Define

1 1
TR0 (TM) > DI,('IM)

by

1T1..(X) =X + S[T,Xx].

Then M is a projection of Dl (T™M) onto D% (T™M) with kernel V(™).

[To check that Tr (X) really is in 0%('IM) , write

s[x + sfr,x1,r11

1l

= s[X,I'] + s[s[T,X1,T]

s{x,r]1 + [slT,X1,8T]

- SI[IT,X],sT1 (c£. 5.9)



six,T] + [s[T,X],A]

- s[r,x1,Al (c£. 5.8)

Il

SIX,T1 + [SIT,X],A]

+ S[A, [T,X1]

s[x,T] + sir,X] (cf. 5.10)

= 0.]

9.2 IEMMA Define a multiplication

c”(m) x (1) > DL ()

fxX = £X + (TE)SX (= 1TI,('fX)).

Then D% (M) is a module over C (TM).
[Note: So, while D% (TM) is not stable under the usual multiplication by
elements of C (TM) , it is stable under the usual multiplication by elements of

C(;('IM) (the subring of C (TM) consisting of the first integrals for T) (cf. §1).]

The elements of D% (TM) are called the pseudosymmetries of I', a symmetry of T

being an X € Dl(TM) such that [X,T] = 0.



[Note: Trivially, a symmetry of T' is a pseudosymmetry of T.]

9.3 EXAMPIE Let X € DX (M) — then

Sx',r1 =0 (cf. 5.19).

Therefore X' € D%.('IM) » hence X' is a pseudosymmetry of T.

A point symmetry of T is an X € Dl(M) such that

x',rl = o.
So, strictly speaking, a point symmetry is not a symmetry... .

9.4 REMARK Agreeing to call a vector field on TM projectable if it is

ﬂM—related to a vector field on M, the definitions then imply that the projectable

symmetries of ' are precisely the lifts of the point symmetries of T.

9.5 LEMMA If X is a symmetry of T and if £ EC}O('IM), theanEC?('IM).v

PROOF For

0 = [P,X]1f = T(Xf) - X(T£)

T'(Xf).

Suppose now that L is a nondegenerate lagrangian -- then o is symplectic



so for any £ € C (TM), 3 a unique vector field X € Dl (TM) such that

1 = df.
xf“’L

9.6 LEMMA If f is a first integral for FL, then Xe is a symmetry of I’L.

PROOF Write

1 W, = =1 W,
[Xf,I‘L] L [I‘L,Xf] L

== (L, 21, =1, ©°o L, )w
L % X Ll

== L1 (cf. 8.9)
I, xf“’L

=-dI £

Therefore

X ,I‘L] = 0.

9.7 REMARK If X € Dl('IM) is a symmetry of I‘L, then

1,1 € C (™) .
XFL‘“L Iy,



Proof:

L, (1,1 )
T er“’L

- LFL(lxdEL)

- LI'L(LXEL)

Crory ™ b )

(i}

- LXLPLEL

0 (cf. 8.10).

[Note: It may very well happen that

1,1
er‘”L

vanishes identically.]

An infinitesimal symmetry of L is a vector field X € 1)1 M) such that

L€ COOT(TM) .
X

[Note: It will be shown below that

[XT,I'L] =0 (cf. 9.14).



Accordingly, an infinitesimal symmetry of L is a point symmetry of FL.]

9.8 THEOREM (Noether) If X is an infinitesimal symmetry of L, then X'L

is a first integral for FL.

PROOF In fact,

L, (1 Te ) 1 eL + 1 T(LF GL)

L X [rL,xT] X' 'L
= 1,0, + 1XTdL (cf. 8.14)

X'L

]

= 0.

Therefore 1 _6_ is a first integral for I'_. But
Y L L

1 0, =1 TdSL

<t ox

= 1 _S*(dL)
vl

=8% o 1 _(dL) (cf. 6.1)
sx’

= 8% o 1 _(dL) (cf. 5.7)
xv

= s*(dL(X"))

= dnL(x")



9.9 EXAMPIE Take M = R° and let
1 23123 12 42 2 3
L(qrqlqlvrvlv)='2’ Z(V)'—V(q,q).
i=1
Putx=§——l—— then X' =8—T, so X'L = 0. Since XV=3——1—, it follows that
X q oV

X'L = Vl is a first integral for FL (conservation of linear momentum along the

1 .
X —axis).

9.10 EXAMPLE Take M = R> and let

5 . .
Liq e, v o) =3 (2 D - TP,
i=1 i=1
PutX=x]'(a --x2 J — then
2 1
X 3x
XT=q182_ ZB__I_V281+v182
g le| v v
=>
<L = - qlqz + qqu _ v2vl + Vlvz
= 0.
But here
v 19 290
X =g —>5~-49 —71-



Ard this means that

L = qho? - At

is a first integral for T (conservation of angular momentum around the x3—axis) .

As will became apparent, one need not work exclusively with the lifts to

™ of vector fields on M.

9.11 EXAMPLE Take M = R° and let

3 .
3 1.2 .3 1 2
L(ql:qznq SV, V,VT) = 3 X (Vl) .
i=1
Put
X = f(vl,vz,v3) 8__1_ .
oq
Obviously, XL = 0. In addition,
FL=V1—B—I+V2§-—§+V3§—§
le| oq oq
=>
[X’PL] = 0.

The argument employed in 9.8 then implies that 1XeL is a first integral for I‘L.

But

I
-
2



2

= vlf (vl,v ,v3) .

I.e.: vlf (vl,vz,v3) is a first integral for I‘L. Of course, the lagrangian at

hand represents the free particle, so any function of the velocity had better
be a "constant of the motion".
9.12 IEMMA If X is an infinitesimal symmetry of L, then
L 6. =0.

PROOF We have

—
D
I
-
ol
|

dSL TL + dL sL (cf. 6.12)
X %7

dSO + doL (cf£. 5.18)

= 0.

[Note: Therefore

Il
r‘
Q.
D

Loy S

I
on
—
D

9,13 ILEMMA If X is an infinitesimal symmetry of L, then XTEL = 0.
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PROOF For

p v, = - dEp

L

T _ T
1I.LwL(X ) = - dE (X))

T

= - X'E.

It

T T
1erL(X ) usL(TL,X )

Il

T
dGL(I‘L,X )

T T
(Lp Br) (1) = (L 0p) () + e ([T, X'D)

T T
(LFLeL) (xX') + GL([I'L,X D (cf. 9.12)

LX) + eL([rL,xT]) (cf. 8.14)

T. T
X'L + 0 (I ,X'])

.
8, ([T, X']).

But [rL,xT] is vertical (cf. 5.3) and 6, is horizontal, hence eL([rL,xT]) =0

(cf. 6.14).

9.14 IEMMA If X is an infinitesimal symmetry of L, then X' is a symmetry
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of FL.

PROOF Simply note that

i
o~
~
-]
pr)
|
pu)

1 (L)L
x",T. 1 x' L L X'

LX_r(— d.EL) - 1I,L(LxTwL)

- aL - 1.0 (cf. 9.12)
xTEL 5

- d(XTEL)

0 (cf. 9.13).

9.15 REMARK Let X € Dl(TM). Assume:

- deeL =0
dXEL = 0.
Then
[XIFL] = 0.
Proof:

1 = (L, o1, -1, ©° L)
%, T )L Ly °r I, Lo wy,

L

L= @) = 1 aq,
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i

- dLE - 1I‘LdLXeL

0.

A Noether symmetry of T, is a vector field X € p-(M) such that L 8 is
X

exact (say L 6. = df, where £ € C7(IM)) andXTEL= 0.
XT L

[Note: A Noether symmetry X of I, is necessarily a point symmetry of Ip2

[xT,rL] =0 (cf. 9.15).]

9.16 LEMMA If X is a Noether symmetry of I, then f - X'L is a first

integral for I‘L.

PROOF To begin with,

ettt e

It
—

1 ds
XT“’L -

L .8, —dv _8
XTL XTL

af - a&xX'L

aiE - x'1).

Therefore

V. V.
rL(f - X'L) =d(f - X'L) (I‘L)

(_1X TwL) (I‘L)



13.

I

eF
=
- -

e

!
|
£

=)

b

It
I
-
o
£
™
Ny

i
<
=

Il
N—q
£

Suppose that X is an infinitesimal symmetry of L —— then

~ L 6. =0 (cf. 9.12)

XTEL =0 (cf. 9.13).

So X is a Noether symmetry of I'L and 9.8 is a special case of 9.16 (take £ = 0).

9.17 REMARK If X is a point symmetry of Iy, such that

0,

XTE'.L

then X is an infinitesimal symmetry of L. To see this, start by writing



14.

L (i, 6,) =1 0. + 1, (L _8.)
x' Iy L X", ;] LT, gk
= 1,408 + 1,0
0°L 7 '
= 0.
Next
XE, = 0=>X(AL-L1) =0
=> X'AL = X'L.
So
0=1L _(1, &)
XT TLL

I

L AL (cf. 8.13)
XT

A Cartan symmetry of I, is a vector field X € vl (™M) such that LxeL is

exact (say LXeL = df, where £ € C (TM)) ard XE‘.L = 0.

[Note: A Cartan symmetry X of FL is necessarily a symmetry of Iy s

[X,I‘L] =0 (cf. 9.15).]
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N.B. The lift of a Noether symmetry of FL is a Cartan symmetry of FL.

In the other direction, the projection of a projectable Cartan symmetry of I‘L

is a Noether symmetry of I‘L (cf. 9.4).

9.18 EXAMPLE 1"L is a Cartan symmetry of I‘L (which, in general, is not

projectable). Proof:

@
|

=dL (cf. 8.14)

0 (cf. 8.10).

:
l

9.19 REMARK The lift of a point symmetry of TL need not be a Cartan

symmetry of FL (cf. 9.24).

9.20 ILEMMA If X is a Cartan symmetry of T, then f - (SX)L is a first

integral for I“L .

[Argue as in 9.16, observing that

L, = 9o

L8y, — digdp

atf - dIXS* (dL)

df - ds*(dL) (X)



Then

is a

Consider the following

first integral for I’L.

I’L(f -

16.

= d(f - (SX)L).]

setup. Suppose 3 f € CT(T™) :
- Le6y = af
~ XL = I'Lf .
f - (SX)L
In fact,
(SX)L) = d(f - (SX)L) (T})

= (1) (1)
= }{EL
= X(AL - L)

= X(1, 6, - L) (cf. 8.13)

il
S
o
@

I
=1
h

ir LXeL - I‘Lf

p daf - I‘Lf



Then

N.B.

X is a Cartan sy

17.

df(I‘L) - I‘Lf

i

TLf - FLf

mmetry of I‘L. Thus put

F=f~- (SX)L.
1rL“’L='d‘EL
_ 1XmL=dF
XEL=1XdEL
== 1,1
XI‘L‘*’L
=1, 1
er‘”L
=1, dF
I1L
=1"LF
= 0




9.21 EXAMPIE Here is

M =R - {0} and put
la| =
lv| =
Iet
Then

hence L is nondegenerate,

18.

a realization of the foregoing procedure.

((ql)z + (q2)2 + (q3)2)l/2

(hH2 + A2+ HH2,

=2 (vH + K x=o0.

L =
lal
- . 1
GL—vdq
wL=dvl/\dql,
_vl? &
B =3 '
lal
_.d2 in 3
I‘L—v

at |l ot

Define vector fields X_€ D (M) (k = 1,2,3) by

}(](:—

> ki
- ®(|q|%s
where

q*v

( zqul _ qul - (g-V) (Skl .
o9

K i, .3 2ki ki
g /|al’ - ]S+ vt

N RSP e S ¥

y &

)

ov

3 _

: 7

1

Take



One can check that [Xk, FL]

19.

= 0, thus X is a symmetry of I'L which is not a 1lift

of a vector field on M. Set

£

Since

the conclusion is that

is a first integral for I'L.

[Note: This lagrangis

what is being said is that

9.22 IEMMA If f is &

of PL (cf. 9.6).

PROOF We have

=

K= (q@VIvE - (|v|2 + K/Iq])qk.

L, o, =df

%X L k
X L= T,
- (sSX)L

= (|v|2 - K/|q[)qk - (@WV®

n is the one that figures in the Kepler problem and

the so—called Lenz vector is conserved.]

y first integral for I'., then Xf is a Cartan symmetry

df=1x(uL=1Xd6L

£ £
= (fo -do IXf)eL
LX GL = d(f + SL(Xf)).




20.

XeE = (1, o) (Tp)

Il

df(l"L)

9.23 REMARK Given a Cartan symmetry X of T_, put

F=f- (SX)L.

Then F is a first integral for I‘L (cf. 9.20) and

So far we have worked with a fixed nonsingular lagrangian L. However, as
has been seen in §8 (cf. 8.17 and 8.18), distinct nonsingular lagrangians L and

L' can give rise to the same dynamics in that

In turn, this leads to difﬁering descriptions of the symmetries and first integrals.

9.24 EXAMPLE Take M = R” and let




P=Vl-a——i-+v
od
Then
L=%((Vl)2+
and
L _ 1,12
L' =3 ((v)

21.

2,2

v7)© + (v3)2 - (ql)2 - (q?')2 - (q3)2)

O s L L S

are both nondegenerate lagrangians for TI':

I‘L=1"
FL.=I’
Moreover,

Xl=x283-x332
ox X

X2=x3al—x]'a3
ox >4

X3=x182—x231
ox X

are infinitesimal symmetries of

23
av

31
qv

12
qv

L, thus by 9.8 lead to the first integrals

- O
13

21



for 7. On the other hand,

are infinitesimal symmetrie

for T.
. [
[Note: X]'_ ard X2 are

symmetries of I‘L. Therefor

(X

(X

are first integrals for I‘L

is a Cartan symmetry of I'L.

22.

_Xi=x3—'a +xl—33
ox ox
g3, 20

vV o -qVv
3.2 23
12 21

-qvVv

point symmetries of PL' (cf. 9.14) or still, are point

e
T, _ 13 13
i)EL—2(qq + vvT)

23 23
é)TEL=2(qq + vvT)

(cf. 9.7) (or directly). But neither (Xi)T nor (x:;.)T

]




According to 6.12, Vv X € Dlﬂw),

L
X
But
Therefore
Consequently,
And then

TL

Ly,

w0
I

0

23.

{(cf. 5.18).



24.

[Note: Our standing assumption is that L is nondegenerate but, in general,

XL will be degenerate.]

9.25 LEMMA vxeDl(M),

1 6. = 0.
T L
X', 1)
PROOF Indeed
: o, = dL([X',T.1)
T L S L
X', 1]
- T
_ T

dar.(0) (cf. 5.19)

]

= 0.

[Note: This result enables one to simplify the proof of 9.8, there being

no need to appeal to 9.14 to force

1 6. =0
T, L

since 9.25 implies that this is automatic.]

9.26 ILEMMA V X € Dl(M).



25.

1 =1, w + dE .
[PL,XT]wL Iy, xT X',
PROOF First
1 =1 ae
[I*L,x‘r]wL [r,x7 "
= [ . - dv 8
L L
[ ,X'] [r,X']
=L 0 (cf. 9.25)
L

L. L 8 -L _L.6
I‘LXTL XTI’LL

=L, 9 - L 4L (cf. 8.14).
Lyt X
Next, write
L dn = ax'L
X
= d&X'L - dAX'L + dAX'L
=d(l - AX'L + dAX'L
=-dE + dAX'L.
X'L
Therefore
1 wL = LI‘ 0 - dAXTL + dE .

[FL,XT] L X'L X'1,



26.

But
[AXT] =0 (cf. 4.4),
SO
Ly © - dpxX'L
L XL
.
=180 - dX AL
I, x™
.
=[.0 -dX 1. 8
Ir x'T, Iy L
Finally
1I‘ w T = 1I' L TwL
LXL L X
=1, L _d8
I‘L XT L
=1,dL _8
I T L
= (L, —do1,)L _B
I‘L I‘L XTL
=18 -di. L .8
L x'L I x™ L
=1.86 + d(1 - L o 1, )6
L xL [XT,FL] U
T
=18 -dX 1. 8 (cf. 9.25).
L xL I L

(cf. 8.13).



27.

Now recall that, by definition, I admits the lagrangian X'L provided

which, in view of 9.6, will be the case iff

[xT,rL] = 0.

I.e.: Iff X is a point symmetry of I‘L.



§10. MECHANICAL SYSTEMS

Let M be a connected C manifold of dimension n — then an (autonomous)

mechanical system M is a triple (M,T,I), where T € Cc”(T™) and T is a horizontal

1-form on ™.

One calls

M -- the configuration space

™ -- the velocity phase space

n - the number of degrees of freedom.

10.1 REMARK Recall that the horizontal l-forms on ™ are in a one-to-one

correspondence with the fiber preserving C” functions ™ > T*M (cf. §7). In the

context of a mechanical system, either entity is termed an (external) force field.

10.2 EXAMPLE Ilet L be a lagrangian. Take II = 0 -~ then the triple (M,L,0)

is a mechanical system.

A mechanical system M is said to be nondegenerate if

W = ddST
is symplectic.

Suppose that M is nondegenerate —- then 3 a unique vector field T, € Dl (T™)

M
such that

1 (uT=d(T—AT) +H~(=—dET+H).

Ty



And, as the notation suggests, I‘M is second order (cf. 8.12) (note that cSSH =0

(c£. 6.13)).

N.B. Working locally, write T = I[iélql -- then along an integral curve y of

I'M, the equations of Lagrange

with forces are satisfied.

Il

10.3 EXAMPLE Take M = R® and

=2 (% + D%+ DY m> 0

1 2 3
nm= I{ldq + szq + H3dq .

Then the mechanical system (M,T,II) represents the motion of a particle of mass m > 0

in 1_33 under the influence of a force field Tl. Here

I‘M=vl—-—al+vz———32+v3——a3
oq g g
L 3 I 3 M3 4
ta TI1t'm 2tm 3
ov ov ov




[Note: In the above, it is understood that ql,qz,q3 are the usual cartesian

-~

coordinates. Matters change if we use spherical coordinates: ql =r (r > 0),

F=0(0<0<m, & =06 (0<¢<2m, 80

Thus now
=2 (@hH%+ @ 2%+ @26H s gHD
and
_monl m o2 o3
Il = T{ldq + szq + H3dq .

The tensor transformation rule of §2 can then be used to compute the ﬁi in terms

of Hi. To illustrate,

. gl o o
== +=250,+ =51
e lef oq

= (- gll sin &2 sin <~33)Hl + (311 sin 312 cos 613)H2.]

A nondegenerate mechanical system M = (M,T,II) is said to be conservative

if3vecTm:

== dWV e m (= - wh(dv).



In this situation, we have

1FwT=d(T AT) + .

a(r

AT) = AV o TTM)

d(T—VOTTM—AT)

= d(L - AL)
where
L=T-=-Vo T\'M.
Thus I has disappeared and
& &y -Loo @=1,...0.
v g
But this puts us right back into §8 (with L nondegenerate) (evidently, W = g
and FL = FM) .

Typically, T = % g, where g is a semiriemannian structure on M (cf. 8.4),
hence

AT=2T(=>ET=AT—T=T).

10.4 LEMMA Suppose that T is nondegenerate and AT = 2T -- then

LALuT = e



PROOF In fact,

Ly = L,ddgT

a(L AcElST)

d(dS ° LA - dS)T (cf. 6.10)

2ddST - ddST

= ddST

= oy

10.5 IEMMA Suppose that T is nondegenerate and AT = 2T -- then
[AI I‘T] = I‘l:[ll'

thus the deviation of FT vanishes.

PROOF For

1 = (L, o1, =1, °o L.)
[A,FT]‘“T A Ty Tp A Y

LA(_ dET) - IFTU)T (cf. 10.4)

-dAET+dET
d(Eq - AEL)



f
o
E]
I
3

[A,I‘T] = I'T.

Take T = % g. Given a chart (U,{xl,...,xn}) on M, let {I‘lke} be the

connection coefficients per the metric connection V determined by g.

10.6 ILEMMA Locally,

r o=t §—i- ((Fik,(’, 0 nM)vkvf') 8‘? )

T g v
[Note: The projection ﬂM:']lM + M sets up a one-to-one correspondence between

the (maximal) integral curves of I‘T and the (maximal) geodesics of (M,qg).]

10.7 REMARK The set SO(TM) of second order vector fields on ™ is an affine

space whose translation group is the set of vertical vector fields in Dl (T™)

(cf. 5.8). Choose I‘T as its origin —— then I‘T determines a bijection

So(m™) - V(T™),

viz.
''>T - I‘T.



Now consider

L=T-Vo©°n,.

M
Then
EL=AL—L
=A(T—V°TrM) "'(T—V°T1'M)
=T+V°TrM.
[Note: Here

FL=F(T-V°TYM)

FT - F(V o 1TM)

= FT

gl’ (cf. 8.4).

Therefore FL is a diffeamorphism, hence 8.24 is applicable, and

H=%Tog#+Voﬂl\’,‘I.]

10.8 ILEMMA We have
r, =T, - (grad V.

[Note: Locally,

v
J

9
Bxl

grad V = (glJ



(grad V)V = (g9 &y o 1) 2

axj M vt

10.9 REMARK Suppose that X € Dl M) is an infinitesimal isometry of g
such that XV = 0 —— then X'L = 0 (cf. 8.4), thus X is an infinitesimal symmetry

of L and so X'L is a first integral for I‘L (cf. 9.8). Explicated,

XVL:'IM > R

is the function g(X,__). ILocally,

V. _ A s 1 k £
XL—Xl o TTM-B——i-i' ((gkz o TTM)VV)
v
. k £
_Ji 1 v L o k v
=X o TTM > ((g]o(l o vrM) —xV + (gkﬂ ’ITM)V —-—i—)
v ov

i 1 i K
=X oMy 3 (g o MV + (g o MYV

i 1
= X 'rr—z—((g.

N 3
M iy © ™MWV {9y 0 V)

Xio’lT (g..

3
M “7ij ° HM)V *

[Note: For a case in point, consider 9.9.]

e Ao by

10.10 LEMMA Suppose that T € Dl (M) is second order. Define Hl“



HI' = II‘wT + dT.

Then HI‘ is horizontal.

PROOF Bearing in mind 6.14 (and the fact that eT is horizontal), take

X € Dl (T™M) vertical and write

1I,u.\I.(X) = 11,deT(X)

(LI‘ -do 111) GT(X)

(L) (X) = A1 6 (X)

Toq(X) - GT([I‘,X]) - dAT(X) (cf. 8.13)

ro - d T(Ir,X]) - asT(x)

~ ar(s(r,X]) - 2dT(X)

- dr(~- X) - 2dT(X) (cf. 5.15)

1l

- dT(X).

i

Therefore

M K) = 1y (X) + A7)

= - dT(X) + dT(X)



10.

[Note: Locally,

so locally,

Mp = (955 ° My c? + (ij,e o ﬂM)kaK)dql.]

N.B. This result implies that one can attach to each second order T a

nondegenerate mechanical system

MI‘ = (M,T,HI,) .

And, of course,

r, =T.
MI'
If 7,,T, are secord order and if I, =1, , then
1'°2 I‘l 1‘2
T W, = 1, W,
PlT F2T
soI'l=1"2.

On the other hand, if a € hAl‘IM, then 3 a unique vertical Xa:

1, W, = o (cf. 8.23).

Since I‘T is second order (cf. 8.12) and

11..(nT=—d.E‘.,I,=—dT,
T



11.

it follows that
g 47 Wp + AT
o T
= 1X Wp + 1? wT + daTr
o T

=0 ~-dT + dT = o.

10.11 SCHOLIUM The map

T > HP

sets up a one-to—one correspondence between the set of second order vector fields

on ™ and the set of horizontal l1-forms on TM.

Let y:I - ™ be a trajectory of I'. Fix t <t in T — then the work done

by the force field II, during the time interval [tl,t2] is

r

t

fti Y*HT'
But
Hl" = 1pwp + 4T
=>
HF(F) = dr(T).
Therefore
t v (t,)

2
J O Y, =T .
tl T Y(tl)
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10.12 REMARK If I, = - d(V, o m,) for some V, € c”(M), then

r
t v(t,)
2 2
ftlYHr‘Vr°7TM y(t)

implying thereby that

T(Y(t) + Vp o my(y(t))) = Tly(ty)) + Vo my(y(t,)).

Put

[
0

T’— VI' o ’n’M.

"

ELI' T+V1-.01TM

and, being constant along vy, is a first integral for ' (cf. 1.1), which, in the

present setting, is another way of looking at 8.10 (I‘L =T).
T



§11. FIBERED MANIFOLDS

Let M be a connected C* manifold of dimension n -- then a fibration is a

surjective submersion m:E » M and the triple (E,M,n) is called a fibered manifold.

E.g.: Vector bundies over M are fibered manifolds.
N.B. A fibration m:E - M is necessarily an open map, thus is quotient
(being surjective).

If

meE - M

m'E' > M

are fibrations, then a morphism

(th) : (EIMIT[) - (E'IM.IW‘)
is a pair of C” functions

F:E > E'

£f:M > M
such that 7' o P = £f o 1.

[Note: Accordingly, V X € M,

F(r L)) e (") T(Ex)).]
A morphism

(Frf) : (E,M,m) - (B',M', ")

is an isomorphism if 3 a morphism



F',£):(E"' M ,1") > (EM,T)

such that
F' o F = ldE

f' o £

idM.
One then says that (E,M,7) and (E',M',7') are iscmorphic.

11.1 IEMMA If ¢:N »> M is a surjective c” map of constant rank, then ¢ is

a submersion, hence is a fibration.

Suppose that m:E -+ M is a fibration -—— then the rank of 7 is constant, viz.
rk m = dim M.

So, v x € M, the fiber E_= 7 L(x) is a closed submanifold of E with
dim E_ = dim E - dim M.

[Note: 1In general, Ex is not connected.]

11.2 EXAMPLE Take E = 52 - {(0,0)}, M=R, T = pry - then 7 is a fibration.

Here, L (x) (x # 0) is connected but TT_l(O) is not connected.

11.3 LEMMA Suppose that m:E - M is a surjective c map — then 7 is a

fibration iff every point of E is in the image of a local section of .



11.4 REMARK The set of sections of a fibration 7 may be empty. For

example, consider

A\ 10}, 8%, 5P\ (0D

S

and recall that §2 does not admit a never vanishing vector field.

11.5 1EMMA If (E,M,nw) is a fibered manifold and if ®:N - M is a c” map,

then there is a pullback square

pr,
N XM E —_—— B
pry | L
N ——> M
o

and (N XM E,N,prl) is a fibered manifold.

PROOF It is clear that pry is surjective. To see that it is a submersion,
fix (yo,po) € N M E and choose a local section 0:U » E such that Py € o(U) (cf.
11.3) -- then <I>(y0) = Tr(po) € U. Define T:<I>_1(U) > N XM E by t(y) = (v,0(2(¥)))

to get a local section of pry passing through (yo,po) . Therefore pry is a

fibration {(cf. 11.3).

Suppose that m:E > M is a fibration —- then the kernel of

Tr:TE ~ T™M



is called the vertical tangent bundle of E, denoted VE. What was said at the

beginning of 85 for the special case when E was assumed to be a vector bundle is
applicable in general, thus there is an exact sequence
0—>VE->TE—>E><M'IM->O (cf. 5.2)

of vector bundles over E.

11.6 EXAMPLE Consider TZM, the submanifold of TIM consisting of those

points whose images under MM and TTrM are one and the same or still, the fixed

points of the canonical involution Spy:TIM ~ TIM. Note that

dim T2M = 3n.

e Tet

Then TT21 is a fibration, thus the triple (TZM,’I'M,NZJ') is a fibered manifold.

® Tet

Then Tfl is a fibration, thus the triple (TZM,M,ﬂl) is a fibered manifold.

This data then gives rise to exact sequences

Vo1

1
0~ VZlTZM -—~+T]?2M ———+T2M><,IM'ITM—>O

1 Y1
0+'V1T2M —-+TI‘2M ——+T2M><M'I'M—>O.



Moreover, there are canonical isamorphisms

i

T

M

i
1
Tt g, T e v

of vector bundles over T%Vl. Now put

_SZl=u o i, o v
1 1 21
Sl—u o 1., © V.
B 21 ° 121 ° 1
Then
~ ker s = v¥r% = m st
__ Rer s = VM = m g2t
and
s*h3 = o.

[Note: T2M is the acceleration phase space. Local coordinates in TZM are

G ,v,at) (i=1,...,n.]

Iet (E,M,n) be a fibered manifold —- then a trivialization of (E,M,n) is a

pair (F,t), where t:E - M x F is a diffeomorphism such that



Schematically:
t
E—MxF
Ll 1 j pry
M — M

[Note: The triple (M x F,M,prl) is a fibered manifold and

(t,idM) :(E,M,m) >~ (M X F,M,prl)
is an isamorphism.

N.B. A fibered manifold (E,M,m) is said to be trivial if it admits a
trivialization.

Let (E,M,m) be a fibered manifold — then (E,M,T) is said to be locally

trivial if v x € M, 3 a triple (Ux,Fx,tx) : where Ux is a neighborhood of x and
tX:’lT-l (UX) > U X F, is a diffeomorphism such that

pry ot = 'ﬂ'l'fT-l(Ux) .
E.g.: Vector bundles over M are locally trivial fibered manifolds.

11.7 EMMA If (E,M,m) is a locally trivial fibered manifold, then 3 F:

vV local trivialization (Ux,Fx,tx) (x €M, Fx ard F are diffeocmorphic.

N.B. In general, therefore, a fibered manifold is not locally trivial (cf. 11.2).



11.8 IEMA If (E,M,n) is a fibered manifold and if w is proper, then

(E,M,7) is locally trivial.

11.9 EXAMPLE The Hopf map _S_3 - §2 is the restriction to _S_3 of the arrow

g? > &3 defined by the rule that sends (x1,x,x>,x}) to

((xl)2 + (x2)2 - (}(3)2 - (x4)2, 2(xlx4 + x2x3) ' 2(x2x4 - xlx3)) .

Tt is a proper fibration, hence is locally trivial (cf. 11.8).



§12. AFFINE BUNDLES

Let M be a connected c” manifold of dimension n, mE > M a vector bundle —-

then an affine bundle modeled on (E,M,w) is a pair ((A,M,p),r), where p:A > M is

a fibration and r:A M E - A is a morphism of fibered manifolds over idM such that

VX EM,

Yy :A XE A
X% X X

is a free and transitive action of the additive group of EX on the set A, (thus

AX is an affine space modelled on EX) .
[Note: The triple (A M E,A,prl) is a fibered manifold (cf. 11.3), hence
so is (A *y EM,p0 0 prl) and the requirement is that the diagram

r

AXME-—‘* A

m| e
A —r M

p

commute, i.e., that the diagram

r
X —
A ME A

poprll l

M — M

commute. ]



12.1 IEMMA The fibered manifold (A,M,p) is locally trivial.

PROOF Bearing in mind that (E,M,m) is locally trivial, fix x € M and choose

(UX,FX,tX) accordingly. Without loss of generality, it can be assumed that Ux is
the domain of a local section o of A (cf. 11.3). Iet a € p_l (Ux) —— then there

exists a unique element ¢(a) € Tr_l(p(a)):

a = 0o(p(a)) + ¢(al.
The correspondence

-1 -1
0 (UX) > T (Ux)

a > ¢(a)

is a diffeomorphism which can then be postcomposed with tX.

N.B. Every vector bundle (E,M,n) "is" an affine bundle ((E,M,T),+),
+:E XM E->E

being addition in the fibers of .

12.2 EXAMPLE Consider the fibered manifold (TZM,'IM,NZl) (cf. 11.6) —- then

the fibers of 1r21 are not vector spaces but they are affine spaces. To make this

precise, introduce the vector bundle

T,iVIM > ™ (T, = TT,I,M|VIM) .

Take an x € ™ and let



21, -1

)

ae (rm

(x)

v € (TI'V) -1 (x).

a+ve (“21)-—1(}{)

and the action

21 1,-1

(r) P H e x e > ?h )

\
is free and transitive. Since this can be globalized, it follows that
21
(2,1, 7% )
is an affine bundle modelled on

(VTM,‘IM,TTV) .

Let T'(p) stand for the set of sections of (A,M,p). E.g.: F(Tr21) = SO (T™)

(cf. 5.8).

12.3 LEMMA Each s € T'(p) determines an isomorphism ¢S:A -~ E of fibered

manifolds over idM:

<“—— I
3

|



PROOF Given a € A there exists a unique q>s (a) € E :

a=s(x) + cbs(a) (x eM.

12.4 REMARK TI'(p) is not empty. This is because: (1) The fibers of p are

contractible and (2) M is a polyhedron, hence is a CW complex.

Affine bundles are the natural setting for the study of fiber derivatives
(the considerations in §7 constitute a special case).
Suppose that
(@,M,p),r)
(@a'M,0"),r")

are affine bundles modelled on vector bundles

¢:E >~ M
$':E' >+ M
respectively. Let
C:A -+ A!
be a morphism of fibered manifolds over idM —— then Tz restricts to a morphism
VZ:VA >~ VA!

of vector bundles over M and there is a factorization



Here
VC € HomA(VA,A x., VA"),
thus determines an element
s, € sec HomA(VA,A x. ., VA').

4

But

3
N
2
X
s

°® AxME' 'ZAXA'(A' X

So we have a diagram

VA —o A x,, VA' —= WvA'

|

A XA'

!

Ax. E AXME' —_ A XME',

ar x. E')

M



fram which an arrow

d

B X, E—2»A x, E'

that, being a morphism of vector bundles over A, gives rise in turn to an element

4
sd; € sec HanAm M E,A *M E").

And by construction,

HomA(VA,A x. . VA') = HomA(A M E,A ><M E")

Now identify
HomA(A M E,A M E')
with
A Xy HmwM(E,E') .

Then the arrow

S|
C '
A —2 HomA(A M E,A ><M B")

W T2 \
~ A XM HanM(E,E )y —= HGUM(E,E )

is a morphism of fibered manifolds over idM, denote it by Fr:



A Fe HomM(E,E')

0 | l

M ——— M.

Definition: Fg is the fiber derivative of z.

[Note: Canonically,

HOHM(E,E') Z E* QM E'
or still, omitting M,
Hom(E,E') T E* & E'.]
N.B. V x € M,
z. A - A'.
XX X
Since Ax and A}'{ are affine spaces, the derivative of CX at a point a € AX is

a linear map Dcx(ax) :Ex -> E}'{ And, in fact,

Dz (a ) =Fo(a).

12.5 REMARK Since
Fr:A > Hom(E,E')
is a morphism of fibered manifolds over idM, it makes sense to iterate the

procedure and form ch;. E.g.: Take k = 2 - then

FZC:A - Hom(E,Hom(E,E"))



Hom(E & E,E")

u

u

E* Q@ E* @ E',

the fiber hessian of z.

Iet £ € C(A) — then £ can be viewed as a morphism
A+MxR

of fibered manifolds over idM and

Ff:A > Hom(E,M x R) = E*.

il

12.6 EXAMPLE Take A =™, E = ™, thus E* T*M and
Ff:™ > T*M

is the fiber derivative of £ per §7.

In the above, let ¢ = FPf (and A' = E' = E*) — then

A%, B TEax e,
But

VAY* = A X E*
(VA) M

* ~ B* X *
VE E M E

® AXx E*X T A X (B* x _E¥).
M - M



Therefore
x -~ *
(VA)* = A M E
TAx (B* E*)
E* XM
~ A X VE*
E*
Pry

Call the resulting arrow
(VA) * o VE*

bFf —— then bFf is an isamorphism on fibers (this being the case of pr On

2) .
the other hand, there is a morphism
WFE:VA > (VA)*
of vector bundles over A and from the definitions,
VP = bFf o WFf.
Schematically:

VFE
VA —— VE*

= |

(VA)* —— VE*.

bFf

12.7 REMARK The fiber hessian sz is an arrow



10.

A - Hom(E,E*).

As such, it determines an arrow
A XM E->A XM E*
that, in fact, is precisely de.

[Note: Explicated, WFf is the composition

~ de * ~ *
VA~A><ME ————*AXME ~ (VA)*.,]
Consider now
TF{:TA -~ TE*,

Taking into account the commutative diagram

Ff

A —» E*

I

M—— M,
we see that
Ker TFf < Ker Tp = VA.
So
Ker TFf = Ker VFf
or still,
Ker TFf = Ker WFf.

12.8 IEMMA Ff is a local diffeamorphism iff WFf is an isomorphism.



11.

12.9 EXAMPLE Iet L € C (M) be a lagrangian -- then
FL:™ > T*M
while
F2L:TM - Hom(TM, T*M) .

And, in view of 12.8, L is nondegenerate iff WFL is an isomorphism (cf. 8.2 and
8.5).

12.10 EXAMPIE Let L € C (M) be a lagrangian. Consider its enerqgy E =
AL = L -- then
FEL:'HVI > T*M
and we have

FEL(x,X) = FZL(.x,XX) (_x,xx) (xx € TXM) .

[Note: FZL sends

x
TM to Hom(T M, T*M) ,

F2L(x,X ) :T M - T*M.
X X X

We shall terminate this section with a definition that could have been made

at the beginning. Thus let
z:A > Al
be a morphism of fibered manifolds over idM —— then 7 is said to be an affine

bundle morphism if 3 a vector bundle morphism




12.

T:E > E'

sacchthat vxeM&ava €A, Ve €E,
% X X X

g (r (B ue)) = rl(c @), (e))
or still,

(e, te) =c (a) + Ex(ex) .

[Note: One calls Z the linear part of Z.]



§13. STRUCTURAL FORMALITIES

Let M be a connected C manifold of dimension n, mE - M a fibration. ILet

®:N >Mbe a C. map — then a section of E along ¢ is a c” map o:N » E such that

mTe g= &,

13.1 EXAMPLE Suppose that
((a,M,p),r)

(@arM,p'),xc")
are affine bundles modelled on vector bundles
mE > M
_mhE' > M
respectively. Let
z:A > A'
be a morphism of fibered manifolds over idM —- then there is a commutative diagram

FC
A — HOI“(EIE')

& }

which can be read as saying that F¢ is a section of Hom(E,E') along p.

13.2 I1EMMA The set of sections of E along ¢ can be identified with the



pr
set of sections of the fibration N XM E ———l—> N (cf. 11.5).

PROOF Given o, define

pry

z € sec(Nx, E —>N)

M
by

z(y) = (y,o(y))

and vice-versa.

13.3 EXAMPIE Take E=TM, N=TM, ¢ = 'rrM and consider

pr,
'IMXM'IWI — T™

pr, l l my

pry
sec (T y ™ — ™)
is in a one-to-one corresporndence with the set of fiber preserving C” functions
T - ™. On the other hand (cf. §5), there is an exact sequence
0+T x, ™5 TmM 3 ™ x, ™ + 0
M M
and the identification

pr,
sec (TM Xy ™ — ™) «~— {(TM)



w
.

is implemented by sending a section ¢ to p ° ¢

Y
=

™™ x, ™ > TIM.

Here

Wmouogzprloc=idm4

]

Tn, ©o UozC pr2°\)°u°z;=0.

In particular: If z corresponds to id,I,M:'I!M -+ ™, then
uezg=A.

[Note: The zero map ™ -+ ™ sends (x,XX) to (x,0). And, spelled out,

Ppro e voyueg is the composition

4 0 pr
(X) 5 (XD, 66T )) 5 ((x,0), (x,0) —2 (x,0).]

13.4 EXAMPLE Consider the pullback sguare

Pr,
E XM ™" —= T*M

*
" | [

_—
E - M

and the canonical injection



*
pry g
B E .
Given
Prl
z € sec(E M ™™™ —— E),
put
= i%* o .
Otc 4
Then
Mg o0 =Tgeired
= prl o g

idE.

T.e.: OLC € Al‘E. Moreover, ocC annihilates the sections of VE. In general, any

o€ AlE with this property is termed horizontal (cf. 6.14). The upshot, therefore,

is that the horizontal 1-forms on E can be identified with the sections of

pr o
E Xy T*M NN E or still, with the fiber preserving C functions E -~ T*M (cf. 13.2).

Specialize and take E = T*M —— then the horizontal 1-form on T*M associated with

idT*M:T*M -+ T*M is 0 (the fundamental 1-form on T*M).

A vector field along ¢ is a section of ™ along ¢, i.e., is a c” map X:N -~ ™




such that Ty © X = o, Write Dl(M;N;<I>) for the set of such (thus Dl(M) =

Dl (M;M; idM)) -— then Dl (M;N; ®) is a module over C°°(N) .

13.5 LEMMA If X:M - ™ is a vector field on M, then

X o d€ Dl(M;N;CD).

PROOF In fact,

13.6 IEMMA If Y:N > TN is a vector field on N, then

T® o Y € Dl(M;N;CD) .

PROOF There is a camwutative diagram

m, oTd o Y

=<Do1TN°Y=(I>°idN=<I>.

Bach X € Dl (M;N; ¢) determines an arrow



DX:C°°(M) > C7(N)
via the prescription

= df
Dyfl, = dfy ) X¥)) (Y EN)
with the property that
DX(fle) = (fl ° <I>)DXf2 + (f2 ° <I>)Dxfl.
E.g.: TakeN='I‘Mandlet©=1rM——then
D (M)
r I M
is simply the set of fiber preserving ¢” functions ™ - ™. In particular:
. 1
ld,IM e (M;T™; ).
And in this case the associated arrow
DidTM:C M -~ C (M)
A A
sends £ to df (cf. 8.19). Agreeing to write £’ in place of df, vV X € DL (M),
X'£' = (x£) .

N.B. Put D =D, -— then locally,

—_ ld'IM

DTE = Vi Cr(f o 1)) (£ eCTMM).
aql M

13.7 EXAMPLE Given a fiber preserving ¢’ function F:TM + ™, let

D%.(’IM) = {X € Dl(TM) 2Ty © X = F} (cf. 13.6).



Then
1 _
Did'IM(TM) = S0(T™) .
ILet
i2l:T2M -+ TIM

be the injection —-- then
i, € 0 @ETMTtY)  (cf. 11.6),

from which an arrow

D; (M) > CO (T .

21
N.B. Put D21 = Di -- then locally,
— 21
D f=vEsfo 2h st o (£ e ().
1 1
g oV

13.8 EXAMPLE Iet f € C (IM) —- then there is a cammtative diagram

DZlf

M ™™ x R

Al |

™ ——— ™ .

Recalling now that

21

((rM,m, 770 )



is an affine bundle modelled on

(VTM, ™, TTV) (cf. 12.2),

the definitions imply that D21f is an affine bundle morphism whose linear part

D, E:VIM > ™ x R

is df |viM.
[Note:

£ e Cc®(M) => df € ATT™

=> df € ¢°(TTM)  (cf. 8.19).]

Let STM:TIM - TTM be the canonical involution — then

thus
1
S‘]M eED ('IM,TIM,TNM) .
Iocal coordinates in TIM are
(g, v ,daq",avh) .

To render matters more transparent, let 4~ = dq-, v = d&v" — then

— TT,IM(ql,Vlrélr\.’l) = (ql,Vl)
TTrM(qllvlléll\.’l) = (qllc.ll)



S,IM(qerll(.Ill‘}l) = (qllélrvlr\.fl)-

E.g.: Let f € C (M) — then locally,

D' (D'E)
+31 .9 T -i,9 T
=g (Z—=f o7 ) + V(=L o )
Bql ™ 8Vl ™
-i 3 3 ]
=q —((v em J(—=(Eom) om )
2:)ql ™ SqJ M ™
-i 3 J 3
+v AW om Y(—(f om) om )
BVl ™ 3 qj M ™
14, %
=q v (—=—z(f 0w o m )
aqlaqj M ™

+i 0
+ v (——E{f ° ﬂM)O WTM).
aq

Therefore

D'(D'f) o s.. =D (DF).

13.9 ILEMMA ILocally,

DS:C (M) > C (Tm™M) (s = STM)

is given by
__A,3
Dsf =v (—"i
og oq

«1,0 o0
f°T1TM)+V(_—.—if°T7TM) (f e Cc (TM)).



10.

A 1-form along ¢ is a section of T*M along ¢, i.e., is a C. map o:N > T*M

such that ﬂb’}l o o = . Write Dl(M;N;Q), for the set of such (thus Dl(M) =
D; M;M;id) -- then D, (4;N;®) is a module over C (N).
N.B. There is a canonical pairing
ot (M;N;0) D, N;0) > C (),
viz.
X,0) » <X,0> (= aX)),

where

<X, 0> y = <X(y) ,aly)>.

13.10 EXAMPLE The elements of
Dl (M; T™; Ty
are the fiber preserving ¢” functions F:TM - T*M. They correspond one-to—-one

with the elements of hAlTM (cf. 13.4), say o - Foc'

[Note: Each a € hAl'IM gives rise to a ¢ function &:TM - R. Indeed, at

each point (x,Xx) € ™ (XX e TXM) ; O is the pullback under the tangent map

(x,X )
of a unique element }‘x € T;';M, thus the prescription is

~

OL(X,XX) = AX(XX) (cf. 8.19).

In terms of the pairing

1 . oo
D (M;'IM:ﬂM) x Dl(M;'IM,'rrM) - C (T™M),



11.

we have

<idTM'Fa> = Q.

Therefore § = 0 iff o annihilates the elements of S0(TM).]

let X € Dl(M;N;cb) ~- then the arrow

DX:c°° ™) - CT(N)

can be extended to a degree preserving map

DX: A*M > A*N
such that

- * *
DX(OL/\B) DXocMI) B+ & OL/\DXB

Dy o dy = dyg ° Dy
where dM and dN are the exterior derivative operators in M and N.

To accamplish this, we shall appeal to the following standard generality.

13.11 IEMA Iet X € D (M;N;0) —- then vV y, € N, 3 neighborhoods I, of 0

inI_{andVy inN and a C map
0

G:I, xV > M
0 YO

such that vy ev_,
Yo



12.

G(0,y) = o(y)

x(y) = & Gty "

Put
Gt = G(t,—),
thus v t € IO’
G, :V - M.
t YO

So, given o € AP, {G;oc} is a one parameter family of elements of N . Moreover,

Yo
% G| = lim § GRaly) - o*aly) (Y EV, )
t=0 t->0 Yo

exists and is independent of the choice of G. Denote it by Dyo (y) -- then these
local considerations can be reformulated globally and lead to
DX:A*M - A*N

with the stated properties.

13.12 REMARK Take N=M, & = idM -— then DX is the Lie derivative

LX:A*M > A*M.

13.13 ILEMMA Suppose that ¢':N' > N is a c” map. Let X € Dl(M;N;<I>) -— then



13.

Xeo d'eE Dl(M;N';cI> o 0')

and
DX o o' " (d")* o DX.
Define

1X:A*M > A*N
by

W E=0 (f€ c’ )
and for a € ApM,

IXOL‘Y(Yl' .o ’Yp—l)

= (X'l@(y) (X(Y) Iq)*ly(Yl) l"'l®* Y(Yp_l)) r

where Yl""’Yp-l € TyN.

[Note: This is the interior product in the present setting (cf. 3.7).]

13.4 IFMMA We have

Dy = 1y © dy +dg ° 14

Iet us consider in more detail the situation when N=T™ and ¢ = e Take

X = j‘d'I'M and write D' in place of D Therefore

iy

D' AXM > A*TM



14.

ard, of course,
DE=£f" (fecm).
Given o € AlM, put
a =Dua.

Then vV X € Dl(M),

ocT(XT) = on(X)T
_ OLT(XV) = o(X) o Ty
Iocally,
o= a.dxl
i
=>
T_.3,9 i . i
o =v (——T(ai° WM))dq + (ai o TTM)dV .
e
And when o = df (£ € C (M),
(@D = dpf.
N.B. Write 1, in place of lidTM — then

Lo = o  (cf. 8.19).
One can also apply the theory to

o]
iy € Oh (T,

leading thereby to



15.

DZ]_:A*'IM -> A*TZM.

Accordingly (cf. 13.14),
D = ° +4d L
21 21 d’I'M T2M 21
Here
g =1 -

21

The differential of Lagrange is, by definition, the map

c(m) > ATM

that sends L to 8L, where

21, %

SL DZlGL - (r™7) 4.

it

[Note: Thanks to 8.13,
_ 21, *
8L = 121d6L + (177) dEL.]
Recall now that the triple
(TZM,M,Trl)
is a fibered manifold (cf. 11.6). Relative to this structure, 6L is horizontal,

hence determines a fiber preserving C” function

FGL:TgM > T*M

such that

L = F’éLO (cf. 13.4).

pr
Agreeing to regard F s, 35 @ section of the fibration TZM M T*M —L



16.

(cf. 13.2), write

T?‘M ’ﬁqT*M

1l

%
T2M X (™M XM T*M)

N

*
TM g, (VIM)
to get an arrow

vF
SL
Py 2 v

| l

™ ————— TM.

13.15 IEMMA vF. is an affine bundle morphism whose linear part

SL

VF(SL:VIM > (VIM) *

is WFL.
13.16 RAPPEL Fix I' € SO(TM) —— then T is said to admit a lagrangian L if
L6 = dL.
Since T:™ - TZM, for a given L, it makes sense to form I'*SL.

13.17 LEMMA We have

I*SL = LI‘eL - dL.



17.

PROOF Obviously,

* *
re((r?h)an) = @® o ma
= dL.
On the other hand,
— *
Di o T T* o D21 (cE. 13.13).
21
But
i.. o T € DY (et o T)
21
or still,
i o T € DY (m;mid_)
21 e dTM ‘
Therefore (cf. 13.12)
D, = L,
121 oT 121 o T
= LP'
Consequently, ' admits L iff
T*SL = 0.
13.18 REMARK Locally,
_ L _ . 21.* 3L, . i

v ogq



§14. THE EVOLUTION OPERATOR

Let M be a connected C . manifold of dimension n —- then the theory developed

in 813 provides us with an arrow

D' AXT*M > A®TTH*M,

In particular: Denoting by OM the fundamental 1-form on T*M,

DTG)M = @;1 e Alrram,
aol e APTTHM.
M

14.1 LEMMA The pair ('I']?*M,de;-l) is a symplectic manifold.

Various systems of local coordinates are going to figure in what follows,

so it's best to draw up a list of them at the beginning.
TIM: Local coordinates are
i i .3 .i
g ,v,g,v).
TT*M: Iocal coordinates are
(qllpiléllbi) hd
T*TM: ILocal coordinates are
( 1ot u.)
q r Ipil i .

T*P*M: Local coordinates are



( 1p..r si)
q lpir il .
The transpose of the injection

VIM -~ TIM
is the projection

T*TM > (VIM)*.
But

V'IM:::‘IMme

(VIM) * ~ ™ X\ T*M.

This said, denote by Py the arrow

T*TM -+ (VIM)*

)
~ ™ XM T*M —= T*M

of composition.

14.2 IEMMA There exists a unique diffeomorphism

YeTT*M > T*TM
such that

Tk °1P=T1T](‘4andpr

oM © ¥

= Tepapy?

i.e., such that



and
¥
TT*M — T*TM
Tepay Py
T*M T*M
commute.
PROOF Locally,
——— i -i - i 'i
Tri{d Py 9 /P;) = (@,q7)
3 W,ﬁd(qllvllpilui) = (qlrvl)
and
T ed(ahes B = (ahps)
i VAR IRAS R TRASS R S ]
1 i i
_ PrT*M(q rV :Pirui) - (q lui)o
So locally,

i_oed i-ds
¥(a P d,P;) = (4,9 /Py rP;) -

Finish "par recollement...".

N.B. In the notation of §13, the relation

* —] *
’ITTM o V¥ T’!TM

translates to

 TT*M: Tk
¥ e Dl('IM,TI' M,TTI’M) .



14.3 LEMMA Ilet @m be the fundamental l-form on T*™ -~ then

_ AT
‘}’*@m = OM

PROOF lLocally,
T _ . i .i
Oy = P;da + p;da,
while

* — uk i i
b4 OTM k4 (pidq + uidv )

= (p; o Valg o ¥ + (u; o VAGT o W)

. i i
pidq + pidq .

N.B. Therefore
¥s (IT*M,de;,;) > (T*IM,d0,)

is a canonical transformation.

[Note: ILet QM = deM (the fundamental 2-form on T*M) -- then

T _ T
A9y = dppanP Oy
- T
=D dT*M@M
.
=D d@M
= DTQ}'I

ol



¥ (TT*M, Q) > (T*DM, Q)

where, of course, QI‘M = d(E)rIM is the fundamental 2-form on T*TM.]

4

Write @ for the diffeomorphism

TT*M ~ T*T*M

induced by —QM, thus locally,

b . i, . . .3
Q (ql:Pirqeri) = (qupi: -Pi,ql)-

14.4 IEMMA We have

X °QV=

T*M T*M’

i.e., the diagram

o

TT*M — T*T*M

Ty l j Ty

T*M T*M

cammites.

PROOF Locally,

(@, p.. &0 = (@)
ﬁT*Mq rpilq 'pi = g ,Pi

i i i
Ty (d /P;sT;087) = (T,P;) -



[Note: Therefore

Qb € Dl (T*M; TT*M; 7,

g (Cf. §13).]

The transpose of the injection

VT*M ~» TT*M
is the projection

T*T*M - (VI*M) *,
But

VI*M < T*M M *M

(VI*M) * = T*M *M ™.
This said, denote by Pry the arrow
T*T*M ~» (VIT*M) *
pr,
~ T*M XM ™ —— T™

of composition.

14.5 LEMMA We have

i.e., the diagram

TT*M —— T*T*M
TTT];‘I Pry

™— ™



commutes.

PROOF Locally,

Twﬁ(ql,pi,c}l,ﬁi) = (qllél)
pr, (@ ,p;,r;,80) = (q5,8).
Consider
b
Q") GT*M'
Here, GT*M is the fundamental l-form on T*T*M, thus locally,
i i
OT*M = ridq + s dpi,
hence
b . .
@ )*0p = (@7 )% (x.aq" + sdp,)
i ; 4 4
= (r; ° Q")d(ql o Ql’) + (st o Q Y, © Q)
- _n i ei T
=-p;dq + g dpi (= OM).
Therefore

- d(- p;dq + &' dp,)

d{:iAdql -~ dé_[l/\dpi

df)i/\dql + dpi/\dé:L .

And this implies that




4= - a6 oy
14.6 REMARK Define
AM:'IT*M + R
by the rule
My V) = <T (V) Ty (V) > (V € TT*M) .
Iocally,
/\M(ql,pi,él,éi) = élp:r
But then
T Y
O+ (27 ) ¥y

il

. i .1 . i .3
p;dq” + p,dq - p;dg + gdpy;

i i
p;da” + qdp;

= a(g'p)
= dan,
=>
d(0y + (Qb)*G)T*M) =0
=>
Q= - d(nb)*eT*M.



Let L € C (™) be a lagrangian -- then

dL:T™ - T*IM

¢ Loprmy TT*M,

so it makes sense to form
KL=\P-lOdL'

which will be called the evolution operator attached to I.

14.7 IEMMA We have
* - 3
Ty © K, = 1dpy-
PROOF For

* o = *
ﬂm b4 'I‘Tr“

M (cf. 14.2)

TnﬁoKL=Tw*ow'lodL

14.8 IEMMA We have

T*M

PROOF First



Next

serds

thus

serds

Finally

10.

(ql, §£I)
ov

FL(ql,vl)

dL(qerl) = (qllvll _Q_L_.’ %I‘)-
oq

1 ov
V:TT*M > T*TM

3 ‘i - i “ .
(ql,pi,q ,pi) to (ql,qlrpirpi),

y~Lipem > oM

i . .
(g ,vl,pi,ui) to (ql,ui,vl,pi).

i i
My © K, (@V7)

-1,1i i 9oL OL

=m0 ¥ (gt v, =, 22
M aql avl
i 9L i 9L
= M (a-, = V, —1)
T*M aVJ. 8q:l.
_ieL
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N.B. Therefore

K, € oL (THM; TV FL)

14.9 RAPPEL, In the formalism of §13, let

X € Dl(M;N;CD) .

Then a curve y:I -+ N is said to be an integral curve of X provided

T@°§=X°'Y,

i.e.,

To

|

w8

—_—
Y
commutes.
[Note:

Yy € Dl(N;I;Y)-]

Accordingly, in this terminology, a curve y:I -+ TM is an integral curve of

&if

TFLO?:KLOY'

14.10 IEMMA A curve Y:I » TM is an integral curve of K iff the equations

of Lagrange are satisfied along Y.
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PROOF Working locally, let vy = (ql,vl) (z (ql(t),vl(t)) — then

. i i -1 -1
Y= (g ,v,qg,v)
and
- 2
. i JL 1 . 3 . )
’I'-E'L°Y_(qr—i‘l rqj lL'+V ZL)
oV v qu svtavy
i 3L i 3L
KL oY = ( ’ ———i, v, —f) .
— v oq
Therefore
TFL o Yy = KL oY
iff
o i
q =v
and
5 L, .3 L AL
E)vlaq3 wvrav? aql

or, restoring t,

i .
A () - oy )

dt
and
a oL, AL
Wt vy agt|ye .

14.11 REMARK Suppose that L is nondegenerate -- then 14.10 implies that



13.

a curve y:I -~ ™ is an integral curve of I iff it is an integral curve of K -
Therefore

FL0Y=§

1}
©
<

TFL o Tp o Y

Since vy is arbitrary, it follows that

TFL o FL = KL'

Because
KL € Dl(T*M;TM;FL).

there is an arrow

D :C (T*M) ~ C (T™).

KL
Iocally, V £ € C (T*M),
D f
KL
i3 3L 9
= - (foFI..)-l"—-———i T (f o FL).



§15. DISTRIBUTIONS-CODISTRIBUTIONS

Iet M be a connected C . manifold of dimension n.

e A distribution on M is a subset I of ™ such that V x € M, ZX= rn TXM

is a linear subspace of TxM and we define pZ:M + R by

pz (x) = dim EX.

One calls & differentiable if Vx €M, V VX € Zx, 3 a neighborhood U of x and a

vector field X € Dl(U) such that XX = Vx and Xy € Zy (y € U).

[Note: A differentiable distribution ¥ is linear if Py is constant. There—~

fore the linear distributions are precisely the vector subbundles of TM.]

e A codistribution on M is a subset I* of T*M such that vV x € M, Z; =

Z* N TgM is a linear subspace of TiM and we define py,:M ~ R by

= i *
pz* (x) dim ZX.

One calls ©* differentiable if VX €M, V o € Z;{, 3 a neighborhood U of x and
—_ - *
a l-form w € Dl(U) such that w, = o and wye Zy (y € U).
[Note: A differentiable codistribution I* is linear if Prx is constant.

Therefore the linear codistributions are precisely the vector subbundles of T*M.]

15.1 REMARK The underlying assumption is that we are working in the c”

category. However, on occasion, it is convenient to work in the o category,




since there certain results can be significantly strengthened.
[Note: Tacitly, M is paracaompact, thus admits an analytic structure which

is unique up to a C diffeamorphism. ]

15.2 IEMA If

Z*

are differentiable, then the functions

are lower semicontinuous.

15.3 EXAMPIE Take M = R and let

_ 9
Z = span {x(x) a—x}'

0 (x = 0)

x(x) =

1 x=0).

Then Py is not lower semicontinuous, hence I is not differentiable.

Given a differentiable distribution I or a differentiable codistribution I*,



a point x € M is regular if Py OF Doy is constant in a neighborhood of x; other-

wise x is singular.

15.4 IEMMA The set of regular points per ¥ or I* is open and dense.

15.5 EXAMPLE The set of regular points need not be connected. E.qg.:

Take M = 132 and let

_ 5 3

Then I is differentiable. Moreover, its set of singular points is the x-axis
while its set of regular points has two connected camponents, namely the upper

half-plane y > 0 and the lower half-plane y < 0.

15.6 EXAMPIE Take M = ]0,1[ and fix €(0 < £ < 1) — then 3 a closed subset

A c M of Lebesgue measure € such that M — A is open and dense in M. Choose

£fec”M:£1(0) =A. Define a differentiable distribution % by

_ 5
Zx = span {f(x) '5;('}.

M - A = set of regular points of &

A = set of singular points of I.

[Note: Let M be a nonempty open subset of gn. Suppose that ¥ is an analytic

distribution — then it can be shown that the Lebesque measure of the set of



singular points of I is zero.

e Tet T be a distribution on M —- then the annihilator Amn L of ¥ is
the codistribution on M specified by
= *M o =
(Ann Z)x {ocx € TXM.OLX(VX) 0vVV, € zx}.
®let ©* be a codistribution on M — then the annihilator Ann I* of I*
is the distribution on M specified by
* = . = *
(Ann T )x {VXE TXM.OLX(VX) 0va € Zx}.
Obviously,
Amm(Ann ) = Y, Ann(Ann I*) = I*,
1 . . .
N.B. Suppose that I(I*) is differentiable then Pann Z(pAnn Z*)

is upper semicontinuous (cf. 15.2), so Ann I(Ann I*) is not differentiable unless

L(Z*) is linear.

15.7 EXAMPLE Take M = R> and define a differentiable distribution T by

Z(x,y) = span {x %}E’ ¥ %}7}'
Then
- T*zx,y)M x=y=0)
span {dx} (x=0, y=0)
B0 ey = span {dy} (x = 0, y = 0)
{0} otherwise.




¢ et ¥ be a distribution on M — then an immersed, connected submanifold

N of M is called an integral manifold of I if TyN = Zy V ¥y € N.

¢ Tet I* be a codistribution on M -- then an immersed, connected sub-

manifold N of M is called an integral manifold of £* if TyN = (Ann E*)y VyEN.

15.8 EXAMPLE Assume that X € Dl (M) never vanishes and let ZX = span {Xx}

(x € M) —— then the trajectories of X are integral manifolds of I.

A differentiable distribution I on M is integrable if V x € M, there exists

an integral manifold of ¥ containing x.

15.9 THEOREM Suppose that I is integrable -— then V x € M, there exists a
unique integral manifold N of I containing x and which is maximal w.r.t. containment.
[Note: If N and N' are integral manifolds of I such that N N N' # g, then

N N N' is open in N and N' and the differentiable structures induced on N N N
by those of N and N' are identical. Purthermore, N U N' is an integral manifold

of I in which both N and N' are open. ]

15.10 REMARK The maximal integral manifolds of % form a partition of M,

the foliation FZ of M determined by & (the N being the leaves of FZ) .

15.11 EXAMPIE Suppose that m:E - M is a fibration. Consider VE < TE —- then

VE is a vector subbundle of TE, hence is a linear distribution. In addition, VE is



integrable and the leaves of the associated foliation of E are the connected
components of the Ex = 11—1 x) xeM.

[Note: An Ehresmann connection for the fibration m:E -+ M is a linear

distribution H < TE such that V e € E,

VEI ®H =TE.]
[ e e

15.12 EXAMPLE Let o € APM be a nonzero closed p—form on M — then the

characteristic subspace of o at a point x € M is Ker O r where

Ker . = {V. € T M:1 = 0},
X X X

o,
V. 'x
X

and the characteristic distribution Ker o of o is the assignment

X + Ker o__.
X

In general, Ker o is not differentiable. To remedy this, let D(a) be the set of

all locally defined vector fields X on M such that

Define a distribution Z(a) on M by specifying that Z(oc)x is to be the subspace of
TxM spanned by the XX(X € D(a), x € Dom X) —— then IZ(a) is contained in Ker a.

Moreover, I(a) is differentiable and, in fact, integrable. Recall now that the
rank of o_ is
——— X

rkxoc = dim (TXM/Ker ocx) '



thus

P < rkxoc < n.
Impose the restriction that x - rkxoc is constant (i.e., that o be of constant

rank) -- then in this situation,

Ker o = L(o).

Therefore Ker o is linear or still, is a vector subbundle of ™. And the fiber

djmensionofKerociskifn-—k=rkon (x e M.
[Note: TakeM=1_22and1etoc=xdx——thenonisclosedand
{0} xR (x = 0)

KRer o ,y) =

1

(x=0).

Therefore Ker o is not differentiable (cf. 15.2). On the other hand, if X is a

vector field defined on a connected open subset of 132, then X € D(a) iff X has the

form g %, g a differentiable function. So I(a) is generated by %}-;, hence Z(a)

is strictly contained in Ker o.]

15.13 REMARK Iet L € C (TM) be a lagrangian. To be in agreement with 15.12,

assume that Wy has constant rank, thus Ker W is a vector subbundle of TTM. But
in §8, we put

Ker wp, = X e Dl(’IM):lxmL = 0}.



This, of course, is an abuse of notation in that the sections of the bundle are
being denoted by the same symbol as the bundle itself. However, no real confusion

should arise from this practice.

If ¥ is an integrable distribution, then a function f € C (M) is a first

integral for 1 provided the restriction of f to each leaf N € FZ is constant.

N.B. There may be no nontrivial first integrals. E.g.: If I has a leaf

which is dense in M, then the only first integrals for I are the constants.

15.14 EXAMPLE Suppose that (M,w) is a symplectic manifold. Given a linear

distribution I, define a linear distribution W' by

1 _ . -

Wz <= {Vx € TXM.wX(Vx,XX) 0v xx € zx}.
In terms of

u)b :T™ - T*M
and its inverse

w#:T*M - TM,

we have

w#(Ann ) = w"‘Z.

Assume now that I is integrable and let f be a first integral for I -- then w#df

is a section of w'r. Thus, V. X € sec I,

#

w(w"df,X) = 1 4 w (X)

w af



af (X)
= Xf
= O’

the last step following from the fact that X is tangent to the leaves of FZ'

15.15 LEMMA If y is integrable and if x is a regular point, then 3 a

chart (U,{xl,...,xn}) with x € U such that

Ey=span {B-T 10--1‘9.'_' } (YEU)-
X |y X 1y
[Note: Here
k =

pz(x) (= dim Zx) .]

A differentiable distribution I on M is involutive if v pair X,Y of vector

fields defined on some open subset U ¢ M such that v x € U, XX & Yx € Zx, we also
have

[X,Y]X € ZX.

15.16 IEMMA If § is integrable, then ¥ is involutive.

15.17 EXAMPIE Take M = R® and let

_ 9 3
Z(x,y) = span {&_l P (x) ‘§§}r

where ¢ (x) is a C function which is 0 for x < 0 and > 0 for x > 0 — then I is



10.

differentiable. And

B} )
[BX’ ¢(X) 3y (X'y)
= ' (%) %i,-

Therefore ¥ is involutive. Still, I is not integrable.

15.18 THEOREM (Frobenius) Suppose that I is linear —— then I is integrable

iff % is involutive.

15.19 ILEMMA A linear distribution I is involutive iff sec I is a Lie sub-

algebra of Dl M) .

15.20 EXAMPLE A presymplectic manifold is a pair (M,w), where w is a closed

2-form of constant rank. Consider Ker w < ™ (cf. 15.12) — then Ker w is linear

and we claim that Ker w is involutive. To see this, let X,Y € sec Ker w —— then
L, y@ = (g oty o e

==yl

- 1Y(1X od+doe lx)w

=0,

[X,Y] € sec Ker w.
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Therefore Ker w is involutive (cf. 15.19), hence integrable (cf. 15.18).

[Note: The rank of w is necessarily even.]

15.21 THEOREM (Nagano) An analytic distribution is integrable iff it is
involutive.

15.22 EXAMPLE Take M = R® and let

- 0 9
—span{x—é;?y }.

2 (x,y) oy

Then I is involutive, thus is integrable (being analytic). As for the foliation

FZ’ it has 9 leaves, viz.

{(0,0)};
~ {(x,0):x > 0} - {(0,y):y > 0}
{(x,0):x < 0} | _ {(0,y):y < 0} |
{(x,y):x > 0,y > 0} ; T {(x,y):x > 0,y < 0}
{(x,y):x < 0,y < 0} _ {x,y):x < 0,y > 0}.

15.23 LEMMA Suppose that I is linear of fiber dimension k == then Vv x € M,

n-k

3 a neighborhood U of x and linearly independent l-forms wl, oW on U such that



12.

1 n-k
Y. = Ker N =+ N Ker w € U).
y “ly y WED

[Note: Introduce

. (cE. 8.19).

Ko - R

Then what is being said is that ZIU, viewed as a subset of TU, can be characterized

as

@H o) n e n @7 Lo,
Iocally,

i n l .

w = X a .dx:j

=1
=>
Ao D i '
w = % (a. o TrU)vJ.]

j=

15.24 REMARK 7T is involutive on U iff 3 l-forms elj on U such that

5 (1i=1,...,n-k).
j=1

[Note: One can go further: Each x € U admits a neighborhood UX c U on which
3 ¢~ functions clj,fJ (i, =1,...,n-k) such that

i n=-k i \
wh = ¥ ct.afl.]
10
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n=k

If wl, conpl) are linearly independent l-forms on M, then the prescription

I, = Ker wl| N see ﬂKerwn_k (x €M)
X X X

defines a linear distribution I on M of fiber dimension k.
[Note: 1If it is a question of a single 1-form, then the assumption is that

this l1-form is nowhere vanishing.]

15.25 EXAMPLE Take M = 1_33 and let

w = dx + xydz.

_ 9 3 _ .93
“y,2) T Gy s T 5

15.26 REMARK Take M = R~ and let

w- =dx + ydz
2
W =dx + zdy.
Then ot and wz are not linearly independent. Since
1_ 9 3 _ 3.
Ker w -—span{—3—§,5—2— Yax}
)
Kerw2=span{g,%-zg—x-},

we have



14.

- i, 3 3
L(x,0,0) = P {5 57
z = span { (z 2 0)
(%,0,2) Py
(XIYIO) oV
=span {-z >+ 2_4 23
Z(x,y,z) - { ZBX+8y+yaz} (y 20, 2 =20).

So, along the x-axis Py is not lower semicontinuous, which implies that I is not

differentiable (cf. 15.2).

15.27 LEMMA 7T is integrable iff

Ar@l A oo A d®™ Ky =0 @G=1,...,n%).

E.g.: If the issue is that of (n-1) l-forms, then

ata@l A oo a ™) =0 d=1,...,n-1).

Therefore ¢ is integrable.

15.28 EXAMPLE Take M = RS and let

w = Adx + Bdy + Cdz,

where A,B,C are differentiable functions of x,y,z (not all vanishing simultaneously) ——

then I is integrable iff

3B _ 3C
Aaz ay)+B(

3C  9A 3A 9B, _
X -é-z-*) +C(_3-§—3—X) = (0.



15‘

>
Thinking of A,B,C as the camponents of a vector field F, the condition thus

amounts to requiring that

F . culF

1l
o

E.g.: I is integrable if
w = yz(y+z)dx + zx(z+x)dy + xy(x+y)dz

but ¥ is not integrable if

w = xdy + dz.
3 — ot
15.29 REMARK Take M = R” and work with 1-forms ~— then it may very
I o ol
well be the case that the distributions per individually are not
_ 22 _ w2
- oL
integrable. Nevertheless, the distribution I per ‘ collectively must be
2
w

integrable (cf. 15.27):

dwawlrw?) =0 (G =1,2).



§16. LAGRANGE MULTIPLIERS

Informally, constraints are conditions imposed on a mechanical system that

restrict access to its configuration space or its velocity phase space.

So, as usual, let M be a connected ¢” manifold of dimension n. Fix a

riemannian structure g on M and let T = %— g =~ then we shall work with the

mechanical system M = (M,T,I), where I is horizontal.
[Note: Recall from §10 that the second order vector field I‘M is character-

ized by the property that

lerT = - dT + 1I.]

By a system of constraints, one understands a set wl, cee ,wn-k
independent l-forms on M.

of linearly

As will became apparent, the key point is to first
study the case when X = n-1.

To this end, fix a nowhere vanishing l-form w € AlM — then w € Coo('IM) (cf.

8.19) and since Trl\’;lw € h/\.]"]ZM, 3 a unique vertical Xw

- *
1wa'1‘ ys (cf. 8.23).

N.B. ILocally, if

w=a,dx,
i

_ ol . 3
X, = @D @y o m))

avl

Here, as in §8,

W(T) = [le (m1,



where
5T
W..(T) = —— (=g,. o m,)
= avav oM
and we have abbreviated
w(m H
to
wlr) (=g °m).
M
16.1 LEMMA Determine X, € Dl (T™M) via the prescription
—_ o .
IXAwT = dw.
w
Then
SX =-X.
~ w
w

PROOF Fram the definitions, S* (d&)) = Trﬁw, hence

S*(1y up) = S* (dw)
1]
= ﬂﬁw
=1 W ..
Xw T

But, on general grounds (see below), V X € Dl (™) ,

§* (Lyup) + 1gyap = 0.
Therefore

gx Wp =~ S*(y wp)
w w



R
W
=>
SX =-X.
~ W
w

[Note: According to 6.3, V X € DL (M),

g © cSS—cho 1X=ISX‘

gy = (g © 85 = Sg ° 1wy

- (Sslme (cf. 8.1)

= - S*lme.]

Consequently,

>
S
I
g,
<

|
=
>
£
eZ

f
£
<
>
]

1
5
4
%
|
52
-

= wT(SXA,XA) .

w w

16.2 REMARK The function Xw&) is never zero and,in fact, is strictly positive.



For locally,

X (= @ @y o my) i}_f ((a o MV
= (gij ° '"M) (aj ° ﬁM) (ai ° My
= glw,w) ° Ty
> 0.

Let Z, © ™ be the linear distribution on M determined by w — then the
assumption is that ):w (= ((T)) —1(0)) is the arena for the constrained dynamics.

[Note: The fiber dimension of Zw is n-1 and Zw does not have the structure

of a tangent bundle.]

Given A € C (TM), put

r\ =T

Then I')\ € SO(mM) (Xw being vertical).

N.B. Along an interval curve Yy of FA' we have

a ,oT T _ .
a‘g(——r) --——f—Hi+>\(aiOTrM) (i=1,...,n).

Bvl e

16.3 ILEMMA There exists a unique >\0 € ¢ (TM) such that

T. @ = 0.
Ao



PROOF If
I‘Aow = _(I‘M + XOXw) (w)
= I‘MS + onwcfs
= 0,
then
I‘ ~
AO = - M:) (cf. 16.2).

Xw

This particular choice of >\0 is called the lLagrange multiplier: So we pass

fram

M,T,NI) to M,T,T,w)

and fram

M,T,MT,w) to (MITIHI(UIAO)-

16.4 IEMMA If >\0 is the Lagrange multiplier, then P)\ is tangent to Zw.
0

[A vector field X € Dl (TM) is tangent to Zm iff X0 5 = 0.]
w

It is now a definition that the constrained dynamics is given by the restriction
of TA to I .
0 w

Iocally,

i3 i3
' =v: — + C _—
M 5q Mavl



where
i_ 3 5T %r  x
C,;, = (T) (=~ " v o+ 1),
M 5P avlagt J
Put
|w|2 = glw,w) o M.
Then
9(a. o m,) . .
_ 1l i M 17 Ck
Ay = - ( . vv' o+ ( o M )IC,) .
0 lwlz aq:] ak M M

And the equations of motion are

i1 1 i J °
= V5, v =G+ A WD) (ay o M)

16.5 EXAMPLE Take M = R° and

1 2 2 3

g = m(dx @ d&x' + dx® 8 dx> + dx° @ dx°)

T = ((vl)2 + (v2)2 + (v3)2),

~ 3

where m is a positive constant. Write

1 2 3
= Hldq + szq + H3dq .
Let

w= - x2<i|xl

Then

3, _ - _ _ _
+ dx (—>al— x,a2—0,a3—l).



and, in view of 15.28, Zw is not integrable. Since

wT=m(dvl/\dql+dv2Adq2+dv3Adq3)
and
e = - qqul + dq3,
it follows that
1 29 )
x == (-q S5+ 2.
wom Wt avS
To campute the Lagrange multiplier
IIA
X w
W
note that
b= - g+,

Using the formula for FM given in 10.3, we have

i Il
~ 12 271 3
FMw =-VV o -g =t ==
On the other hand,
~ 1 2.2
X&w = a-((q )T+ 1).
Therefore
mvlv2 + q2H - I
A = —_S—-
0 @)? +1

And finally



a_ T 2%
g m qm
P
9 =@
It A
=3 3 0
B q —-In—+—r-ﬁ.

[Note: Takem =1, I, = II, = I, = 0, and, using the notation of the Appendix

to §8, put

2 2

- 21
=v, v =v,

3
=v -gv.

<
w

Then

-1 =2 =3 =1 =2 =3
9,9, ,v ,v,v'}

is a coordinate system adapted to Zw. Here

1 0 0
i
£ .1 = 0 1 0
[J]
_-Y 0 1 _
while
1 0 0o
=i
£ .1 = 0 1 0
[J]
Y 0 1 |
And
oI‘M=vl—2-)-—I+v282+v333
g aq g

_._— __2'..‘ _3— —_
—Vle+VX2+VX3 v



) Xw = - q2 _a._j.: + ._a_._3..
v v
—-F s (P
1 3
v ov
\71‘-;2
e A =
-2, 2 *
0 @)™ +1
Therefore
F)\ = FM + >‘0Xw
0
- e - =1-2
= \7le + v2X2 + V3X3 - _2v2v q2 8_
)~ +1 v
So the constrained dynamics is given by
-1-2
T, Izw = V%) + TRy - o 2 1
0 g™ +1 v
16.6 ILEMMA We have
= x
LX GT 1TMw.
W
PROOF By definition,
ly wT = ﬂi’,‘lw.
)
Now expand the ILHS:
Iy Wp = 3% deT
W
= (LX - do 1X)6T.
w w
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But GT is horizontal while Xw is vertical, hence GT (Xw) =0 (cf. 6.14). Therefore

16.7 LEMMA We have

= *x
L 6 dr + I + >\01TMw.

PROOF Write

L S
ry T I'M + )\OXw T

= LF eT + >‘0Lx eT
M w

= LI‘ 6T + )\oﬂﬁw (ct. 16.6).

M

Because l'M is second order,

1., 6., = AT (cf. 8.13)

FMT
= 27T.
Therefore
L. 6., = (1 od+do 1, )6
FMT FM FM T
=1FMwT+d(2T)
=-4dr + I + 28T

dar + II.
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16.8 LEMMA Suppose that f € c‘; (TM) . Define X € ot (m) by

M
1 = df.
xf“’T
Then
= - *
Txo(f) AOﬁM@(Xf).
PROOF First
Fxo(f) = 1FA daf
0
=1 1
r, 'xUr
AO £
= =1, 1. W_..
X. T T
£ AO
And
lr)\ Wp = "1‘A by
0 0
= (LFA -d o IFA )BT
0 0
= LP eT - 4(2m (cf. 8.13)
A
0
=dr + 11 + Aojﬁp - 2dT (cf. 16.7)
==4dr+ I + Aoﬂﬁ@.
But
0=T,f
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==, (-dr +1).
Xe
Therefore

= = - *
T 0(f) 1Xf( dr + II + )\OTer)

= - *
IXfXOﬂMw

= - Aoﬂﬁw(Xf) .

It is thus a corollary that

(X)) = 0 => f € c°; (T™) .

Ao

16.9 REMARK Take Il = 0 and let f = E, — then Ej € c‘; (T™M) (cf. 8.10).

T
Here XE"I‘ = - FT (11,TwT = - dET) and fram the above

Ty Ep

X - AOWD’H»(- FT)

= xo&,
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so E"I"Zw is a first integral for FAO L,

Proceeding to the general case, let ml, .o 'wn—k be a set of linearly inde-

pendent 1-forms on M -- then the prescription

Z.. = Ker wl n...n‘Kerwn"k (x € M)
X X X
n-k
defines a linear distribution X (= N X u) of fiber dimension k. Write XU in
=l w

place of X , thus
wu

1X“’T=ﬂ*u u=1l,.c.,n - k).
u

Given AL, ..., "% e ¢®(m, put

_ u
I’A-—I'M+)\Xu.

16.10 IEMMA The matrix [Mu\’] ‘defined by
MY=x5"
H u
is nonsingular (and symmetric).

[ITn fact,

xuav = gw’,w’) o my (cf. 16.2).]

16.11 LEMMA There exists a unique (n—k)-tuple Ay = ()\:(‘)',...,xg—k)

(AB e c®(m™), p=1,...,n-k) such that



then

14.

F}\w =0 (v=1,...;,n = k).
=0
PROOF If
AV 1 AV
I‘low (I‘M + XOXu) (w”)

— oV Uy 7V
= I‘Mw + )\Oxuw

0,

B o oY
A M\)I’Mu),

where the matrix [Mu\)] is the inverse of the matrix [Mu\)] .

We shall call 50 the Lagrange multiplier. So, by construction, FA is
-0

tangent to ¥ (cf. 16.4) and the agreement is that the constrained dynamics is

given by T

5.
)

N.B. The equations of motion are ql =V, vt o= C& + kg (Wl] (T) (a”j oTTM)) .

16.12 EXAMPLE Take M = 132 X §1 X Sl and

g = m@x" @ ax* + ax® @ dx?) +I3dx3®dx3+14dx4ﬁdx4

) +l13 )2 +

m 1.2 2,2

) v) + (V ) %14 (V4)21
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where m, I3, I 4 are positive constants and, to keep things simple, assume that

I=0. Let

wl = dxl - (R cos x3)dx4
(R > 0).

w2 = dx® - (R sin x°)ax"

Then wl,wz are linearly independent l-forms on M and

2l 1 2 3 4
(x7,x",x,x")

=spa.n{Rcosx3a——i-+Rsinx382+a4, 83

90X X 0x X

}.

So ¥ is actually analytic but it is not involutive, hence is not integrable (cf.

15.18) . Here

= m(dv]‘/\dql + dv2/\dq2) + I (dv3/\dq3) + I (dv4/\dq4) .
% 3 4

And
- X, = i 3_... - _R__. cos q3 _8_
1 m Bvl I 4 8v4
X, = .]; _Q__ - B__ sin q3 8___..
2 ma2 I ov?

These relations and the fact that

Vl - (R cos q3)v4

v2 - (R sin q3)v4

then lead to



1s6.

Aé = - {mR sin q3)v3v4
Ag = (mR cos q3)v3v4.
Therefore
I,}\ =Vl§___+V282+38 +V4§'T
=0 dgq ple| e oq
~ (R sin q3)v3v4 'a_l + (Rcos g )v3 4 8—-2—,
v v
fraom which:
. ) e3.4 2 .3.
ql = - (R sin q3)q3q + 9 = (R cos q3)q3q4,
3 4

or still, subject to the initial conditions <;(1),vl (i=1,23,4),

0
- 4
ql(t)=R 70 sm(vt+q)+At+B
3 0 1 1
Yo
v4
2 - _p. 0 3 3
g((t) =-R 3 cos(v0t+q0) +A2t+B2
v
_ 0
and
-3 _ .3 3
q(t)—vot-!-q0
4 _ .4 4
q(t)"VOt+qol

Al’AZ’Bl'BZ being constants. But
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ol,0? e T (M) (of. 16.11),
A
2o

thus are constant on the trajectories of T (cf. 1.1). Indeed,

A

=0

~1 _ 4 3 3 _ 3, . 3.4

w(q(t) ,v(t)) = Rvj cos(vyt + qy) + A; ~ R cos(vyt + av,
and

~2 N 3 3 . 3 3,.4

w’(q(t),v(t)) = Ry sin(vpt + q) + A, - R sin(vyt + qp)v,

= A2.
So
Bp=8=0

if the initial conditions lie in £ = (1) () n (&%) 1(0).

[Note: The mechanical system represented by the preceding data is the vertical
disc of radius R and of uniformly distributed mass m that rolls without slipping

on a horizontal plane (I3 and T 4 being the appropriate moments of inertia).]

Suppose again that w € A]‘M is a nowhere vanishing l1-form -- then in general,

Zw is not integrable.

16.13 RAPPEL Zm is integrable iff the 3-form dwaw vanishes:

dwaw = 0 (cf. 15.27).
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16.14 REMARK An integrating factor for w is a nowhere vanishing ¢ € C (M)

such that d(¢w) = 0. If w admits an integrating factor ¢, then Zw is integrable.
Proof:

d(¢w) = 0 => dpaw + ¢adw = 0

=> dadwaw = 0 => dwaw = 0.

Conversely, the assumption that Zw is integrable implies that locally w admits
an integrating factor ¢ (cf. 15.24), hence locally

ow = df (3F) => w = %df.

If w=df (£€C”(M, df = 0V x €M), then Iy (= @f) "1(0)) is integrable
(cf. 16.13).

Set

Then M is a submanifold of M and, in obvious notation, there is an induced mech-

anical system M = (M,T,T).
[Note: M is not necessarily connected but this point causes no difficulties.]

16.15 LEMMA The vector field I', is tangent to ™ and

A
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Therefore

[Note: The integral curves of T_ are in a one-to-one correspondence with
T

the geodesics of (M,g) (cf. 10.6). Bear in mind too that an integral curve of

I, that passes through a point of T™ is contained in TM.]
0

16.16 EXAMPLE Take M = 53 - {0},

1 2

n(axt @ del + ax® @ dxZ + a

8 &) m > 0)

O
i

2+ 52+ 2 -R2 ®>0)

l—h
il

and suppose that Il = 0 -~ then

- 2q" ~ ii
df ov
Ao = - i 3 !VI2 (notation as in 9.21).
_ 2|q]
Therefore
2 .
2 i 3
Ty =V =g - Mz 4 —3
0 3q lql v
=>
R B T
= i z 4 i-°
T oq R v

and on £ 1(0),
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. -2
) + Ji‘%—’-l—xl(t) =0 (i=1,23).
R

In anticipation of the developments to come, we shall shift our point of

view and fix a nondegenerate lagrangian L. ILet Wyeeer i X be a system of

constraints —— then 3 a unique vertical Xu:'
1y by = ﬂﬁ»n (M=1,...,n-k) (cf. 8.23).
U
Given Al,...,xn’k € C (M), put
_ U
I, =T, +A X -

Then the crux is the validity of 16.10 which, in general, will fail.
[Note: ILocally,

-1 ke " Y

ov av[’

X oY = (W(L) .1
U

16.17 EXAMPILE Take M = 133 and define L:TI_23 +~ R by

1 2 3 1 2 3
Lig ,g ,9 ,v ,v ,v)

T (@H?+ A% - D).
Then L is nondegenerate and

dvl/\dql + dVZAqu - dv3Adq3.

“L

Letting
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we have
9 )
X =2 -2
W gyt g
But
Xo=Cs-29 W2 + V)
w v W
=1-1=0.

[Note: L is the "T" per the semiriemannian structure

g=dxt @dx’ +dx’ @ dx? - dx° @ dx°

Call

1 -
(L, {w ,...,mn k

1
regular if the matrix

[X 0]
U
is nonsingular; otherwise, call

(L, {UJlr LR rwn—k})

L=T—V°TT,

where g is riemannian, then

(L, {wll e rwn-k})

is regular.
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The upshot, therefore, is that in the presence of regularity one can determine

the Lagrange multiplier AO and proceed as before.

In the irreqgular situation, matters are not straightforward and there may
be no resolution at all. For sake of argument, let us assume that it is a question
of a single constraint w and consider the equation of tangency:
I‘Lw + A

Oxww = 0.

if Xw&} is never zero, then

—
e>

]
88)

and we are in business. Suppose that Xw&; 0. If I‘L&) = 0 on Zw’ then the dynamics

is undetermined, i.e., V A,

I’Lw + )\me = 0.

However, if xwa = 0 and rLaz 0on 3, thenv )

on
1 A =1
Ew = (I‘L(u) (0)n Ew

and we are led to the secondary equation of tangency
I‘LFLw + )\g)XwI‘Lw =0

whose solution is

)\l _ I‘LI‘Lw
0 A
meLw
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provided XwI'L& is never zero. But this may fail. In that event, if FLTL(:) =0

on Zi‘) as well, then the dynamics is undetermined. Still, it might happen that

~ 1 C s 2 1
FLFLw Z 0 on Zw and when this is so, one can pass to Zw c Zw oo o

16.18 EXAMPLE In the setup of 16.17, xw&) =0 and
r.o= (Vla—+v28——+v3 8——) (v2 +v3)
L 1 2 3
oV ov ov

=0'

so the dynamics is undetermined. Now modify L by appending the term % (ql)2 and

change w to dxl + dx3 - then

9 9
X = e -
© avl 8v3
=>
X = Cr-29 ' +v)
ov ov
=1-1=0.
and
I‘Laa=(vla—r+v282+v3a3+ql§—-i-) (vl+v3)
g og g Vv
1
=q .

Therefore TL&; Z 0 on

Zw = {(ql’q2’q3lvl'v2’V3) : Vl + V3 = 0}
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and
1 1 2 3 1 2 3
Zw={(q,q,q,v,v,v):ql=0,vl+v3=0}.
But
~ 1
XwI'Lw—qu =0
while
~ 1 1

-
—
€

|
~

L—:Q

Il
<

r

so the next step in the procedure outlined above is to pass to

23) - (RS =0, vt =0, v = 0.

Since
XT.T.o=XvE=1
w L L W '

the algorithim stabilizes at Z‘i, the Lagrange multiplier being

1
)\2=_FLV -
0 le
w

realizes the dynamics on Zi.

By an affine system of constraints we shall understand a system of constraints

cul, oo ,u)n—k together with functions d>l, ces '¢n—k ec’ M). Put

" =M + o o my (1 =1,...,n%)
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and set

n-k -1
c=n @7 (0.
y=

Assuming that

n—k}

(L,{wl,...,w )

is regular, 16.11 then implies that there exists a unique (n-k)-tuple

Ao = Ogreeer 0™ O €m0, u=1,...,nk) such that

I’>\<I> =0 (v=1...,nk).

And again the agreement is that the constrained dynamics is given by FA C.
=0
[Note: As regards the lLagrange multiplier )_\0, we have

_ v Uy AV
r, & I'L<I> + )\OXu(b

_ v AV
= o+ xgxuw )
Here
X,(0” o mp) =0,

Xu being vertical.]

16.19 REMARK Consider the case when ¢ = w + ¢ — then
FAOEL = >‘0‘° (cf. 16.9).
aAnd, on C,

A

)\0(.0 = - A0(¢ ° ’ITM)
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which, in general, is nonzero.

16.20 IEMMA Suppose that

(L! {w1, coe rwn-k})

is regular — then along an integral curve y of F)\ , we have

=0
n-k U
%E(_B_ILJ,__ _EL_{= T xg% i=1,...,n.
v 3g =1 ov

[This is an immediate consequence of the definitions.]

16.21 EXAMPIE Take

2

M =R® x 10,2r[ x 10,7 x 10,27}

and define L:T -+ R by

1 2 3 4 5 1 2 3 4
Lg,9,97,9 ,9,v,v ,v,v ,v5)

=2 (wh?+ DD

+ -]2; ((V3)2 + (V4)2 + (V5)2 + 20V cos q4) ,

where m > 0, I > 0 — then L is nondegenerate (see the Appendix, A.24).

R>0, Q, 2 0, let

0

—~ 1 1 3

w dx - (R sin x5)c1x4 + (R sin x4 cos x5)dx

2 2 3

w =dx"” + (R cos x5)dx4 + (R sin x4 sin x5)dx

Given
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and
- ¢l - QOXZ
2_ 1
_ o = Qox .
Put
c=hHro n A 10.
Then

Cl 1 2 3 4 5
(x7,x",x",x",x7)

is an affine subspace of

T 123 4 5™
(x ,x,x7,x ,x7)

viz.
span{ (R sin xs)a—— - (R cos xS)L + L,
1 2 4
X ox 9x
- (R sinx4 cosxs)a——- (Rsinx4 sinxs)a + 9 , 3 }
1 2 3 5
X ox ox Ix
29 19
+ (- QOX '——l-+ QOX ——7).
ox ox
Since
(LI {wllwz})

is regular, the Lagrange multiplier A, = ()%,)\g) exists, from which F)‘OIC.

general grounds,
e i

g =ct+ xg(w”(m (a“j om) (i=1,2,34,5.
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Here
-1 1 1 . 4 5 1 .
al=l,a2=0,a3=Rsmx cosx,a4=-RSJ.nx5,a15=0
2 2 2 . 4 . 5 2 5 2
_al=0,a2=l,a3=Rsn.nx smx,a4=Rcosx,a5=O.
Accordingly,
' l
g =ct+agwtm @l o my
FWE@ @Yy e ) +Wim @l o m)
2 2 2 3 2 4 2
+>\0(Wl (L)(aonrM)+Wl(L)(a3oTrM)+Wl(L)(a4onM))
- 11 2
—0+)\0(a+0+0)+>n0(0+0+0)
1
_lo
e
And likewise
2
2 _ 1o
g o
5

One can also explicate &3,&4@ but the final formulas are on the complicated

side, hence will be amitted (they will not be necessary in what follows). It
remains to compute Aé,kg. This can be done mechanistically by feeding the data

into the machine and grinding it out. However, to shorten the discussion, we shall
confine our attention just to C and employ an artifice. Consider an integral

curve y of F)\ lying in C (recall that F)\ is, by construction, tangent to C).

=0 =0
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3_L_§= Iv3 + IV5 cos q4
oV
-
a_L§ =0
_ 9
=>
1 2
g—{__— (Iv3 + Iv5 cos q4) = Aé—a%+ Ag 22
ov oV
= R sin q4()% cos q5 + )\g sin q5) .
—B_L-Zf = IV4
v
*
8—1‘4- = - Iv’v° sin q4
_ N
=>
1 2
—d—Iv4 + Iv3v5 sinq4 = )\lg-q—)—-+ }\2 Ll
dt 0 .4 0.4
v v

- x(l) (- R sin @) + Ag (R cos q°) .

BLS - IVS + IV3 cos q4
ov
]
_a_]_:‘_. = o
oq
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136t | .2 502
AO —E + AO
v ov

g;-(IVS

3 4
e + Iv- cos q’)

5

_ 41 2
= AO (0) + AO (0)

= 0.

cos qS(I\'74 + Ivov° sin q4)

= Ré(— R sin q5 cos q5) + ng (cos qs)2

sin ‘q5 da (Iv3

5 4
+ Iv- cos q)
si q4 dt

= \3(R sin ¢° cos g7 + RAZ (sin @) .
Now add these equations to get

3.5

mg = cos q5(I\'r4 + Iv'v~ sin q4)

sin q5 d

3

+ Iv5 cos q4)
sin g

or still,

[\S]

R\ = I(\}4 cos q5 + v3v5 sin q4 cos q5

o

.5 4
\-73 sin g +_\-,58inq5005q

4 5 5
-vv sinq’).
sin g sin g



But

Therefore

On C,

Thus along v,

31.

LER cos q —v3v4si_nq =0
cos 4
v~ sin g d
sin q
34 . 4 .3 4 5cosq4
= (v'v sinhg -V cosq)sj.nq——zl—
sin g
-331'_nq5 «3 4,2 sin >
v 7~ V (cos q) S g
sin g sin g

.3
; sin (1 - (cos D)

sin g

\.73 sin q4 sin q5.

0 1% cos q5 + vv° gin q4 cos q5

2
i

«3 . 4 . 5 3.4 4 5 45 . 5
+v sing sing +vvVv cosq sing -vV sing).

v2 + (R cos qS)V4 + (R sin q4 sin q5)v3 - Qoql = 0.

5

(- R sin q5)v4v + (R cos qs)\'r4

3. 4

+ (R cos q4 sin q5)v v + (R sin q4 cos q5)v3v5

+ (R sin q4 sin q5)x'73



And then

Analogously,

[Note:

or still,

32.

—_ 2
2_1I, =2 1
mO—R( V+Qov)
_I =2 -1
2
A
_I .70 -1
-f{'( m+Q0q)'
L
>\§= RI Rud
rR+i 0
mR
== 290‘.Il
I+ mR
=>
2
q2=i\9= I S‘zc';l
L Y
1
A
] 0 I +2
q =—=- 9
m I+mR2 0

A corollary is that

ELlc Z CT}\ lc(C)
20

(Flolc) (£ [C) = TAOELIC
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z 0.

In fact,

1Al 22
Ty B = Ao + Age”  (cf. 16.19)

20

1~1 2-2
(Xow + Aow )|c

TAOELIC

1. 2 2. 1
- (528" - AT ) lc

ml 2 2
=-——————2§20(—vq
I+ mR

2 _ qul) Ic

__m Qg(qlvl + A2
I +mR

)|c.

Turning to the physics that realizes the above setup, consider a homogeneous
ball of radius R and mass m which rolls without slipping on a horizontal plate

that rotates with constant angular velocity Q. # 0 about a vertical axis through

0

one of its points —— then M = 132 x 80(3). Fix a reference frame with origin the

center of rotation of the plate and vertical axis the rotation axis of the plate.

Let (xl,xz) denote the point of contact of the ball and the plate and let (x3,x4,x5)

be a chart on SO(3) per the 3-1-3 system of Euler angles (see the Appendix) — then

L,wl,wz,q)l, ¢2 are as above (the potential energy corresponding to the gravitational

force is constant, so there is no loss of generality in setting it equal to zero).

Spelled out in traditional notation, the lagrangian is

«2

m(x 2 I
2

+§;2) +-§-(<I>2+é +¢2+2&>x};cose),
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the constraint equations expressing the condition of rolling without slipping are

i—Résin1p+RJ>sinecos¢+Qoy=0
{;+Récosq)+R<i)sinesinw-Qox=0,
and
- x+I+ImR290§z=o
y - IZQO§<=0.
3 I + R

But I = %mRz (see the Appendix, A.13), hence

It is then an elementary matter to determine the motion:

2

x(t) in Q,t) cos (:;- 2,t) x(0)

]
o~
K)Il—'

v(t) - cos(% 2,t) sin(—72— 2,t) 7(0)
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Therefore the orbit of the point of contact of the ball is a circle on the plate.]
16.22 REMARK If we take QO = 0 in the above, then the constraints are linear
rather than affine. Consider
c.bsinesi_nxp+écosq)
J>sinecosw-ésinw

b cos 6 + .

It has already been pointed out that

a .- .
d—t(cpcose+xp)—0.

Next, from the preceding analysis,

2__d s . . .
R)\O—Ia?(qbsmesm1p+ecosgb).
But
-0 =s 32 =
s’zo—o_>>\o—-0
da ,+ . . .
=>E(¢smesmtp+ecosw)=0.
Ditto

%E(c}sinecosw—ésinw)=0.

The upshot, therefore, is that the ball rolls at constant speed in a straight line
and its body angular velocity Q(t) is constant in time (however, Q(t) is not
necessarily horizontal since ¢ cos 6 + |, while constant, is typically nonzero).

Moreover, in this situation, ELIC is a first integral for Ty |C.
-0



§17. LIE ALGEBROIDS

Iet m:E -+ M be a vector bundle of fiber dimension k.

¢ Assume: sec E is a Lie algebra with bracket [ , ]E‘

e Assume: p:E -+ ™ is a vector bundle morphism over M, i.e.,

P
E —T™
Tfl lnM
MM .

Then the triple (E,[ ,1,.0) is called a Lie algebroid over M if V f € c ™,

A4 s]_,s2 € sec E,
[Sl'fSZ]E = f[sl’SZ]E + ({(p o S]_)f)SZ'
[Note: p is referred to as the anchor map.]
N.B. The arrow
_ Al
sec E+>sec ™ (= 0 (M)
S+>peos

is a homomorphism of Lie algebras: V $,s8, € sec E,
p o [sy,s,lp = [p° 59,00 s,l,

where the bracket on the RHS is the usual commutator of vector fields. In fact,

vEecC M, v S1sS,,83 € S€C E,



On the other hand,

[[5),5,) 5 E551

]

- [[52’f83]E'51]E’Sl]E - [[fs3rsl]Elsz]E

= - [[SZ'fSB]E'Sl]E + [[Slrfs3]Elsz]E

- [f[sz,s3]E + ((p o sz)f)s3,sl]E

+ [f[sl,s3]E + ((p o sl)f)s3,s2]E

= [s),Els,851 1 + [5;, ((p o 5,)0)s,],

- [sz,f[sl,s3]E]E = [sy, (oo s f)s,l L

= f[sl,[sz,s3]E]E + ((p o sl)f)[sz,s3]E
+ ((p o SZ)f)[Sl’S3]E + ((p o sl)(o ° sz)f)s3

- f[szl [slls3]E]E - ((p o Sz)f) [Slls3]E

£(Is), [sy851 50, = I8y, [s,831 1)
+ ((p o s))(p e sy)f)sy - ((pes))(pe s)f)s,y

= f[[sl,szlE,s3]E + ([p e Sq¢0 © s2]f)s3-



Therefore

p o [sl'SZ]E = [p o Sllp ° 52]-

17.1 EXAMPLE Every finite dimensional Lie algebra g "is" a Lie algebroid

over a single point.

17.2 EXAMPLE The triple
(M, [, 1,idn,)
is a Lie algebroid: v feC (M), Vv X,Y € Dl M,
[X,£fY] = £[X,¥Y] + (Xf)Y.

[Note: If © ¢ ™ is an integrable linear distribution, then I is involutive

(cE. 15.18), hence can be viewed as a Lie algebroid in the obvious way.]

Other examples will be given later on.

17.3 ®APPEL, AE = ¢~(M) and APE (p > 1) is the set of multilinear maps

w:sec E X «++ X sec E —>C°°(M)

which are skewsymmetric if p > 1.

[Note: Take E = ™ — then sec E = Dl (M) and in this context, APE is what

one normally calls APM, thus the symbol APE is not AP (as it is usually under-

stood} .1



17.4 LEMMA Suppose that (E,[ , ]E,p) is a Lie algebroid over M. Define

d:1PE > (Pl

by
dEw(SO,...,SP)
CRILY Yo & )
= ¥y (=1 P © S.)W(SnreeerSipece,sS
i=0 i 0 i P
+ 5 (—l)i+jm([si,s.]E,s0,...,§i,...,§.,...,s ).
i<j J J P
Then

[Note: In the case of a Lie algebra g, dg is the Chevalley-Eilenberg

differential and in the case of a tangent bundle TM, d,IM is the exterior derivative.]

N.B. As regards the wedge product,

p P
— 1
dE(wlsz) = dEwlsz + (-1) wlAdsz (wl €N 1E,w2 € A*E).

17.5 EXAMPLE Consider the arrow

SIS

M > TTM (cf. 85).

Then

T o U e VvV=pPr, o V=T



S0 y o v is a vector bundle morphism over ™. Next, given X,Y € Dl('IM) , put
[X,Y]S = [8X,Y] + [X,s¥Y] - s[X,Y].

Bquipped with this bracket, U (TM) is a Lie algebra and v £ € C(TM),
X, £Y]¢ = £[X,¥]g + ((SXDY.

Therefore the triple

(T, [, Jgom o V)

is a Lie algebroid over ™. And, by definition,

A Xy ==+ 1K)

p i ~
= i_Eo (-1) (SXi)w(XO,...,Xi,...,Xp)

+ § (-n*T

i<j w([Xi,Xj]S,XO,...,Xi,...,xj,...,xp).

T.e.:

d'I'IMw = dsw (cf. §6).

Iet s € sec E —- then the Lie derivative w.r.t. s is the operator

L:\PE APE
given by
Ls=1s°dE+dE° ls-

0.

Q E=0,ad Vv £ € C°(M),

E.g.: Take p=0 — then N'E=C (M), 1A

Lsf = 1SdEf = (dEf) (s) = (pos)f = L(p o s)f'



17.6 IEMMA V s € sec E,

LsodE=dE°Ls°

Moreover, V sl,s2 € sec E,
=L
2 51 Ispsylp

=1
2 5 [S)r8,5]-

And V Wy W € A*E,

2

LS (wl/\wz) = stl/\wz + w. AL w..

Suppose that
E®, 1, ]E,p) is a Lie algebroid over M

&', I, ]E.,p') is a Lie algebroid over M'.

Then a vector bundle morphism

M— M

£

is said to be a Lie algebroid morphism if v p, V w' € ApE',




(F,£)* (dpw') = dp ((F,£) *w').

[Note: For p = 1,

((F,£)*w") (e),-.. ,ep)

— \j
= wf(x) (Fel,...,Fep) (x € M and el,...,ep € Ex),
while for p = 0,

(F,E)*f' = £' o £ (f' € C(M")).]

N.B. If the vector bundle morphism

F

B ——B'

is a Lie algebroid morphism, then the diagram

F

E ———E'

Ik

™ — ™'

Tf

comutes.

17.7 EXAMPLE If f:M ~+ M' is a c” function, then there is a vector bundle



morphism
Tf
™ s ™'
MI

Yy — M

which is, in fact, a Lie algebroid morphism.

17.8 EXAMPLE In the notation of the Appendix, the arrows
TSO(3) ~ so(3) ~ TSO(3) ~ so(3)
14
(a,x) — A X . @ax —xt
are morphisms of Lie algebroids.
17.9 REMARK Matters simplify if M =M', f = ldM For then the pair (F,idM)
is a Lie algebroid morphism iff

F[sl’SZ]E = [Fsl,Fsz]E, (sl,s2 € sec E)

p' oFs=p o s (s € sec E).

F F!'
E 3 El E 1] 3 En
M 3 Ml Ml 3 M"



are Lie algebroid morphisms, then the composition

F"

E — E"
ﬂi lﬂ" (f" =£f' o £, F" = F' o F)

M —_ Mll

f"

is a Lie algebroid morphism.
[Note: This justifies the term "Lie algebroid morphism" in that there is

a category whose objects are the Lie algebroids.]

Suppose that (E,[ , ]E,p) is a Lie algebroid over M and let ®:M' - M be a
fibration. Fomm the pullback square

Pr,
™'x%x E —="—»E

™

™' ——— ™

T
and put

v — '
E ™ XTM E.
Then the points in E' are the pairs
((x' ,X}'{.) e) (X}'{, S TX.M',e € E)

such that
dcbx.(X;(.) = p(e).
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[Note: It is automatic that

o(x") = m(e).]

17.11 IEMMA E' is a vector bundle over M' (via n' = Tyt ° prl).
PROOF Given x' € M',
-1
('ﬂ") (X') = E;{.
is a wvector subspace of TX,M' X E@ (x") of dimension

k+n' - djm(dcpx. (TX.M') + p(Eq)(x.)))

=k +n' -n.

The claim now is that this data gives rise to a Lie algebroid (E',[ , ]E,,p')

over M'. Of course the definition of p' is immediate, viz. take p' = pry . However,

it is not so obvious just how to define [ , ]E" which requires some preparation.

17.12 RAPPEL Suppose that

F
E—E'

nl lﬂ.

M—M

£

is a vector bundle morphism. Form the pullback square

r
M E' p_2—> o
XMI
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Then there is an arrow

E—')MX'E'

and a commtative diagram

g
—_— M x , E'

M

E
'ﬂl pry
M

M.

Denote by ¢* the induced map

secE—>secM><M, E'

of C* (M) -modules:

L*s = [ o 8§ (s € sec E).

But
M e - sec E' T sec M M E',
c (M)
where
68 s' > ¢s'
and

s'(x) = (x,8'"(f(x))) (xeM.
So, modulo this identification, given s € sec E, we can write

*s = !

t*s = § (¢i ) Si)

or still,

g |
o
0
I

2 oy(sf o 0.
1
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Consider anew the cammutative diagram

pr,

E' —— E

- |

™' — ™ .

T
There are pullback squares
M'XME — B M'xM']:M —_ ™
l l” l l“M
M'—— M, M' —— M
o) o

and arrows

' '
M XME->M XMTM

1 '
™' — M XMTM.

Now form the pullback square

)

t
— M XME

b

™' — M’ XMTM

in the category of vector bundles over M' —- then

— ] L}
T M, m ™ T E

"

' = @t
TMXTME E'.

2!
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Accordingly, the sections s' of E' are pairs (X',0), where

X' € sec ™'

o' € sec M! xME

subject to the coincidence

- X!
' > ™' > M %, M

o-l
M' > M' XM E - M XM ™ .

N.B. The elements of sec M' *y E can be regarded as the sections of E along

¢ (cf. 13.2), thus we can write

g' = i d)i(sl o @),

where ¢i € C (M') and S; € sec E.

Finally, define
[, ]E.:sec E' X sec E' » sec E'
by
[Si,S:'Z]E.
= [(X],07), X5 » 03} g

(Si o (D))]E'

= [(X!, Z ¢! (s, o @), (X, T ¢!
it 2.

1 11 2

= ( [Xilxé] IW) ’
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W being
T ¢! ¢! (Is: ,s. 1, ° )
iLi, 12 12 E

+ 2 X! Y(s, o d) - T XX(d! Y(s. o D).
i, 17, 7, i 271 Ty

One can show that [ , ]E' is welldefined. Granted this, it is then easy to

check that (E',[ , ]E,,p') is a Lie algebroid over M'.

17.13 ILEMMA The vector bundle morphism

pr,

E' ——— E

4

M — M

0]
is a Lie algebroid morphism.

[Note:
popr2=Tc1> Oprl

=

=
[o]
©
[
B

N
li

WMOTQOprl

Tropr2='<1>0ﬂ.oprl

d o m'.]
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An important special case of the foregoing generalities arises when we take
M'=E, ¢ = 72

Prz
TE X E———» FE

™

pry P

Put

and write o in place of pry —- then LE is called the prolongation of E and

(e, [ , 1 ) is a Lie algebroid over E:

IE'PE

pr, ™
—_ E —_— M
lp

2

o
=
[ e

l?j:i .
+____.——-—
=

=
=

m
[Note: The fiber dimension of LE is

k+ (k+n -n=2k (cf. 17.11),

k being the fiber dimension of E.]

N.B. The points in LE are the pairs

((e,xe) /P) (xe € TEPp € E)
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such that
dﬂe(Xe) = po(p)

with w(e) = m(p).

17.14 EXAMPIE Let E = ™ -~ then LTM = TTM and the Lie algebroid structure

of the theory is precisely that of 17.2, i.e.,

(ml[ 14 ]'idI'IM)‘

Suppose that the vector bundle morphism

F
E———?BE'

Trl l’IT'
M-— M
f

is a Lie algebroid morphism. Define

LF:IE - LE'
by

LF(( (e’Xe) ;P) ) = ( (FeldFe (Xe) ) IFp) .

17.15 1IEMMA The vector bundle morphism
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is a Lie algebroid morphismn.

Coming back to

pr,

IE —= > E
Py P

TE ——— ™,

T
call the elements of Ker pr, vertical and denote the set of such by VLE -- then
VLE is a vector subbundle of LE and its points have the form
((e,X),0),
where Xe is a vertical vector tangent to E at e.
Given e,p € E with m(e) = 7w{p), denote by XZ D € TeE the vector tangent to
the curve e + tp at £t = 0 — then it is clear that
((e,X. ),0) € VIE
“e,p’ )
This said, define
2V:E X, E > VIE
by

£ (e,p) = ((e,X] ),0).

Then =’ is an isomorphism of vector bundles over E:
v
E XM E —— VIE

Pry l lﬂE ° g

E ——— E.
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17.16 EXAMPIE Put

AE(e) = Ev(e,e) (e €B).

AEEsecVLE.

[Note:

pEoAEEsecVE

is the dilation vector field A on E (cf. 4.2). 1In detail: Identify VE with

E M E (cf. 85) — then A corresponds to the section p -~ (p,p) of E M E.]

17.17 1IEMMA - If s,,s, € sec VLE, then

1’72

[sl’SZ]IE € sec VIE.

We shall now extend the operations

sec ™ -+ sec TIM ~ sec ™M > sec TTM
3 X > X, 3 X > X'
to operations
~ sec E » sec LE ~ sec E » sec IE
s~+s’, s+ s'.

17.18 RAPPEL Every w € AlE determines a C function W:E - R.
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[Note: Given £ € C°(M), put

£ = af.

£fT(e) = ple)f (e €E).]

Iet s € sec E —— then its vertical lift is the section s’ of 1E defined by

the prescription

s'(e) = ' (e,s(m(e))) (e € E).

17.19 IEMMA V £ € C (M),

£s)V = (£ o ms’ and (pg © sVY (£ o 1) = 0.

17.20 ILEMMA V w € A]'E,

Vo~
(pEos)u)—-lswo'rr.

17.21 RAPPEL Iet s,IM:'ITM » TIM be the canonical involution —— then

v X € Dl(TM),

X =85 o TX (cf. 84).

Fix a point

((e,Xe) /P) € LE.
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Then

TI'E o QE(((erXe) IP)) = TTE(e,Xe) = €.

((e,Xe) ,P) € (LE)e-

17.22 LEMMA Put x = m(e) (= n(p)) —- then 3 a unique tangent vector

Vp S TpE such that
1. v fec’m,
V(£ om = £ (e).
2. YV wée€E A]'EZ,

vp& = Xe& + (dgw) |x<e,p) .

PROOF Vp is determined by its action on the £ o T and the & provided that

the conditions are compatible. First

vp<f&) = V(£ o m®)

Vo (£ o mo(P) + (£ o T (p) (vpa)

It

£ (e)o(p) + £(x) (vp&)) ]

Now compare this with

~ N
Vp(fu) = X (£0) + dp (fu) |, (e,p)
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= X (£ o moe) + (£ o ) <e>xea;

+ (A faw) |X(e,p) + £(x) (dw) |x(e,p)
= £(0) (X0 + () |, (esp))
+ X (£ o mule) + £ (@) - (o(p)Ho(e)

= £(x) (vp&) + £ (e)w(p) .

[Note: Here we have used the fact that Xe(f °o ) = dwe(Xe)f = p(p)£.]

N.B. v feCm,

= ° = fT =
d’]Tp(Vp)f = Vp(f m = £ (e) ple)f.

17.23 ILEMMA Define
sE:LE - LE

by

SE( (elxe) pP) = ((P:Vp) e).

Sg °© sE=idLE andpr2 ° Sp = Tnp © Op.
[Both points are immediate. Incidentally, Sp is smooth (argue locally (cf.

infra)}.]
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We shall call S the canonical involution associated with the Lie algebroid E.

[Note: If E = TM, then S is the canonical involution on TIM (cf. 17.21).]
17.24 REMARK The vector bundle Tm:TE -+ TM can be equipped with a Lie
algebroid structure in which the anchor map is Sy © Tp. Proceeding, one can

Pr,

then construct a Lie algebroid structure on the vector bundle TE *m B — E.

On the other hand, Sk is a vector bundle morphism

rE—————— E

that, in fact, is a Lie algebroid morphism.

Iet s € sec E = then
stM -+ E => Tgs:T™M » TE

=> Ts o p:E - TE.

Abuse the notation and regard Ts o p as an element of

pr,
sec (TE X‘IM E —— E).

Put

ST=SE0TSop.
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Then
T © P osT='n © P, © oTs o p
E° P& E° e ° Sg
= pr2 o Ts o D
=idEl
Therefore
ST:E > LE

is a section of IE, the lift of s.

[Note: We have

Pr2°5T=Pr2°SE°TSOO

17.25 IEMMA V £ € C (M),

(fs)T = (f o 1T)sT + fTsV
T = [o] = o o
(o © s Y(E oM = Lsf T (= ((pos8)f) om.

17.26 ILEMB vV w € AE,
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TN, A
(QE o 8 )w = st.

17.27 REMARK Viewed as a map s':E » IE,
s! = (pE ° ST,S a T,
where g © s' € Ul(E) is characterized by its action on the £ ¢ m and the ®. To
confirm compatibility, write
(b » 8T (E0) = (p o STN(E o MD)
E E

= [o] T o " o [ TA
= (Pg e 8)(E e mw+ (£emlo, e s

= (Lsf ° w)& + (f o ﬂ)L;w

or

(o o s') (fw)

B (L (fw))

I

((Lbw) ™ + (E(Lw)”

[+]

(Lsf mw + (£ o ﬂ)LSw.

17.28 ILEMA vV £feC M),

(pg © SOE = ((p o S)E) o m

(o © SNE' = ((p o 5)E) 7.
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Iet s € sec E = then

1752

[s{,sg]LE =0

v T, v
[s),85l15 = [5108,]g

T T _ T
[Sl'SZJLE - [SlISZ]E.
[Note: We have
T Vv VT
[sl'SZ]I_E - [SZ'S].]LE
_ v
= - [syrs1lg
= [s1,8,]5.]

17.29 EXAMPLE To run a reality check, let £ € C (M) —- then

51, (£s,) "1 = [sy.8s,lp
.
= (Elsy,s5l + ((p o 57)f)s,)

= (£ o M sys,]g + £115),8,]5 + (((p o 5)) o Msy + ((p o 5)E)'s;.
On the other hand,

[s1, (£5,) "1 = [s], (£ o ms, + £'s7) 0
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T T T TV
= [sl,(f ° 1T)SZ]LE + [sl,f SZ]LE

(£ o mIs],50] 0 + ((og © 57) (€ © mM)sy + £ [s,Sylpp + (o o sPEN Sy

T
2]E

(£ o M Is,8,)% + (((0 o 5)E) o Msy + £ [s,8,]p + ((p o s)E)7 sy

17.30 RAPPEL Iet X & Dl (M) — then

- X' (cf. 4.6)

i

A%

1l
o

,x'1 (cf. 4.4).

N.B. VEEC (M),

andeEAlE,

17.31 LEMMA Iet s € sec E — then

I
1
0]

v
[AEIS ]LE

(Al = 0.

PROOF To check the first point, note that [AE,sV]]._E is vertical (cf. 17.17),
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hence it suffices to show that
(pg © [Ag,s'1 )0 = = (og © s)i
for all w € A'E. But

(pE ° [AE'SV]LE)[‘; = [QE ° AE'pE ° Sv](/;)

(pg © &) (o © 800 = (pg © 8") (pg ° A)D

(b © &) (1w o M) = (pg © )& (cf. 17.20)
== (pg ° sV)o.
Turning to the second point, v £ € c” (™) '

(og o [Agisl p) (£ o m

= (pg o ) (pg e sN(E e m = (pg o 8N (py o A (E o )

(pE ° AE) (Lsf ° m) (cf. 17.25)

andeEAlE,

(pg ° [Ag,sTI )0

(o © Bg) (pg © sNB = (og © 8D (pg © AID

(o © AE)L;w - (pg ° sa  (cf. 17.26)
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Iet S stand for the comwposition of the arrow

IFE — E XME

((e’Xe) P) > (e,p)

with 5' — then S is called the vertical morphism:

IE —2  IE
g ° Pg g ° Pg
E E.
[Note: V s € sec E,
- SosT=sV
Sosv=0.]

17.32 LEMMA 82 = 0 and

Ker S = Im S,

the vertical subbundle VLE of LE.

17.33 RAPPEL T € Dl (™) is second order provided I'TM c T2M or still, if

TTTM o ' = ld‘IM
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Put

Adm(E) = {((e,Xe) ,P) € LE:e = p}.

Iet T € sec IE - then T is second order provided TE < Adm(E) or still, if

17.34 IEMMA Tet T € sec IE -~ then T is second order iff S o T = AE (cf.

5.8).
PROOF  Suppose that TE ¢ Adm(E) - then V e € E,
T'(e) = ((e,X)),e)
=>
S(r(e)) = ' (e,e) = Ale).
Conversely, if
I'(e) = ((elxe) rp) r
then
s(T(e)) = E (e,p)
_ v
= ((e,Xe'p) /0).
But
S ol = AE

(ex] 1,00 = ((e,X] ),0)
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Therefore

I'(e) € Adm(E).

A Lie algebroid (E,[ , ]E' p) over M can be localized to any nonempty open

subset U < M, the claim being that the bracket

[, ]E:secExsecE->secE

induces a Lie algebroid structure on T\'-l (U). To see this, it is enough to prove

that if 8,/8, € sec E and if SZ|U = 0, then [sl,sz]ElU = 0. Thus let x, € U and

0
choose f ¢ c“GM):f(xo) =0 & £fMU) = 1 — then

[sl.szlE(xo) = [sl'fSZ]E(XO)

= 0.
Work now with local coordinates {x',y*} in nl (U) determined by local

coordinates xT (i=1,...,n) in U and a frame ea(oc =1,...,k) for E over U —-

then from the definitions

_ i = Y
poe =p ——a T and [eoc'eB]E CaBeY.
x
Here
i i
3% 3 %P iy

Pl — =P, = =P
o g %3

ax Y of
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AV) \ AV)
i 3C@y 4 ok 3Cya 4 ot as
o Bxl 8 Bxl ki Bxl

p

st vty vy =o.
BY “au Yo Bu aB YR

[Note: The p; and the CZL are C. functions on U. Of course an xl, when

B

viewed as a function on 'rr—l (U), should really be dencted by xT o . ee o]

17.35 EXAMPLE If E = g (cf. 17.1), then p; = 0 and the ch are the structure

constants of the Lie algebra.

17.36 EXAMPIE If E = T (cf. 17.2), if the x* are the q, and if the y* are

!

3

i i_ ik
the , then p. = & . .
eV Py = 857 iy

[Note: Make the replacements

M->T™

™ -» TTM.

Then in the notation of the Appendix to 58, the set

{il""’in' _3“_—I reec*y 'a_—n}
v v

is a basis for

' ((n) M0).

- - K -
[Xi'Xj] = Yljxk.]
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17.37 REMARK Iet {e®} be the frame dual to fe,} —then v £ € cmy,

_E 1o
dEf__“fpone'
ox

hence
fT(xi.YO‘) = (af—- o m) (oi o my~.
axl (0]

Starting with the e, put

\4
Ba v

_ T Y
xa—ea+ (Cas°")y aandya=ea.

Then {Xd,Vu} is a frame for 1IE over b V).

[Note: ILet
_ -1 -1
ULE = (ﬂE ° pE) (m ~(U)).
Then
X € sec(U.. + T T (W)
o ILE
Y € sec(U._ > T (W)
_Ta LE *
and
SXO‘ = Va
SVOL = 0.]

17.38 EXAMPIE Locally,

o o
hg=yVyandoge g =y 5 -

2
dy
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17.39 LEMMA We have

=Y o
(XXl = (Clg © MX,
and
[ya’yB]LE = 0.
17.40 IFEMMA We have
(g » X) = (o oM g, ppe v, =2
ox oy

N.B. If {Xa,Va} is the frame dual to {X ,Y }, then
—_— o' o

i

¢ = (p
dLE a 4x 3y

In particular:

dy” = v"
Furthermore

a_ _1 o B Y

dLEX 5 (CBY o ) X" AX

while

"

om Ao x4 2 h e ).
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Suppose that T € sec LE is second order -- then locally,

=OL o
I =y, +CY,
and
i o 9 o 3
po o ' = (p oMy —+C —.
E o Bxl ayoa

[Note: An integral curve vy of g © I' is a solution to

i . o
dx™ _ , 1 B dy _ o
""dt = (Q B o TT)Y r dt =C °]
Suppose that C is a vector subbundle of E —- then the restriction 7|C:C +~ M

is a fibration. So we can form the pullback square

E
lp
———————— ™

T(r|C)

pr,
TC X'IME —_—
C
and put
LCE =TC x . E

™

to get a Lie algebroid (LCE,[ ’ ]LCE'DC) over C.

[Note: Here C plays the role of M' and 7|C plays the role of ¢.]

There 1s another pullback square that can be formed, namely
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Put

Then, in general, the wvector bundle IC » C is not a Lie algebroid (but it will be

if C is a Lie subalgebroid of E, i.e., if sec C is closed per [ , ]E) .

N.B. IC is a vector subbundle of LCE'

17.41 EXAMPLE Take E = T and write I in place of C — thenLZE = TL and

LY is a linear distribution on . E.g.: Let wl,. . .,wn—k be a system of constraints
and
n=-k
r= n z (cf. 8le6),
where
r= @O,
wU
Set
n-k
T* = 0 Ker ﬁﬁ(wu).
=

Then %* is a linear distribution on ™ and

Ly = $* n TL,
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Suppose that I' € SO(TM), thus
v, (et () =Gt

So, if T' is tangent to ¥, then

I'|Z € sec LI.

APPENDIX

Suppose that

\{}l

M

Ml—-—-————>M

y 2

is a morphism of fibered manifolds. Let

(El,[ ’ ]El,pl) be a Lie algebroid over Ml

(EZ'[ ' ]Ez,pz) be a Lie algebroid over M,

and let

3]
lﬁ:l
(&3]

=3
'—J
<~
%——
=
[\

=
e
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be a vector bundle morphism such that TV o pl = Py o F. Form

pr, pr,
1 L
B} — & By — &
Py = T Pry P2
[ ] 1
™ ““"*T@ ™ ™, oo — ™,
1 2
and let
(R ]
F .El > E2

be the arrow that sends
((x',X}'(.),e) to ((‘P'(X'),d‘l‘}'{. (X}'{.)),F(e))-

Then F' determines a vector bundle morphism

such that TY' o pi = pé o F'. Moreover, F' is a Lie algebroid morphism iff F
is a Lie algebroid morphism.

[Note: This construction is "functorial" w.r.t. composition.]



§18. LAGRANGIAN FORMALISM

Tt is straightforward to extend the considerations of §8 to an arbitrary
Lie algebroid (E,[ , 1grP) over M, bearing in mind that
T E <+~ T™
LE < TTM.
First, we shall agree that a lagrangian is simply any element L € cw(E).
[Note: Iocal coordinates in E are the xi and the ya, hence it makes sense

to take the partial derivatives of L w.r.t. the x* and the ya.]

18.1 RAPPEL If E = TM, then

eL = dSL
or still,
= *
GL S* (dr)
or still,
= *
e’L S (dTI'ML) )

[Note: Spelled out,

dTM < d per A*M

d’I‘I‘M <> d per A*TM.]

N.B. The vertical morphism S:LE -+ ILE induces a map



hence operates by duality

In particular:

Given L, put

18.2 LEMMA Iocally,

[On general grounds,

gt

Given L, put

18.3 LEMMA Iocally,

sec LE » sec 1E,

on A*LE, thus there is an arrow

S*: \*LE > A*LE.

S*X

S*Y

S* (A L) -

3L
oy

x*

(pio ) R
o

_ V -]
aya

oL
3xl

) Xoc +

wp, = dpgfp-



2
w = BocL g XOL/\VB
3y oy
2
o L Y
+ ((p ) r -5 (C
5 13y8 ocB

PROCF For

ey = g ) P+ T

. 2
= (pl o ) B.L g )(Ot/\XB + 321' 2 VOLAXB
o E)xlay aya’ay
3 Y a B
(—-—(C o mMIXAX",
ByY ofB

Given L, put
E = (pE° AE)L—L(E L

Then EL is the energy function attached to L.

[Note: Locally,

18.4 IEMMA We have

IAEmL = S*(dIEEI)’

by

L -1).



PROOF Locally,

Ay = y“ya (cf. 17.38).

Therefore
B B,
1, XT=X"(A) =0
A g
B B B
1, Yo=Y () =y .
e T
Consequently,
2
°L o B o B
1, W = = (1, XTAY™ = X711, VD)
AEL aym’a;/B AE AE:
8 o 8
+ (o) (1, XOAX® = O, XB)
Ag by
2
- BaLByBXOL.
oy 9y
On the other hand,
9
S*(dLEEL) = _EE.X“
ay™
] oL, R o
= — (= L)X
aw® syt

= ¢ y® ¢ 2 _ 8Ly
ay*ay® y®  oy”
= 82L Xoc
a.. B ‘



L is said to be nondegenerate if W is symplectic; otherwise, L is said to

be degenerate. The analog of 8.5 is valid: L is nondegenerate iff for all
. i_a
coordinate systems {x ,y },

oL
oy oy

N

det

Q
™

18.5 EXAMPLE Define a lagrangian L:E -+ R by

Lie) = %- Gle,e) - (Vo m(e) (e €E),

where G:E »x, E +~ R is a bundle metric on E and V is a C” function on M —- then

L is nondegenerate.

D = {X € sec LE: L = = dIEEL}'

Then L is said to admit global dynamics if D is nonempty.

18.6 LEMMA LetXEDL——theanmL=0.

PROOF One has only to write

e,

]

(g o dp + ap © guy

0 + (- dpgy)

0.



[Note: Recall that

dEE = 0.]
18.7 REMARK LetXEDL——then
LEL = e,
L' -
= 0.
But
Ly, = (op © X)E .
Therefore EL is a first integral for Pp © X (cf. 8.10).

18.8 LEMMA V X € sec LE,

g o x4, = =S¥

18.9 LEMMA If L is nondegenerate, then L admits global dynamics: 3 a

(unique) I‘L € sec 1E such that

tp @, = - dpFy-

L

And FL is second order.
PROOF The existence (and uniqueness) of I is implied by the assumption that

W is symplectic. To establish that T'. is second order, write

L



IAEwL = S*(dLEEL) (cf. 18.4)
= =-5*(1 )
PL‘*’L
=1g o 1 Y (cf. 18.8).
L
But then
S e Tp = Ay

SO I‘L is second order (cf. 17.34).
[Note: Iocally,

_ O o
FL—yXa+CVa.

And V a,
. 2 2
(DE ° 1T)yB iLu +cP BBL )
XY oy oy
~ ke B e
oxX oy
or still,
Ly (aLoc) = (pg o Tp) aLoc
L 3y oy
= e m -y o my®
X Y
18.10 REMARK Along an integral curve y of Pp © I‘L, we have



axt i B ay* _
T—(QBO’IT)Y,dt =C .
Therefore
4 oL, _ L &t 2 &f
, - L]
dt 5 yoc axlayu dat ayBZ) yoc dt
2
= 3 Loc (pB 7r)yB + BZL 5 CB.
XY 9y dy
Il.e.:
%E' éétp = (p; o ) EEI-— (clB ° w)yB EEV ’
oy ox oy

which will be termed the equations of Lagrange.]

18.11 EXAMPIE Iet g be a finite dimensional Lie algebra. Fix a basis

eu forg_; (o =1,...,k) (k = dim g_;) ~-- then

Y
[eu,eB] CuSeY

and the equations of Lagrange are

d oL Y .8 9L
== (/) =~-C vy~ — .
dt ayoa 0B 3YY
_ 53
E.g.: Take g =R and

- e = (1,0,0)
e2 = (0,1,0)
ey = (0,0,1).




Then
3
[eu,eB] =e, X eB = Y__Z_Il saser
and in vector notation
d 3L oL

a—E(?ﬁl—):ny‘

To illustrate, let

Ly) =Ly Py =5 @+ LA F Le)?),

where I. > 0, I, > 0, I, > 0 — then the equations of Lagrange become

1 2 3
a Iy- I 54
y = —5—7YY
1
(I, - I,)
2 U3~ L) 34
¥ = ———7Y
2
3 I -5 4
Y"" I y L]
3

So, from the Lie algebroid viewpoint, the "Euler equations™ of the Appendix are

instances of the equations of Lagrange.

APPENDIX
Suppose that (E,[ , ]E,p) is a Lie algebroid over M. Iet n':E' - M be a

vector bundle —- then an E-connection on E' is a map

V:sec E X sec E' » sec E*

33 1
(s,s") » VSS



10.

such that
1. vsl+szs' = vsls' + vszs';
2. Vs(si + sé) = Vssi + vssé;
3. sts' = fvss';

4. Vs(fs') = ((p o S)f)s"' + fvss'.

A.1l REMARK The choice
(Er[ r ]Elp) = (mr[ r ]'ldTM)

leads to the usual notion of a connection in a vector bundle.

In what follows, we shall take E' = E and use the term "connection on E".

So let V be a connection on E = then locally, the connection coefficients

of V are the C functions Fg on U defined by

B

I
VeaeB FaBey'

Accordingly, if

*,t? e ™),

then

= O B
Vst =3 Vea(t e

%
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s*(((p o %’tB’eg + t8y eg)
o

Assume now that G:E X, E » R is a bundle metric on E.

A.2 LEMMA There exists a unique connection VG on E such that

G c
Vslsz - vszsl = Isyrs,lg

(0 o 8)) (G(5,,8,)) = 6(TC s,,80) + G(s,, T s)).

1 1
PROOF VG is determined by the formula

G -
ZG(VSlsz.s3) = (p o sl)G(sz.s3) + (p o sz)G(sl,s3) - (p o s3)G(sl,sz)

+ G(sl,[53,s2]E) + G(Sz'[s3'51]E) + G([sl,SZ]E,s3).

N.B. VG is called the metric connection attached to G.

Locally,

G=¢G eocﬁeB
o

B

and the connection coefficients of VG are given by

M =3 CV v, B + [v,viB] + [8,viM),



1z.

BG

. ocB 1 U

A.3 IFMMA Put
%@)=%maa e €E) (cf. 18.5).

Write FG in place of I‘L (cf. 18.9) —- then locally,
G

Yy Y .
Tg =YX = (T myyv (cf. 10.6).

Given V € C (M), its gradient gradGV is the section of E characterized by

G(gradGV,s) = dEV(s) (s € sec E).
Locally,

GOLB i av

grad Vv = ( B )

A.4 LEMMA Put

%N@)=%maa—(v°mm)(eem (cf. 18.5).

Write FG,V in place of I‘L (cf. 18.9) == then

G,V

_ _ \%
FG,V = I‘G (gradGV) (cf. 10.8).



§19. CONSTRAINT THEORY
To set the stage, let us recall the following points.

19.1 RAPPEL Suppose given C functions

oM R (p=1,...,n"k).

Then the ¢ combine to give a map

o:T™ - Bp—k-

1

Consider the level set ¢ 1(0). Assume: V p € & +(0), ®*IP has rank n - k —

then ®—l(0) is a closed sutmanifold of TM.

[Note: The assumption is equivalent to demanding that v p € ®_1(0), the
1-forms
Y ™

It
d@ eo e d@
p [ 14

p
are linearly independent or still, that

d@l A ses A d@n_k z 0

on @“1(0) .]

19.2 EXAMPLE Teke M = R and let &(q,v) = v — then & 1(0) = {(q,v):v = 0}
satisfies the above conditions. On the other hand, the alternative descriptions

of the g-axis given by

d(q,v) = v2 or ¢(q,v) = /v
are not admissible.



19.3 EXAMPLE Take M = R° and define ¢:TM = X" x R’ by

1 2 3 4 1 2 3 4
o ,9,97,9 ,V ,V ,V V)

= vlv4 - v2v3 = det

Then the level set ¢ T(0) is not a submanifold of TM.

[Note: Removing the zero section from <I>_l(0) gives rise to a submanifold
of ™. Physically, it is a question of two point masses A and B forced to move

in a plane with parallel velocities. The lagrangian is
Tmh? e A + I h?+ ohD

and ¢ represents the constraints on the velocities. Elimination of the zero
section imposes the additional restriction that the velocities cannot be simul-

taneously zero.]

A constraint is a submanifold C < ™ such that TerC is a fibration. E.g.:

might be a vector or affine subbundle of T.

In the applications, however, one is ordinarily handed ¢ functions
MM +R  (u=1,...,nK)

satisfying the conditions of 19.1 and then one takes

the data being such that ﬂMlC is a fibration. 8o, in the sequel, this will be



our standing assumption.

19.4 REMARK Suppose given an affine system of constraints

oM = ot + oM o my (W =1,...,nK).

C= @'1(0)

is a constraint. To see this, work locally -- then the rank of

~ 5ot st T
Bvl 'avn
37K 7k
Bvl 8vn

equals the rank of
—_ al al -
1 ces n

an—k an—k

—_ l LA N ) n —_ L]

But the rank of the latter is precisely n - k (recall that the set wl, . ,wn—k
is linearly independent).

[Note:



19.5 LEMMA Given a point (x,VX) € C, 31 an open interval I containing the
origin and a curve y:I -~ M such that y(0) = v, and (v(t),y(t)) €C (t €I).

PROOF Since 1TM|C is a fibration, hence is a submersion, 3 an open set U ¢ M
containing x and a local section X:U - C such that X(x) = (x,VX) . This said,

choose an integral curve y:I -~ M for X such that y(0) = V_and y(t) €U (t € I).

Fix a nondegenerate lagrangian L. Define Xu € Dl (TM) by the requirement that

= a% (JoM = -
1xqu s*(de") (u=1,...,n-k).

Then Xu is necessarily vertical (cf. 8.23). Given )\l, vee ,An_k € C (™), put

r, =T+ x“xu.

Impose the condition of tangency



_ V V
=T (09 + x“xu(cb ).
Call

-k

@, {65, ...,

reqular if the matrix
v
X 9
[ " ]
is nonsingular; otherwise, call

n~k

@, {o1,..., 8%

irregular.

So, in the reqular situation, one can determine the Lagrange multiplier AO

and the dictum is that the constrained dynamics is given by T, |C.
-0
N.B. Locally,

v -1,k do"  deY
X o' = WL
L 'avk ov

Therefore
(L, {o1,...,8%%n
is regular if

L=T=-Vo T,

where g is riemannian.

19.6 EXAMPLE Take M = 1_33 and put

(WH2+ D2+ DHHY2

|v]

Iet

3
L=2(v/ -mgs’ @m>0, g>0.



Then
-m 2 3
E =5 (|v]®) + mgq
and
= m(@vadgt + aviadg? + avoadgd)
TL=V1-B—I+V2—Q—2—+V3—8—-3-—g§-—§-.
_ od od g v
Take
2
o= 1v|"=-R (R>0).
Then
see) = 2v- Lo+ n” w2,
od od g
Define X@ by
- *
g W, =S (do) .
)
Then
X(I>=I% (Vl_a__i_+V2_8___2_+ V3 'a—-j-).
v v ov
To compute the Lagrange multiplier
}\ = - EE.?
0 X<D®
note that
_ 3
I‘LCD = - 2gv
and
4 2
X0 = — |v|®.



Therefore
3
>\0=I_1%2.
2|v|
So
rx0|c = (T + A%y |c
=V131+V232+V3a3
g e 3g
g 315 . g.3203 qv° 5
FRYV TTYRVVY Tzt -9 —5 -
Y h Vv v

19.7 EXAMPLE Take M = 134 and consider the setup of 19.3 —— then

mA(dledql + dV2/\dq2) + rnB(dv3/\dq3 + dv4/\dq4)

u)L =
while
S*(d9) = v4c2{ql - v3c1q2 - vqu3 + vldq4.
Therefore
X®=l—— (V4§-—I—V38—) b1 (—v2-3—3—+vla——4—).
A ov v 3 ov
Determine A, per
0
T d
Ay = = o2 .
0 X®<I>
Since
I 239 39 43
I‘L—v ——-l+v ——§+v ———3+v —z



it is clear that I‘ch = (. Thus the upshot is that the motion is the free motion
of the point masses A and B subject to parallel initial velocities.

[Note: Strictly speaking, the analysis is formal since <I>—l(0) is not a
submanifold of ™. However, matters are correct provided we stay away fram the

zero section. In this connection, observe that
3.2 4 2.2
X0 = = ()7 + vH?) + = (wh? + D]
A Mg

A constraint C is said to be hamogeneous if A is tangent to C.

19.8 LEMMA C is homogeneous iff
MY.=0 (u=1,...,0Kk)
or still, iff

i oM
V. —1
v |C

=0 (u=1,...,n%).

19.9 EXAMPLE If each &' is homogeneous of degree r(u) = 0 in the velocities,
i.e., if
oM(x,tX ) = £ W MxX) (0<ts1),

then C is homogeneous. Indeed,

1

Mgt ..t e )

= tr (U) @u (qlr e lanvlr cee rvn)



Y
vt 22 oy oM
1
v
=>
.M
vt 22 = ret| . = o.
kA C
ov

E.g.: The linear distribution £ defined by a system of constraints wl,. ..,wn_k

is homogeneous.
19.10 IEMMA Suppose that C is homogeneous —-—- then ELIC is a first integral

for T, |C:

B |C € Cp 1c© -
Ao

PROOF In fact,

I‘AOEL = (. + xgxu)EL
= )\]SXUEL
= A];dEL(X )
== A T wp, X))
= - xgmL(rL,xu)

A“mL (%o Tp)



10.

u
>\0 1xu<nL ( I‘L)

M M
ApS* (de™) (Tp)

HqaM
}\OdCD (SI‘L)

Uy M
Aod<1> (A)
= \HaeM.

0

19.11 EXAMPIE In the notation of 19.6,

v|2 =R ® > 0)

L=d
]

is not homogeneous. Here

3
E IC =7 R+ myq

(PAO[C) (B [C) = mgv™ = 0.
Suppose now that (E,[ , ] grP) is a Lie algebroid over M -- then in this

context, a constraint is a submanifold C ¢ E such that 7|C is a fibration.

[Note: The constraint is linear if C is a vector subbundle of E.]

N.B. Consider the pullback square



11.

Prz
™’ XTM E —— FE
Pry P
T —— T™.
T(T|C)
Put
LCE = TC XTM E.
Then

(LCE,[ ' ]LCE'pC)

is a Lie algebroid over C, the prolongation of C over E.

[Note: Needless to say, LEE = 1E.]

In line with the earlier theory, we shall assume henceforth that 3 ¢” functions

M:E >R (u=1,...,K

such that

X -1
c= n (GMNT0) (cf. 19.1).
=1

[Note: The fiber dimension of C is

r =dim C - dim M = dim C - n.

K =dim E - dim C

n+k) -(n+rx

k -r,



12.

k the fiber dimension of E (as in §17). To run a reality check, take E = T,

thus in this case k = n. On the other hand, the codimension of C « ™ is, by

our notational agreements, n - k... . Therefore
dimC=2n - (n - k)
=n+ k
=>
r=(n+k) -n=k

=
i

n - k.]

Fix a nondegenerate lagrangian L. Define Xu € sec 1E by the requirement that

Ly Wy = S*(dIEcb“) (W=1,...,K.
u

19.12 ILEMMA Xp is vertical, i.e.,

X},l € sec VLE.

Iocally,
- -1 a8 30"
Xu W@ M) ayOL VB.
[Note: W(L) -1 is the inverse of
W(L) = [WuB(L)],
where
s
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N.B. ILocally,

U
s*(d o) = gga e
5y

19.13 LEMMA 1Iet s € sec LE. Suppose that

(%osm“=0 (u=1,...,K).
Then
s|C € sec L E.

[Note: Recall that

pE o5 € ‘Dl(E).]

Given AL, ... X € @), put

T, =T+ A“Xu.

In view of 19.13, to force

F2\_|C € sec L _E,
it suffices to demand that
(pE ° F)\)cb\) =0 (v=1,...,K)
or still,
v v
(og o Tp)® + A(pg @ X)o" =0 (v=1,...,K).

Call

@, {6, ..., o5
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reqular if the matrix
v
X))o
[(og © X ) @)
is nonsingular; otherwise, call

@, {o, ..., &N
irregular.

So, when

(@, {65, ..., 5

is regular, one can find the Lagrange multiplier AO' thence
I“?:OIC € sec L E.
N.B. ILocally,
(o, o )6 = @ ™HoB 2 (o oy
g u a ‘PE B
ay
- HoagV
= w8 20-28. (cf. 17.40).
oy oy
Therefore
@, {4, ..., &N
is regular if
L = % G-V o,

where G:E XM E + R is a bundle metric on E and V is a ¢” function on M.

19.14 EXAMPIE Keep to the assumptions and notation of 18.11. Define
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Io‘53 - by
- Tpe; = I8
Ioe2 = 12e2
B Ioe3 = I3e3.
Then

Ly) = 3 <Iyy> (Y ER).

And T. is the Buler vector field 1"0:2_{3 > 33, thus

Foy = Ial(IOy xvy) (y € 1_{3) (see the Appendix, A.16).

Fix a unit vector U € 1_33. let @:53 > R be the function y + <y,U> and take

C=9% 7(0).
Then
Il 0 0
W(L) = 0 12 0
_ 0 0 13_
=>
_ -1
X5 =14 (U)
=>
1 2 3
1%y 2 3y 3 9y



16.

_wh?, wd?, d)?
I T T
1 2 3
= <U,I"lU>.
0
Therefore
To®
XO(Y) = - _}%76 (¥)

<on X y,IBlU>

<U,IBlU>

19.15 REMARK If C is linear and, in addition, is a Lie subalgebroid of E,
then

I, |C € sec IC
Ao

Tnie = Ty lc.

Lic ™ "2,

19.16 LEMMA If Pg © AE is tangent to C, then

(pc © FLOIC) (EL[C) =0 (cf. 19.10).

[Note: The tangency assunmption is always met by a linear C.]

19.17 EXAMPLE To check the validity of 19.16 in the setting of 19.14,



17.

note that

1 2 3
(y i)-—T+y -3-—-—2—+y é-?) <y,U>

oy oy ay

Aot A2 4 g%

<y, U> = o(y).

Of course, one can also proceed directly, bearing in mind that here E‘.L = L, hence

0.

TPy,

On the other hand,



§20. CHAPLYGIN SYSTEMS

Suppose that m:E - M is a fibration (cf. §11) -- then an Ehresmann connection

is a linear distribution H ¢ TE such that v e € E,
VE|e ® He = TeE (cf. 15.11).

[Note: Iet k be the fiber dimension of E, thus dim E = n + k. Since

VE’e - Te(Eﬂ(e)) !

it follows that

i

d.n.mHe dJ.mTeE—c'lJmVEe

n+k-k=n.

Therefore

dim H = 2n + k.]

Associated with H are vertical and horizontal projections
\_I:Dl (E) » sec VE
1
h:D"(E) » sec H

and its curvature is the map

R: DY E) x DH(E) > DN(R)
defined by

R(X,Y)

= [hX,hY] - h[hX,Y] - h[X,hY] + h[X,Y].



20.1 IEMMA V X,Y € Dl(E),

R(hX,hY) = v([hX,hY])
and
~ R(hX,v¥) = 0 = R(vX,hY)
R(vX,v¥) = 0.
Therefore
R(X,Y) = R(bX + vX,hY + vY¥)
= R(hX,hY) + R(bX,v¥) + R(vX,hY) + R(VX,VvY)
= R(hX,hY)
= v([hX,hY]).
20.2 LEMMA H is integrable (or still, involutive (cf. 15.18)) iff R = 0.
PROOF Suppose that R = 0 — then V X,Y € Dl(E),
[hX,hY] = h[bX,Y] + h[X,h¥] - h[X,Y]
= h([hX,Y] + [X,hY] - [X,Y])
€ sec H.
Therefore H is involutive (cf. 15.19). Conversely,
R(X,Y) = v([hX,hY])



if H is involutive.

20.3 RAPPEL Because m:E - M is a fibration, hence a submersion, each

point in E admits a neighborhood U on which 3 local coordinates

1

1 n k
X eeesX yY reees¥y }

such that

(o &y = &xH).

Denote by ‘(h the horizontal lift of an X € Dl ™), thus

xhle = (Telee)'lxl

m(e) "
[Note: Bear in mind that

Tr|H:H > ™™
is a fiberwise iscmorphism.]

The distribution H is locally spanned by the vector fields

(_a_i_)h_—_i_j?_A?_a_ (L <ic<n),
ox X oy

where Ag e c ), i.e.,

He=spau'1{(§——i—)h . (é——ﬁ—)h } (e e U).
oxX e ox e

N.B. The set

5 .h ?
{—", —}
axt oy

is a basis for Dl (U).



20.4 REMARK The Ag are called the connection components of the Ehresmann

connection H. E.g.: Take E = TM and let ' € SO(T™) ~-- then as we have seen in

§5, one may attach to I' an Ehresmann connection H, where

s e
Aji="§_a'c_f
oV
if
T=Vl§—{+cla-—-£.
og ov

w =A§dxl+dya (1<ac<k).

20.5 IEMMA The l-forms ml, e ,wk on U are linearly independent and

H=Kerwl n...ﬂKerwk (e € U).
e e e

[Note: This is 15.23 in the present setting (the dimension of E is n + k

and the fiber dimension of H is n, so the "n - k" there is n + k - n = k here.]

N.B. Denote the velocity coordinates by v* (i = 1,...,n) and u* (@ = 1,...,k).

Put
% = A(;L-Vl + ¢ (a.k.a. &)OL) .

Then the ¢” combine to give a map

®:TE ~ R



and locally,

H=01(0).

[Note: To be campletely precise, H|U is a vector subbundle of TU (= TE|U)

and what we are saying is that

1

H|U =6 (0).

Also, in the definition of @OL, there is an abuse of notation in that

o
Ai o 'ITE
has been abbreviated to Ag.]
Write
R(é—{, —a-—J—.) = R‘i‘. é—a )
ox X J Yy
20.6 LEMMA We have
S N\ S\ Y-\
S Sts IOy s N\ S N
I oyt

Fix a nondegenerate lagrangian L (per TE, not T™). Working locally, define

a vector field X, € Dl (TU) by the requirement that

o
IXOLU)L = Tr[’}w (o =1,...,%k).



20.7 LEMMA 3 one and only one distribution ZL on TE which is locally

generated by the Xoc'

Since H is a vector subbundle of TE, it can play the role of a constraint
(but H is not necessarily the zero set of a ¢~ function). This said, let us
term the pair (L,H) regular if locally,
1 k
(L,{¢7,...,¢°}H
is regular, i.e., if the matrix
B
X o]

is nonsingular.

20.8 LEMMA Suppose that (L,H) is regular — then Vv x € H,

TXHOZLX=O.

PROCF Iet Xx € TXH n ZL x " then

_ o
X, = 2 x“xalx 0% e R

o B _ -
2 A (xu@ )lx =0 (R=1,...,k)



|
e

Z(L,H) - L]H'
Then from the above,

TIE[H = TH @ X[ 1

so there are projections P and Q given pointwise by
P :TTE ~>TH
XX X

(x € H).

Qx:TxTE - z:(L,H) X

The fundamental stipulation is now:

o = P(I‘L|H)

represents the constrained dynamics.
[Note:

FL{H € sec (TTE[H)

P(FL|H) € sec TH.

I.e.:

1
P(PLIH) € D (H).]

20.9 REMARK Working locally, define the Lagrange multiplier A

evident manner and form

0

in the



r, =T, |TU+ xo‘xu.
Explicating the relation
Pa,m = TplH - QI w

then gives

PAOI (H|u) = F(L,H) | m|v).

Furthermore, along an integral curve y of FA , we have

=0
d oL S Y
SRR L W S
v 9x =1 ov
d oL, oL _ X goaoP
& 9 "=~ MTa
_ du oy B=1 u
or still,
- k
d oL oL o o
(9 -S= 3 2
dt avl axl o=1 OA 1
.(i_ (_8__1_'_) —_ ..___BL = o
dt auoc ayOL 0

To reflect the presence of the connection, call L H-invariant if vx € M &

v Xx € TXM’

h _ h



where
W(el) =x = ﬂ(ez).

[Note: If L is H-invariant, then

L(xl,yu,vl, - A?vl)
is independent of yOL. Therefore
8
3L oL i ¥
a_ 8" o -]
3y Ju Yy
2 1 2

20.10 EXAMPIE Take E =

Put
L=5 (2 + HH +2 %) w=uh.
Define the Ehresmann connection H by

H 5 =span{§—--~—sine‘a -a—+cosea—-}.

(xl,x ,0) axl 90 3x2 39

Then L is not H-invariant.

If L is H-invariant, then L induces a lagrangian L € C(TM) via the pre-
scription
Lx,X) = Lle, X)) (rle) = x.
b'e %' |e
[Note: ILocally,

Lx ,v') = L(xl,ya,vl, - A?vl) .1



10.

20.11 IEMMA Suppose that L is H-invariant -- then (L,H) is reqular iff

L is nondegenerate.

PROOF Iet W = W(L)'_l (recall that by assumption, L is nondegenerate) -- then
T R
W =
W e
and we have

XOL<DB = wia%f + WiBAg + wo‘jA? + WP

1]
or still,
D\ 0 - A 0 T
[xa®B]= W ,
~ 0 Ik xk _ 0 Ik xk
where
A . =2
oi i
On the other hand,
s
Bvlav]
A A0 L B 4L o B 3L
TSI 3 M Ta s M TE ITAMR o B
oV oV ou v u oV Ju ou

or still,
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nxn nxn

WIm) = W

W(L) being W_l. Cambining these facts with some elementary matrix theory then

leads to the desired conclusion.

Assume henceforth that L is H-invariant and (L,H) is regular. Let

Y& = (), v v ) u ()

be an integral curve for

I’Aoi(HlU) =T 0.m | (#|U) .
Pass to
Lo (b) v (0)

and consider

d_ L, _ L
dt avl 5 i
taken along
Y = (M8 ,vh(w).
1. BLi - BLi + BLOL J - ( - %9
¢ X u X J
o
2A.
) U T s R
i o i
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aLi - aLi + BLa 9 . ( - Ao_cvj)
ov v ou v J
- BLi + BLa ( _Ag).

v ou
a oL d 3L d ,3L o
S 0 =g D+ = (-1))
dt avl dt avl dat u® i
d_ @L, _ AL
dt avl axl

dt auoc i 5 o dt i ~a
d L oL Ol Ol
= (—) - —= I XA..
dt avl - —1 01
d oL, oL o
= (/) - — =,
dt auOL ayoe 0

B
oL _ oL 3y
aw* P
d_ oL, _ oL
dt i i
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+ oL %E ( A%) 4+ oL v
au® au®
B
dAL
L
= A—BVJ _CJ)L- ( - A?)
u oY
u ou

g-ExJ(t) =vl(t) = v.
d g _ B _ J.B
- vPe) = WPe) = - vial.
dty() u®(t) v 5
oL d o
. — (- Aa)
BU-OL dt 1
_ 3oL d Ay B
== a__.(-Ai(x (t),y (v)))
3u
o o
I P S W PP
su® J dat B
u X )%
) 5% . aad
=§£&(Vj(_—31")+vjpﬁ—_%)
au X jBY
a b, o
at 1 i
(¢}
_L a8 B
oc( Aj) B
Ju Yy
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o o
. 9A; oA;
+ —BLOL vj( -— 4 A? ———:é'
u a3 ] oy
o
. OA.
T
e ox
o o o o
i’ i BAJ BAi 8 BAi 8 oA,
=GV A g A =)
au ox ox7 J oy oy
= -3 JIR% (cf. 20.6).
o ij
Ju

This sets the stage for reduction theory which, however, we are not going to

delve into. Iet's just say: Under certain circumstances, the vector field T (L, H)
14

is Tr-projectable onto a second order vector field T € Dl (™) such that

(L,H)

where I is a horizontal 1-form on ™ given locally by

(L,H)
- BL—OL vIR? .dql,
ou 1]

a potentially ambiguous expression.

20.12 REMARK It can be shown that

1 0.

H P
- (L, H)
T'w,n)

Consequently,

T E



So E_ is a first
L

N.B.

mechanical system, II

20.13 REMARK If I

(in which case our mechanical system is not conservative).

and write

Then

In the language of §10, the triple M = (M,L,I

15.

= <T (dE_>
(LH) " r
<f 1 w_ + 1T >
(LIH), T by (LIH)
T T
= wi(r(L,H)’T(L,H)) + 1 I(L,H)
Tw,m)

integral for T (cf. 8.10).

(L,H)

(L,H)) is a nondegenerate

(L, H) being the (external) force field.

is not identically zero, then Tl is not closed

(L,H) (L,H)

To see this, let

I'= T(L,H)
u
dH(L,H) =0
LFH(L,H) = (11, od+do IF)H(L,H)
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- i i

0= (Lrai)dq + ai(Lqu )
_ i i
= (Lrai)dq + ai(dLFq )
= (L.a.)d i + advi (T € SO(T™))

r?i’/ e
=>
ai =0 => H(L,H) = 0.

[Note: If H is integrable, then II is identically zero (cf. 20.2) (but

(L,H)

the converse is false (cf. 20.15)).]

20.14 EXAMPLE Take E = 133, M= I_{2 and let
Tr(xlrxzryl) = (Xllxz)-
Then
X2 ) 3 1

d
H| = span{— + ,
(xl r X2 ’ Yl) aXl 8yl BXZ

is an EFhresmann connection. Here

oF = - x¥2Axt + dyt
=>
Ao _ 2 gl

l——x,A2=0
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1 1
R, =0 Ry=1
(cE. 20.6).
1, 1
Ry 1, Ryy =0

Iet

L =% ((vl)2 + (vz)2 + (ul)z).

Then L is H-invariant and (L,H) is regular. To compute H(L H) ! note that

oL (V]Rl + V2Rl ) dql _ ulvz dql - q2Vlv2 dql
3ul 11 12

oL 1.1 2.1 2 11 2 2,12.2
_;j(vR21+vR22)dq uvdg =g (v)dg

212 1 .
H(L,H) =qgvvdg - qz(vl) quz.

In addition,

L

T @+ neh?+ oA

But, as has been seen in 16.5,

I‘A =v1—a—1+v23—2+v3§-————
0 ogq oq g
12
vV 29 2
t 53 (-q =+,
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SO
Pew,m) =v ipe vt o g 2y
! g g ple|
_ vlv2 q2 0
7
(q?‘)2 +1 avl
fram which
12
= 19 29 vV 23
r =v —+ vV - q .
(L,/H) 59 e O
To check that
1_ w_=-dE_+1I '
T(L,H) L r (@
it suffices to check that
L_ 0_=dL + I (cf. 8.14).
T(L,H) T (L,H)
To this end, write
b_ = —EiIf—I dql + ———-81‘2 dq2
L ov ov
= (D)2 + Dviagt + viadt.
Then
L_ 0_
'eo,H) L
=1 (((® 2 + vhadgt
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F (A2 + vtal A

r'(L,H)

+ L V2Adq2 + VZI\L_ dq2

T(L,H) T (L,H)

= qzvlv‘qul + ((qz) 2 + l)vldv1 + vzdvz.
On the other hand,
dn + H(L,H)

P h % + (@32 + Dviart + viar?

+ Aolviagt - i 2ag?

212 1 2

qvvdg + ((qz)2 + l)vldvl + v dv2

=L 6_.
T(L,H) L

[Note: E is a first integral for T (L,H) (cf. 20.12). Proof:

L
= 1l 2.2 1,2 2.2
I‘(L'H)(j(((q) +1D(v)"+ (v)T))
12
=v2q2(vl)2 _ 2v2v qZ((qZ)Z + l)vl
(@)™ + 1)

LhE2 - Lh A2

1

= 0.
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Another first integral for T is the function

(L,H)
((q2)2 + l)l/ZVl.
Proof:
- 2.2 1/2 1
T (@2 + Y30
2 12
12 q vV 2,,22 1/2
= viv - P+ 1)
(A2 + 1" (P+
= 0.]
1 1 2 1 1

20.15 EXAMPLE Take E=S xS xR, M=§ x § and let

net,0%,y1,9%) = (61,09

Then the distribution I figuring in 16.12 is an Ehresmann connection, call it H:

H
1,2 1 2
(07,07, y ,y")

=span{RcoseliT+Rsin6182+az, al}.
oy oy°  98° 238
Here
— == (R cos el)d62+dyl
W= - ®sin ehae? + ay?
=>
- Ai=0,A§=—Rcosel
2 2 . 1l
Al=0,A2=—Rsm6
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- Ril=ol Riz=-Rsi_n 61, R;l=Rsin el, R%2=0
(cf. 20.6).
_R:Iz-l:o’R52=Rcosel’%l=-Rcosel’R§2=o
Let
L=3 00+ 35,007+ 5 )+ @),

where Il, Iz, and m are positive constants -- then L is H-invariant and (L,H) is

reqular. And, from the definitions,
- 1 1,2 2 2.2
L=5 (Il(V) + (mR +Iz)(v) ).
However, in this situation,

H(L,H) = 0.

E.g.: The coefficient of <ilql is the negative of
3L 1 2.1 oL 2 2.2
Lr Ry + VR + 2 IR+ vR))
du u
= mul(vz( -~ R sin el)) + muz(vz(R cos el))
= m(R cos el)v2 (vz( - R sin el))
+ m(R sin 60)v> (V2 (R cos 61))

= 0.
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[Note: H is not involutive, hence is not integrable (cf. 15.18).]

A Chaplygin system has two ingredients.

¢ A principal bundle m:E -+ M with structure group G and a principal
connection H.
® A nondegenerate lagrangian L € C (TE) that is G-invariant for the lifted

action of G on TE and for which (L,H) is regular.

It is then a fundamental point that this data realizes all the assumptions
of the preceding setup.

[Note: The dynamics on H can be reconstructed from the dynamics on ™ via

the horizontal 1lift operation.]



§21. TDEPENDENCE ON TIME

ILet M be a connected C~ manifold of dimension n. Put

g
=
11
1

X M

ghi =R x ™

J2M=1_3><T2M.

Then JlM is called the evolution space of a time-dependent (a.k.a. non-autonomous)

mechanical system whose configuration space is M.

21.1 EXAMPIE Consider the motion of a plane pendulum whose length £(t) > 0

is a function of time -- then

Mm=g = JM=Rx (g xR
and its motion is governed by the differential equation

2
gﬁ:—%sine_

at?

esfNo
SIS
=l

where 6 = 0(t) is the angle made by the pendulum with the vertical and g is the

gravitational acceleration (cf. 21.19).

Iocal coordinates in J]‘M are (t,ql,vl) and there is a canonical inclusion

JlM - TJOM,



viz.
(t,ql,Vl) d (t:ql,l,Vl)-

Iocal coordinates in JZM are (t,ql,vl,al) (cf. 11.6) and there is a canonical

inclusion

T2 > R x TTM,
viz.

i i i i

i i i
) > (kg ,v,v,a).

(t,g,v ,a
Since R x TIM can be embedded in TJlM, it makes sense to write

J2M c TJlM.

This being the case, let I € Dl(JlM) — then I' is said to be second order provided

FJlM c JZM.

21.2 LEMMA Tet T € DN(J'M) — then T is second order iff locally,

9 i i3
T—§—E+V ——-1-+C —i',
aq v

where

Cl = Cl(trqlrvl) .

The vertical morphism

s:pt (M) > D (T

and the dilation vector field



A € DF(m)

can be regarded as living on J]M. Agreeing to denote these extensions by the

same symbols, define

1
Sgp € Dy T

by
Sdt =85 -~ AR dt.
Then locally,
S, = s _ ] (dq:'L - vidt)
dt i :
oV
N.B. Viewing Sdt as an element of
Ham _ . (0N @, 0t
™t
we have
3d i3 9 3 3
S, (&) =~V - S., (=) = -~ S, (—) = 0.
dt ot Bvl dt aql avl at 3VJ.
. lM 0 .10, . . . .
The triple (IJM,J M,m ) is a fibered manifold, from which
ol c molm (ef. 511).
21.3 LEMMA 82 = 0, hence
. _ == dt ’
Im Sdt c Ker Sdt'
Moreover,

Im Sdt = sec VlOJlM = Vlo(Jl.M) .



[Note: The containment

Im sdt c Ker Sdt

is proper.]

21.4 REMARK Tt can be shown that v X,Y € DX (T,
[Sth,Sth] - Sdt[sth,Y] - Sdt[X,Sth]

= (Ith)Sth - (1Ydt)Sth (cf. 5.9).

21.5 ILEMVA Iet T € Dl(J]‘M) — then ' is second order iff ST = A and

s..I'=0.

PROOF The necessity is obvious. To see the sufficiency, work locally and

write
I‘=Tg€+Ai§—i-+Bi§-T.
oq oV
Then
SI‘=A=>Al=vi (1 <1i<n)
=>
0 =84T = (l—T)Vi———i
oV
=>
(l—T)vi=0 (L <i<n)



21.6 IFMMA Iet T € Dl(JlM) — then T is second order iff dt(l) = 1 and

21.7 LEMMA Suppose that T € Dl (JlM) is second order -- then V Trlo—vertical X,

Sdt([X,F]) = X.

An element I, € C°°(J]'M) is, by definition, a (time-dependent) lagrangian.

This said, put

= *
@L Sdt(dL) + I4dt
_ QL = d@L.
21.8 LEMMA ILocally,
0 =L (aq* - viar) + 1dt.
L avl

[One has only to note that

. _ NP N i i i
s%.(@t) = 0, 8% (dq") =0, S} (@) =dg - v'dt.]

N.B. On general grounds (cf. 13.4), the horizontal 1-forms o € ALT™M per
. . 10 ].M 0 . o
the fibration 77 :JM > J M are characterized by the property that they annihilate

the sections of V-O7iM. Locally, these are the o € AlJlM that can be written in
the form

o = adt + aidql,



where
- 1 1
a=a(t,g ,...,qp,v ,...,vn)
1 1
_ a, = ai(t,q ,...,qn,v ,...,vn).
In particular: @L is nlo—horizontal.
21.9 LEMMA Locally,
2 . . 2 . .
Q, = —a—l—l-‘—-— dql/\dqj BiL : dvl/\dqJ
o ov? v ava
32 5 .
+ TV dtadv-
v v
2 2 . .
+ ( aiL + aiL - v - 2Iii—) dt/\dql.
v ot  9g v g

Therefore
32L

thQE = tn! det
oV oV

dt/\dvl/\ .o Advn/\dql/\ ces Adqn.

Motivated by this, call L nondegenerate if thQLn is a volume form; otherwise,

call L degenerate.

21.10 IEMMA L is nondegenerate iff for all coordinate systems

{t,ql, .o ,qn,vl, ce, VY,

=z 0

9

1nd

det

vV oV




everywhere (cf. 8.5).

21.11 EXAMPIE Take M = R and let

1.2 1.2, 2
L—-§V Ew(t)q.

Then L is nondegenerate.

[Note: This lagrangian is that of the time dependent harmonic oscillator.]

21.12 EXAMPIE Take M = R® and let

L = %— (vl + tv2)2.

Then
-2 T 1 t
det —31-_£-J— = det =0,
\%
_ oV ovT_ £ £2

so I, is degenerate.

21.13 RAPPEL Suppose that N is a connected (2n+l)-dimensional manifold --

then a cosymplectic structure on N is a pair (n,Q), where n € A]N is a closed

l-form on' N and Q2 € AZN is a closed 2-form on N such that nAQn z 0.

[Note: It follows that the rank of Q is 2n.]

Accordingly, a nondegenerate lagrangian L determines a cosymplectic structure

(@t,9) on IM =R x M.



21.14 IEMMA Suppose that (n,Q) is a cosymplectic structure on N — then

there exists a unique vector field Xn q € Dl (N) 2
’

PROOF The arrow

1
bn Q.D N - Dl(N)

4

that sends X to

LA n(X)n
is an isomorphism. Put
X .= (b ) m
T, n,Q !
thus
1 Q+nX, Sn=n.
Xn,Q N8
To check that Xn Q has the stated properties, observe that
14
1 1 +nX. InX ) =nX_ ).
Xn,Q anQ ﬂ,Q le nIQ
I.e.:
® )2 =nx )
8,0 %,
=>
n(Xn'Q) = 0 or n(Xn’Q) = 1.



The first possibility would imply that

But then

On the other hand,

a contradiction.

Therefore

o = 0

1 QAQn + QAlX Qn

X
N, §2 N,

(n + 1y o = 0,
n, 8

n(XmQ) =1
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[Note: Xn Q is called the Reeb vector field attached to (n,Q).]

21.15 EXAMPLE Let (0 be the fundamental 2-form on T*M. Form the product

R x T*M and let 7*:R x T*M > T*M be the projection —-- then the pair (dt,m*Q)

is a cosymplectic structure on R x T*M and its Reeb vector field is %E .

Given a nondegenerate lagrangian L, set

I‘L = th’QL.
Then
11,LQL =0
11..Ldt = 1.

21.16 REMARK Suppose that L:TM - R is a nondegenerate lagrangian. Define

f.:JlM +~ R by ]: =L o m, where m:R X T™ > ™ is the projection — then L is non-
degenerate and

Qf, n W + dtam (dEL) .

Furthermore,

[Note: Recall that 1I‘LwL = - dEL and I‘LEL = 0.]
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21.17 LEMMA I‘L is second order.

PROOF To apply 21.2, write

ro=rdl +xt & 4t
L ot
o ov
Then
1=1.dt=rt.
1ﬂL

As for the Xl, use the fact that lp QL = 0 and 21.9 to conclude:
L

I R & S
v oy vova
But L is nondegenerate, so
Xi = vl.
Let
Y(s) = (£(8),q(8) -, d% () ,vE(8) . nn V()

be an integral curve of l"L -- then

d -
'ag t(S) = 1.

Because of this, we can and will choose the evolution parameter s to be the

"time" t.

[Note: Time reparametrization is thus a form of "gauge fixing".]
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21.18 IFMMA If

YE) = (), d ), v ), e E)

is an integral curve of iy then

i ioa® i i
g (t) =v (t).——zq (t) =cC
at

d_
at

and along vy, the equations of Lagrange

are in force.

[Manipulation of the relation p S?L = 0 gives
L

2 . 2 . 2
‘—‘8"—1-"1' + V] —‘é'iL_’j" + CJ 8:i-L j - 8I'j. = 0 (i = l,...,n) o]
atov vV g vV v ogq

21.19 EXAMPLE Take M = §l and consider the setup of 21.1. ILet

L(t,0,v) = %m@zvz +mgl cos 6 (6 =q).

Explicating the equations of Lagrange then leads to the differential equation

stated there.

Given any L € Cm(JlM) , its energy is the function

EL=AL—L.
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N.B. We have

eL = S*(dL) - ELdt.

21.20 LEMMA Suppose that L is nondegenerate — then

) T
IBp =~ 5¢

PROOF For

I

ILE, ‘rLdEL

1 rLd‘ 5/5t°L

1

‘PL(La/at = /5t P 0
tr Yaetd0n T Lysad®y
L L
=1, 1 Q. -1, L e
Iy, 3/3’ L I /3t L
== lattr T e baatCL
L L
-1, L o,
r.ba/at’L
= 1 , 6 -1 1. O
(a/0t,1,1% ~ Lasat'r CL

==L 1. ©
B/BtFLL
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= - *
La/atlrL(Sdt(dL) + 1dt)

= - * -
La/at‘I‘LSdt(dL) La/atL‘rLdt

3L

=-1 1 dL - —
o/at's,, 1, " T BE

= — )

= - Lyt - S (eE. 2L.9)

= . 0oL
T

21.21 REMARK Maintaining the assumption that L is nondegenerate, let y(t)

be an integral curve of T, and consider EL!Y(t) -~ then

oL dvl

g _d . iiL
R A . 3
dt dt Mt
_&vi L, id L, 3L _ 3L dg- _
dt W dt W ot Bql dt
i d AL, oL, _ oL
= vt (3 -y -2
dt W aql ot

oL
-3 (cf. 21.18).

avl dt

It is not difficult to extend constraint theory to the time-dependent case

but I shall not stop to run through the formalities.

However, there is one point

to be made, namely that in general the constraints will depend on time. To

illustrate, consider a particle of mass m moving in the plane and subject to the
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constraint

V-wf-c=0 (en.

This constraint is affine in the velocities and the 1-form
w = dql - tdq2
defines a time-dependent vector subbundle of 1'132 = 134.

[Note: Refer back to 16.21 but assume that the horizontal plate rotates

with nonconstant angular velocity Q(t) —— then the vector field
- Q(t)Xz —a'-‘]':' + Q(t)Xl 9‘7
X X

now depends on time. Still, the analysis given there goes through without
essential change.]

There is one final topic that demands consideration, viz. the notion of fiber
. . 00 ]M . . . . 10
derivative. So let L € C (J'M) be an arbitrary lagrangian. Since OL is 7 -hor-
izontal, it determines a fiber preserving c” function
FL:J ]'M > T*J OM

over JOM, i.e., the diagram

"~

FL
M M
10 *
m 1%
0 0
IM——— JM

commutes.
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Locally,

FL(thllVl) = (thlr- EL’ 'aL—i)-
v

N.B. If 0 is the fundamental 1-form on T*JOM, then

0. = (FL)*O0.

L

We have

T*J'M

1

T* (R X M)

T T*R x T*M

PrR
—_ R x T*M,

where

Therefore
FL:R x T™M > R X T*M

and there is a commutative diagram

FL
RxM™—— R xT*M

ide TTD”,‘I

RxM™ —— RxM.
10
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Iocally,

FL(t,q V) = (g, Y.
v

21.22 LEMMA The pair (dt,QL) is a cosymplectic structure on JlM iff FL is
a local diffeomorphism.

The central conclusion of this § is that the time-dependent theory is more
or less parallel to the time-independent theory. But there is one important

difference: If Ll and L2 are nondegenerate and if QLl = QLZ, then I‘Ll =T )

the analog of this in the autonamous setting being false.

21.23 EXAMPLE Take M = R and let

- 2
=Y
V2

Then both Ll and L., are nondegenerate with

2
le
= dvadg.
However
- T =V —
Ll e



§22. TDEGENERATE LAGRANGIANS

Up until now, the focus has been on nondegenerate lagrangians but, for the
applications, it is definitely necessary to consider degenerate lagrangians as
well (a case in point being general relativity, albeit this is an infinite
dimensional setting).

Suppose, therefore, that L & c’(m) is degenerate -- then W, is no longer

of maximal rank and, in general, is not of constant rank.

22.1 EXAMPLE Take M = R and let

L{g,v) = v3.
Then
2 . . 2 . .
w = E iL dg"AdgP —BII;—- dvtadg?
o ov oV v
= 6vdvadg,

SO W is not of constant rank.

Henceforth, our standing assumption will be that the rank of W is constant,

thus the pair (’IM,wL) is a presymplectic manifold (cf. 15.20).

N.B. Recall the convention of 15.13: Ker Wy has two meanings, dictated by

context.

et

1
D = Xev?D ('IM):leL=-dEL}.



Then in the terminology of §8, L is said to admit global dynamics if DL is

nonempty.

22.2 1EMMA If L admits global dynamics and if Ly = - dEL is a particular

solution, then the general solution has the form X + 7, where 72 € Ker w

L

While a given lagrangian might not admit global dynamics, there still might

be a subset of ™ on which the relation

gy, T T AR

does obtain.

22.3 EXAMPIE Take M = 1_33 and let

1 2 3 1 2 3 13

Lig,g.,9,v,v,v)=vV +—((q)
Then
2 2 . .
aq Bv v avd
= dledq3 + dv3Adql.
So
- mf‘ z 0
=> rank W = 4,
op = 0
And Ker W is generated by 9—7 and 37 Next

oq v

3.



Ly = B3dql + Bldq3 - A3dvl - Z-\]'dv3
if
X = A" a—l- + Bt -a-—T .
og ov

On the other hand,

2,2
- dE; = q2q3dq2 T 2) dq3 - vavt - viav’.

Therefore
e, * T dE
23 . .
unless g g = 0, in which case
— — 2,2
At =yt gt =12 ) 2)
14
_ A3 = v3 _ B3 = 0.
. 23 .
The general solution on g q = 0 is thus
19 39 @2 9 29 29
VoStV 3+q2 [+A 5 +B S,
oq le| ov tle| v
2 _2 : ) .
where A”,B” are arbitrary C functions.

[Note: The condition q2q3 = 0 does not, strictly speaking, define a sub-

manifold of T.]

Put

Ker' W = Ker 0 n v{m.



22.4 IEMMA We have

S (Ker wL) c Ker' Wy «

PROOF Iet Z € Ker wL —— then

1ZwL=0.
But
lgplp, = = g © S (see the note appended to 16.1).
Therefore
lggWp, = 0 => 87 € Ker wy -
And
Sz € V(™).
Terminology: L is
~ Type I ifS(KermL)=Kerva
Type II if S(Ker @L) z Ker' wp -
22.5 EXAMPLE Take M = 52 and let
1 21 2 1,124
L@ ,q v, =5 (v)Te” .
Then

. . 2
_ i .3 9 L
) ———l——'—:-d d + ——
Tav) 4 v v

dlequ



2 2
= vleq dqz/\dq:L + 9 dvl/\dql.
So
— o * 0
=> rank w, = 2.
wi =0
To determine Ker W, write
X=Al 81+A2 82+B]'—8—I+B23—2
e 3q ov ov
and set 1, equal to zero, hence
- 2
Aleq =0=>Al=0
21 2 21
A™v +B)eq =0=>B ==AvV
=>
X=A2 (8_2—-Vl§—f +B23_2-
g v ov
Therefore Ker Wy is generated by
—8——2- - Vl _a__]: and —a—z- -
aq ov v
And here
Rer' o = {f 2o:f € c°°(R4) F
g w2 -

S'(Ker U)L) ’



meaning that L is Type I. Still, L does not admit global dynamics.

22.6 LEMMA TIf L admits global dynamics and is Type I, then 3 a T € Dl('IM)

of second order such that

1I,mL=—dEL.
PROOF Choose X € Dl(TM):
1XwL=—dEL.
Then
lox - A%, = 7 W 0 S T Yy,
=dEL°S—dEL°S (cf. 8.7)
=0
=>
SX-AEKerVwL
=>
SX - A=S8Y (BYEKeer)
=>
% - L T YL
And

SX=-Y) =A



r=xX-Ye S0(m) (cf. 5.8).

22.7 EXAMPLE Iet g € Dg(M) be symmetric. Assign to each x € M the subspace

~
I

X, € T Mg (X ,¥) =0VY €TM.

Then g is said to be a degenerate metric if 3 d > 0 such that V x € M, dime=d

and the bilinear form induced by g, on TxM'/Kx is positive definite. It has been

shown by Crampin that there exists a linear connection V with zero torsion such

that Vg = 0 iff Lg = 0 forallZeK= U K, (the null distribution attached
X EM

to g). This condition implies that K is integrable. In fact, if Y,Z € K, then

for any X,

i

0= (L9 (2,X) =Yg(z,X) - g(l¥,2],X) - g(Z, [Y,X])

g(ly,z],x)

Yg(Z:X) - g(Zl [y,x1)

= 0.
On the other hand, K may be integrable even when this condition is not satisfied.
For example, let M = 1_22 and put g = ¢(ql)dq2 ] dq2 with ¢ > 0 — then K is spanned
by 3/ aql, hence is integrable, but [ 19 # 0 unless ¢ is a constant. Take now

3/
for L€ C (M) the function

1
(X,XX) > 5 9 (XX,XX) (XX € TXM) .

Then it turns out that L is Type I iff K is integrable and when this is so, L

admits global dynamics iff ng =0V Z €EK.



22.8 EXAMPLE Tet w € AM and put L = ¢ (cf. 8.19) —- then

O, = M
W = rrﬁdw.
Furthermore, in suggestive notation,
CUL(XI_____) = duw( (ﬂM) *Xl____) r

which implies that

Ker w2 V() .

Accordingly, if dw is nondegenerate, then

Ker W = V(™)

52 and consider

Il

and L is Type II. For instance, take M

Lg%, wh,v) (G - g .

Nof =

et

2.1 1.2
w=%(qdq -gdg).

Then L = ©. Since dw = dqzl\dq:L is nondegenerate, Ker W is generated by g—i- and
v

22.9 LEMMA We have

Ker w._ = Ker FL,.



It remains to consider the time-dependent situation. So suppose that

L € C°°(J]‘.M) is degenerate, hence dtmg is not a volume form. Given t € R, let

L, = L|{t} x ™.

Then in what follows it will be assumed that 3 r:0 < r < n (= dim M), where Vv

t €ER,
rankwL = 2r.
t

Therefore

r+l 2r+2 _

thQE = 0, At~ = 0, QF

0

2rsrankQL52r+2.

N.B. While convenient, this assumption is certainly not automatic: Take

M = R and consider
2
v

L(t,q,v) =t 5

22.10 EXAMPIE Take M = 52 and let

L= -]2; (V:L + tVz)z.

Then L is degenerate (cf. 21.12). We have

2 2
"L . . 3L . .
o, o=t dql/\dq:l ————l—t—J dvl/\dq:j

t g ovd viov

1

dvl/\dql + tdvl/\dq2 + tdvadq + tzdvadqz.
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So v t,
- th::O
2 =>ranku)Lt=2.
u)Lt=O

Now use 21.9 to get

2

QL = tdv Adql + vzdt/\dql + tdvl/\dq2

2.2 2

+ t2a?adg® + b + 2evP)deadg®

+ (vF + tvd)dtaavt + avtaagt + (v + tv2) aeadv2.
Therefore
2 < rank 9 < 4.
Let C = £ 1(0), where
£(t,qb,q2 v,V = v+ e
Then

c=1{x-= (t,ql,qz,vl,vz) :rank(QL)x = 2}.

Motivated by 21.14 (and subsequent discussion), let

_ 1 . - _
DL ={XeD (J]M).1XQL = 0, 1th =1}.

Then L is said to admit global dynamics if DL is nonempty.

22.11 LEMMA L admits global dynamics iff QL has constant rank 2r.
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This is a consequence of 22.12 and 22.14 infra.

22.12 IEMMA Fix x € J'M — then rank(Q ) = 2r iff 3X_€ TXJ]'M such that

1y (QL)x =0, % (d.t)x = 1.

X

PROOF If rank(QL)X = 2r, then 3 a linearly independent set

{el,...,er,er+2,...,e2r} c T;JHM
such that
r . .
_ i r+i
(QL)X = .Z e re .
l=
But (dt)x/\(QL)x =z 0, thus
1 r r+l

t@e et ... e e veea,eEy T;;J]M

is also linearly independent. Complete it to a basis

1 + € 1 -
{@e) et ... e et L Y L

for T;JlM and pass to the dual basis

{Xx’el’""er'er+l""'e2r’fl""'f2n—2r}

for TXJHM —-— then

(@) (X)) = 1 and el (x) = ettt (x) = £ (X) =0

1X (QL)x =0
X
1X (dt)x = 1.



12.

Conversely, if XX has the stated properties, then

- r+l
0 = 1y (@0~ (@) 7™
- (Q*L)}I?-l

rank(QL)X = 2r.

22.13 RAPPEL Suppose that N is a connected (2n+l)-dimensional manifold --

then a precosymplectic structure on N of rank 2r is a pair(n,Q), where n € A]‘N is

a closed 1-form on N and ) € AZN is a closed 2-form on N of constant rank 2r such

that nAQr = 0.

22.14 1IEMMA If (n,R) is a precosymplectic structure on N of rank 2r, then

there exists a vector field X € Dl (N) 2

,_.
2
I
(o]

|
ot

PROOF By a variation on a wellknown theme, each y € N admits a neighborhood

Uy with local coordinates {(t,ql,pi,us} (L<i<r,1 <s < 2n-2r) such that

= dpi/\dql, n = dt.
Therefore

y/pth = O

Ya/aen = 1
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Pass from this point via a partition of unity... .

[Note: 1In general, X is far from unique.]

22.15 EXAMPLE Take M = 1_23 and let

1 2 3.1 2 3 1 23 1 2 3
L(t,9,9,9,v,v,v ) = 35 (V ) -vqg -Vit,qg 9 /9 ),
where V:R x 1_13 + R is C” -—- then it is clear that L is degenerate. Moreover,
ath i3 32L
w = dg Adq + — ~ dv /\c'lqJ
e vy

dqz/\dq3 + dv]‘/\dql

w z 0
L
=> rank w., = 4.
Ly
wi=0
t

Next (cf. 21.9)
SZL = Vldt/\dvl + dqz/\dq3 + dvl/\dql

+ N thdq + N thdq2 + v_ dt/\dq3.
1 2 3
oq oq oq

rank%=4.
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Therefore L admits global dynamics (cf. 22.11), the general solution being

9 13 oV o oV 3

X =
2 3
ple| 3~ 8q g 3q

—3l@--+132—-—32+B3——8 .

Bql avl v 3v3

Here B2,B3 are arbitrary ¢” functions on JlI_{B.

22.16 REMARK The lagrangian

L

—%— W'+ w22
figuring in 22.10 does not admit global dynamics. However, if matters are

limited to the submanifold C = £ 1(0), then

R e A S A S
v aq g ov vV
and the general solution is
X—-g?—At—a——I+A§—7— (v> + Bt) 3—1—+Bs—2,
o] og AY ov

where A,B are Coo functions on C.

KL=KerdtnKerQL

and then set

K=k n 10 (gl .
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22.17 IEMMA We have
T4
Sar (Kg) < g,

22.18 LEMMA We have

Sy (Rer ;) < Ker 0 ()

N.B.

22.18 => 22.17.
For

XEKL=>XEKerQ.L

= 10,.1
—>SthEKerSZInV (oM.
On the other hand,

* = = =
Sdt(dt) 0 => dt(Im ) 0.

Sat

The proof of 22.18 hinges on an auxilliary result.

22.19 IEMMA V X,Y € V(7'M and vV w € Dl(JlM),

(d(w o t) + wadt) (Sth,Y) + (d(w o Sdt) + wadt) (X,Sth)

Sa
= dw (Sth,Sth) .

PROOF Since Sét =0 (cf. 21.3),




le.

3w ° S3,) (83 X/¥) = S5, X(w(S5,¥)) - w(Sg [S5.X,¥])

d(w e Sdt) (X,Sth‘) = - Sth(w(Sth)) - w(Sdt[X,Sth])
=>

dw ° Sdt) (Sth,Y) + d(w o Sdt) (X,Sth)

= SstX(w(Sth)) - Sth(m(Sth))

]

dw(Sth,Sth) + u)([Sthv,Sth])

il

dw(Sth,Sth)‘ + w((lxdt)Sth - (1Ydt)Sth) (cf. 21.4).
But

(wadt) (Sth,Y) = w(Sth) IYdt - m(Y)dt(Sth)

(wadt) (X,Sth) w(X)dt(Sth) - w(Sth) Ith

or still,

(wadt) (Sth,Y) = w(Sth) 1Ydt

{wadt) (X,Sth) = - u)(Sth) 1th

(wndt) (Sth,Y) + (wadt) (X,Sth)

= w((lydt) Sth - (lxdt) Sth) .
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In 22.19, let p = dL -~ then

®L=dL°Sdt+I_dt

so, v X,Y € U+ (@),

QL(sdtx,Y) + QL(X,Sth) d(dL)(Sth,Sth)

Accordingly,
X € Ker Q. => QL(X,Sth) =0
=> Q_L(Sth,Y‘) = 0 = Sth € Ker QL’

thereby establishing 22.18.

Terminology: L is

. v
Type I if Sdt(KL) = K

. N
Type IT if sdt(KL) = K-

22.20 LEMMA TIf L admits global dynamics and is Type I, then 3 a T € Dl(JlM)
of second order such that

il
(=]

ITQL
1I.dt = 1.
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PROOF Choose X € DV (I1M) :

1XQL =0
_ 1X§t = 1.
Then
53X =Y € K.
Choose Z € KL:
SdtZ =Y
and let T = X - Z2 — then
S ' M A M
B Irdt = 1th - 1Zdt = 1.
Finally
Sat’ = Sat® ~ Sat?
=Y ~-Y
= 0.

Therefore I' is second order (cf. 21.6).

22.21 REMARK The lagrangian introduced in 22.15 admits global dynamics but

there are no second order solutions, thus L is not Type I.
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22.22 LEMMA We have

~

Ker O N VlO(JlM) = Ker FL, = Ker FL,.

APPENDIX

Fix a lagrangian L € C (T™) and put

W(L) = [Wij ()]
B L) = [le (L)]l
where
- 2
Wy (L) = aiL :
oV avJ
2 2
Ti-(L) = aiL Coll aiL v e
o viegd  agtavd
Iet
X = Al 2—]—: + Bl _B—T -
agq ov

Then in abbreviated notation, the differential equations that govern the relation

her, = -

T(L) W@) ~ - A - —quL -

_-wW@ o | | B _ - W)V



or still,

T(L)A + W(L)B = - quL
WLy(A -v) = 0.
Therefore
A=v+ gWl)g =0),
o)
W(L)B=-T(@L)(v + g - quL
=-T@)v - quL - T(L)Eg
== - T(L)E.
Here
E=-T(L)v - quL
=>
T agtav? v ag” o avI -
2 .
- 'aLi _ aiL -
3 aviag?
An integral curve vy for
X = (Vi+£i) ai_l_Biai
g ov
is determined by the differential equations
—_— s i . .
gt =9 0®) - ) + gy

a (v (1)

_ ot
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But
W(L)B = £ - T(L)&
=>
A B SR AR DY o RN s S
v ov? gt aviag” g vl aviagd
=>
L 3 . oL %L L .5 3L 3L L
v ova - avieg 3 av?  aviag
_ 3L 5L -3j L 3
= I jq + I ]E
lei oV ogq ag oV
=>
3% =3 . 9%L -3 oL
I 3T YT 3T -1
IV v Ao 3gq
A T e
i S T v
v oV oq ov

These relations are thus a generalization of the equations of Lagrange (to which

they reduce when £ = 0).

A.1 REMARK It is to be emphasized that this analysis is predicated on the

assurmption that L admits global dynamics:

L = - B (3 X € phem)).

A.2 EXAMPIE Take M = R'and let L(q,v) = g —— then
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-0 0
W) = .
And
w]_-'zOIEL:—q,

so 7 X: L = = dEL In addition, the preceding differential equation reduces

to "1 = 0".

A.3 EXAMPLE Take M = R and let L(q,v) = v — then

0 0

W(L) = .

so V X: LW == dEL In addition, the preceding differential equation reduces

to "0 = 0",

There are similar results in the time-dependent case but I shall leave their

explication to the reader.



§23. PASSAGE TO THE COTANGENT BUNDLE

Iet M be a comected C~ manifold of dimension n. Suppose that L € C (TM)

is degenerate.

23.1 ASSUMPTION For some k < n, FL is of constant rank n + k, ¥ = FL(TM)

is a closed submanifold of T*M of dimension n + 'k, and v ¢ € £, the fiber

(FL) -1 (0) is connected.

[Note: v ¢ € %,

dimFL) Y (6) = dim ™ - dim ¢
=2n - (n+k)
=n - k.]
N.B. The matrix
W(L) = [le (L)]l
where
2
W, (L) = vk
J v ov

has constant rank k.

[Note: A 2n x 2n matrix of the form

is row equivalent to



For motivation, recall the following standard fact.

23.2 RAPPEL Iet M', M" be C manifolds; let £f:M' + M" be a C map of
constant rank r -—— then each point of M' admits a neighborhood U such that f(U)
is an r-dimensional submanifold of M" and the restriction U » £(U) is a submersion

with connected fibers.

Since FL:™ ~+ % is a fibration, the kernel of
TFL:TIM » TZ
determines a vector subbundle VL'IM of TIM (cf. §11). Viewed as a linear distribution,
VL'IM is integrable and the leaves of the associated foliation of T™ are the

#L) 1) (6 €1 (cf. 15.11):

N.B. The fiber dimension of Kerva is n - k (cf. 22.9).
We claim now that W has constant rank, thus the machinery developed in §22
is applicable. To this end, let () be the fundamental 2-form on T*M and put

- 1% P .
QZ le (lZ.Z->T*M).

23.3 IEMMA The rank of . is constant and, in fact,

z




rank Qs = k+ £,
where k < £ <n (k <n).
[Note: The pair (Z’QZ) is a presymplectic manifold (cf. 15.20) and the
fiber dimension of Ker Qs is

n+Xk) -k+4£ =n-L]

Therefore

rankwL=k+1’,.

N.B. The fiber dimension of Ker W, is

2n - (k+ L) = n-Xk) + (n-4).
23.4 REMARK L is Type I iff
(n-%kX)+ (n-42) =2(n-k%),

i.e., iff £ = k.

23.5 RAPPEL lLet (V,Q) be a symplectic vector space of dimension 2n. Given
a subspace W c V, its symplectic complement wt is

{v € V:Q(v,W) = 0}

dim W + dim W5 = 2n.

Denote by QW the restriction of ) to W x W -~ then

KerQW={wEW:1WQW=O}=WﬂW'L,



so (W,5) is a symplectic vector space iff W n w- = {0}.

Given 0 € T, regard ng as a subspace of TOT*M ~— then

1 - XM =
(TOZ) {x(j € TOT M.QO(XU,TGZ) 0}.

Following Dirac, I is said to be first class if v o € %,

or second class if v ¢ € 3,

L
(TGZ) c TOZ

L_
TGZ n (ng) = {0}.

23.6 IFEMMA 7Y is first class iff £ = k.

PROOF To begin with,

But

Therefore £ = k

(n

(n

(n

(n

<=>

<=>

-k)+dimfr=(n-k) + (n+k) =2n

- k) + dim TOZ = 2n

|
£
i

. A
dlm(TOZ) .
-k + (n-0 = (n-k +dim(TZIn (TGZ)‘L).

M-k + (n-42) =2(n - k)
- i L1
(n - k) + dm(TOZ n (TOZ) )
Aim(T v)* = Aim(T 5 n (T 5)*)
(0] 6] c

(T )t cT 3.
o [6)



23.7 IEMMA 7T is second class iff £ = n.

[Note: When this is the case, the pair (Z,Qz) is a symplectic manifold.]

23.8 REMARK Because k is less than n, I cannot be simultaneously first and
second class.

[Note: In general, I is neither but rather is of "mixed type".]

The F € C”(TM) which are constant on the (FL) L(0) are annihilated by the

X € Kerva and conversely. Denote by Cj.j (™M) the set of such —— then C°°(Z) P c;('IM)
via

f~ (FL)*f (= £ o FL).

23.9 IEMMA The energy EL = AL - I, lies in C;O('IM), hence
EL = (FL) *HZ'
where H € c(z).

PROOF Working locally, take an X € KerVwL and write

X = Al a—l- + Bl 2—-1— .
e v
Then
. 2 .
At =0, aiL BJ = 0.
v av?

Therefore

i 9 i 3L i 3L



i 2
5 5 Bj(av BL{ i alL )
i3 ovd vt VeV
-y pt & ZlZBJ——-.—.-aiL
i v i i v ova
= 0‘

[Note: H. is the hamiltonian attached to L.]

23.10 CORRESPONDENCE PRINCIPIE To each XL € Dl (TM) such that

‘xL‘*’L = - dEy

there corresponds an XZ € Dl( T} such that

with

XLF§ X)) Xyt FL(x,X_)

Conversely, to each X; € Dl( %) such that

g Sty = - diy

there corresponds an XL € Dl (TM) such that
I}EU)L = - dEL

with

XF| (%) XZf|FL(x,XX)

(F = (FL)*f).

(F = (FL)*f).



[Note: As a corollary, L admits global dynamics iff H_ admits global

z
dynamics (in the obvious sense).]

To proceed further, it will be convenient to assume that 3 @u € Cm(T*M)

(w=k+1,...,n) such that

5 =n (@u)'l(m
U
with
Add =2 0
U

on Z.

[Note: Bear inmind that dim I =n+k=2n - (n - k).]

23.11 EXAMPLE Take M = R" and let L = 0 — then k = 0 and I consists of

those points

1 n 2n
(G reeesd yPyre--P) ER
such that
p; = 0 (i=1,...,n),
so
<I>l = pl""'q)n Ppe
And here, of course, HZ = (.
23.12 EXAMPLE Take M = R and let
1 n 1 n, X1 i2
(g yeeerd V 4eee, V) == T 5'(q ).

i=l



Then k = 0 and ¥ is the same as in 23.11 but this time

n .
1
i=1

23.13 EXAMPIE Take M = 1_22 and let

2
2 1
L(ql'q v rV2) = % (Vl)zeq .

Then k = 1 and
2
FL(ql'qZ,vl,vz) = (ql,qz,vleq ,0)
1 2 4
z={(g,g 'pl'pZ) €ER Py = 0}.
Furthermore

. 1 2
= *
QZ if (dpl/\dq + dpz/\dq )

]
il

-
&,
Q

=>rank§zz=2=>£

I
|—.l

So L is Type I (cf. 23.4). Finally

2
12 . _1, 2-g
HZ (q 9 Ipl) = 'i' (Pl) e .

Indeed

He o FL(ql,qz,vl,vz)

1 2 1qg

2
= Hplg g ,vie? )

2

N+

2
wied )24

2
=1 (.Vl) 2eq

o}



_ 1 2.1 2
_EL(q V)

[Note: L does not admit global dynamics (cf. 22.5), thus 23.10 is not

applicable.]

any £ € C(T*M) such that

< £1(0)
is called a constraint.

[Note: The cbu are called primary constraints. ]

N.B. A vector field X € Dl(T*M) is tangent to I iff Xf|%L = 0 for all

constraints f.

[Note: v o € 3, TOZ consists of those X0 € TOT*M such that XOf = 0 for all

constraints f.]

23.14 LEMMA Iet f be a constraint —— then 3 C_ functions fF such that

£f=3 f“@u.
u

PROOF Given a point o € %, choose a coordinate system {¢,y} valid in a

neighborhood Uo of ¢ having the @u as its first coordinates. By hypothesis,

£(0,y) =0
=>
£o,y) = f T Fles,p)at
=z flo ,
o u

u
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where

n_ Al
fO = fo f'll (to,y)dt.

To extend this to all of T*M, let Uu be the set where <I>U 2 0 and fix a C partition

of unity {Cu,co} subordinate to the open covering

(UU) v (UUD.
p ¥ a °
Put

M= By et |

UOUO

WO 'tm

Then

f=f(2§u+2co)

u o
=L +IfCg

u o

“y 1

—tfto +1r1 % 0

p W gy oo
=3 £ .

i

23.15 RAPPEL There are two arrows

oVt i > D, (T*M)

#

af 0 (ra) > ot (T*m)

that are mutually inverse, the hamiltonian vector fields being those elements of
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the form X =—§2#

. af (£ € C(T*M)).

[Note: The explanation for the minus sign is this. If in canonical local

coordinates
afr = 1 - agt +§—£_—dpi),
1 39 "1
then
—ofag=yp @22 3 2,

i %P oaqt  agt Py

Therefore, along an integral curve of Xf, we have

T oi_dagt _af
dt api
. _ %5 _ef
Py T 3¢ i’
_ oq

the equations of Hamilton.]

23.16 LEMMA PutXu=X® (w=k+1,...,n) — then v ¢ € £, the span of
u

. 1
the Xu 5 1s (TGZ) .

[Note: If £ is a constraint, then

L 1
X 4L e(t2)y" = U (T.X)".]
£ (o[ o
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The issue of whether L admits global dynamics can be shifted to the issue
of whether HZ admits global dynamics (cf. 23.10). And for the latter there is

a criterion.

23.17 THEOREM The equation

has a solution Xy iff 3 an extension H € C (T*M) of H, with the property that

XH‘OETGZVOEZ.

PROOF Under the assumption that such an extension exists, put X; = XH' 5y~

then v X € DL(x),

1y QZ (X)

QX ,X)
5 z

Q(XHIZ,X)

- d(H|3) (X)

I

- dHy (X) .

Turning to the converse, letHbeanyextensionofHZ-—-thenVcez&VXETO,Z,

QO‘(XZ'G - XH‘G'X)

- dHZIG(X) + dH‘O’(X)

=0

XZ'O - XHIO‘ € (Toz)l'
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So, 3 M oe C°°(T*M) such that on I,

— - p
XZ XH A XU (cf. 23.16).
But H + Au% is also an extension of HZ and on X

amd + aM
( A@u)

aH + @nhe + Ao )
U u

ag + AM (dcbu)

- Qb'(XH) - A“Q&’(xu)

N M
Q(XH+AXU)

4
- Q (XZ) .

Il

Therefore the hamiltonian vector field corresponding to H + A“<I>u is tangent to I.

23.18 EXAMPIE Take M = R° and let

1 2.1 2 _1

Lag v, =5 w!+vH? - v(ql + qz) (VecC (R)-

Then k = 1 and

1 2.1 2

1
FL(q , 9" ,v ,v")

1 2 1
(a,qa ,v +v2,v +v2)

1 2 4
£ = {(a",qa",py/py) €ER:py = Py = O},

s0 3 one primary constraint, viz.
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1 2
@(q lq Ipllpz) = Pl - p2I

thus
Q. = i*(dp /\dql + dp Adqz)
X X 1 2
1 2
= dpl/\dq + dpl/\dq .
Consequently, if
x=f§T+Alal+A232 '
1 oq od
then
_ 1 2 1 2
1XQZ = fdg~ + fdgq @a" + A )dpl.
Therefore Ker QZ is spanned by §—l— -3 e Noting that

od g

1 2 _1 2 1 2
Ho (@797 /py/Py) =5 (P))" + Vi@ + q7),
consider the equation

x Sy =~ dH;

1 2
=-pdp; -V (ql + qz)dq -V (ql + g)aq’.
Then a particular solution is

Vel 4 o2y 9 d
= - +
X Vilg +q) p; P11

and the general solution is

where F is some C~ function.
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[Note: Since £ =k =1, ¥ is first class (cf. 23.6). It is also clear that

HZ can be extended to an H whose hamiltonian vector field XH is tangent to I.]

23.19 RAPPEL The Poisson bracket is the bilinear function

{, }:CT(T*M) x CT(T*M) > C (T*M)
defined by the rule
{f,9) = Xeg (= - X £) = QXX ).
Properties:
1. {f£,9} =- {g.f};

2. {£,f,,9} = {£,,9}f, + £ {£,,9};
3. {f,9;9,} = {£,9;)9, + gy{E,9,);

4. {f,{g:h}} + {g,{h,f}} + {hl{f'g}} = 0;

5. X{f,g} = [Xf,Xg]o

In canonical local coordinates,

(fg) =z G 3 33,
i Pi Rle| aq 151

Therefore

[Note: Fix H € COO(T*M) and consider any ¢ function F(ql,.. .,qn,pl,....,pn)

of the canonical local coordinates — then along an integral curve of XH’
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dr oF i, 3F
==L (a9 +=—0p;)
dt i i api i
5 (BF oH _ oF BJH ,
— 13 )
= {H,F}.

In particular:

#,q"}, by = H.py).]

23.20 EXAMPLE Suppose that

1 = - A (X € (D))

Iet H € C (T*M) be any extension of H, -— then 3 MM e ¢ (t*M) such that

X
"+ AMo
u

is tangent to I (cf. 23.17). Accordingly on I, V constraint £

0=X f
H+ AMo
u

U
{H+ A @u,f}

(H,£} + {A“®u,f}

u u
{H,£} + {A ,f}@u + A {@U'f}

{H,£} + Au{éu,f}-
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let £ € C7(T*M) — then f is said to be first class (w.r.t. ) if X is

tangent to I.

23.21 REMARK In this terminology, one can restate 23.17: The equation

WLXQZ=—dHZ

has a solution XZ iff 3 an extension H € Cm(T*M) of HZ which is first class.

23.22 IFEMMA A function f € COO(T*M) is first class iff
{f,@u}lz =0

for all primary constraints @u.

£

PROOF If f is first class, then X_ is tangent to I, so V |, xf®u|z =0, i.e.,
{f,éu}lz = 0.

To go the other way, take any constraint g and using 23.14, write

g=7= g“@u.
u
Then
Xg=1I (X.g)o + % g"(x.2).
£ £2 ') fu
u u
But
=0 and X0 |Z = 0.
@ulz 0 Xe u|
Therefore

nglZ = 0.
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E.g.: If f is a constraint, then f2 is first class. Proof: V y,

2 =
{£%,0 ) = 2f{f,®u}

2
{f ,@u}[z = 0.
N.B. I is first class iff each of the primary constraints @u is first class

or still, iff v u',u":

{¢ ,o }r=0 (cf. 23.16).
u'tou"

23.23 EXAMPIE In the setup of 23.20, H is first class provided T is first

class. To see this, take £ = @u -— then as there,
0

(]
|

U
= +
{H,<bu Hz + A {®u,®uo}|z

0

Il

{H,@uo}lz.

Finish by quoting 23.22.

23.24 REMARK It can be shown that a necessary and sufficient condition that
the hamiltonian vector field Xf € Dl(T*M) be the projection through the fiber

derivative FL of a vector field if € Dl(TM) is that f be first class.

[Note: There is then a commutative diagram
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where if is unique up to an element of Ker TFL (= Ker FL,). By means of a
careful analysis, matters can be arranged so that

(FL)*{f,g} (g € C (T*M))

X ((FL) *q)

X X, 1 =X '
£,°°F, {£),£,)

the second point making sense since {fl,fz} is again first class (cf. 23.25).
Iet FZ be the set of functions f € C (T*M) which are first class.

23.25 LEMMA FZ is closed under the formation of the Poisson bracket.

PROOF Let f,,f, € F. and fix u — then

|
o

{fl,éu}lz =
(cf. 23.22).
{f2,¢u}|2 =0

But this simply means that
1,0}

{f2'©u}
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are constraints, thus in view of 23.14

{fl,d)u} =0

{f2’®u} = 4)21

where <I>l,<I>2 are certain C linear combinations of the primary constraints. Now

write

(1E,£,),0 M = {5, {£,,0 1|3 - (£, {£;,0 }}]3

{£,,9,3]2 = {£,,9.}]2

= 0.

If ¥ is not first class (=> k < £ (cf. 23.6)), then it is possible to choose
the primary constraints @u in such a way that
CI>£ AT ,<I>n
are first class,
.

P

then being termed second class primary constraints.

[Note: To arrange this, assume outright that the matrix
[{o,,0,}1

has constant rank £ - k on an open subset U of T*M containing ¥ and redefine the

data (building in 23.27 below).]
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23.26 EXAMPIE Take M = R® and let

1 2 3 4 1 2 3 4
L(q 9,99V, V)

2 4 3
= @+ O+ g+ 2 (@h? - 2% - DD
Then
W({L) = [04]1
thus k = 0. Since
L 2 3 3L oL 4 3L
__.Izq +q’____2_=0'—3_=q’.__21_=0’
v v ov v

there are four primary constraints:

_ _ 2 _ 3 - - _ 4 _
q>l"'pl q q . q)z pzl Q)3 p3 g9 ., ®4_p4‘

We have
- 0 1 1 0o
-1 0 0 0
[{@u,q)v}] = [
-1 0 0 1
0 0 -1 0

so <I>l,<I>2,<I>3,<I>4 are second class primary constraints. Next

ity

. 1 2 3 4
*
is (dpl/\dq + dpzAdq + dp3/\dq + dp 4/\dq )

dqudql + dq3/\dql + dq4/\dq3,
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which is symplectic, hence ¢ is second class. Here

1 2 3 4
He(97,97,97 9 /Py/Py)

1 22

="'2—(Q) 2

1 2 1
+ 5 (pl) -5 (p3) .
Indeed

1 2 3 4 1 2 3 4
HZoFL(q,q,q,q,V.V'V'V)

2.2

() 3,2 1

+%(q2+q) —5(q4)2

|
i
N+

- _% ((q4)2 _ 2q2q3 _ (q3)2)

2
EL(ql,q Iq3lq4 ,Vl,VZ,VB,V4) .

And the unique X; € D (%) such that

1, 2. = - gH
X2 5
is
39 4 ) 4 3 29
4=q —xt+td —3-9 —3-9 —7-
5q g le} 3q

At this point, it will be necessary to adopt an index convention, say:

k+1<abzsk
£+ 1suv<n.
Then
- X xq)a, Xy chb
X, = X5 r X, =Xy -



23’

.

e q) e 0O

o 41 o+ 17!
ab] . .

{¢£,¢k + 1} . {o '¢£}

23.27 1LEMMA The matrix [C ab] is skewsymmetric and nonsingular on an open

subset U of T*M containing f.

[Note: Therefore the mmber of second class primary constraints is even.]

For simplicity, it will be assumed in what follows that U = T*M (which is

typically the case in practice) and we shall agree to write [Cab] for the inverse
of [C ab] .
Suppose that
Then for any extension H € C”(T*M) of H):,
{H,CI)V}|2=O (v=2+1,...,n.

Given A € Cm(T*M) , let

X = {111,<1>a}cabx1D - X, + A“xu.

23.28 ILEMMA X is tangent to .

PROOF The cDu are first class, thus it is automatic that Aud>u is tangent
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to I, so we need only consider

ab,
{Hrq)a}c Xb - XH-

'{H,@a}cabXb®V|Z - X0 |z

= {H,®a}Cab{¢b,Qv}|Z - {H,0 }|z

=0 (cf. 23.22).
O{H,Qa}CabXbéa, - X0

= 1,0 3¢, - (5,9}

= H,0,,} = {#,0,,}

= 0.

Set
Xy = X|z.
Then the definitions imply that
1X QZ = - dHZ‘

Therefore HZ admits global dynamics.

23.29 REMARK In general, the equation

IXZQZ = - dHZ



25.

need not be solvable on all of %. This sets the stage for an implementation of

the constraint algorithm, the subject of the next §.

The foregoing theory can also be written in the time-dependent case. While

relevant and interesting, I am nevertheless going to omit the details.



§24. THE CONSTRAINT ALGORITHM

ILet M. be a connected c” manifold of dimension n

0 0 Fix a closed 2-form

wy € AZMO of constant rank which is degenerate in the sense that

— l -
Ker wy = {XO €D (MO).'L 0}

Wa =
XOO

is nontrivial.

[Note: The pair (Mo,wo) is a presymplectic manifold (cf. 15.20).]
Iet oy € AlMO be a closed 1-form. Consider the equation

_ 1
= (XOED (MO)).

Then a solution, if there is one, is determined only up to an element of Ker Wy

[Note:
1XOU‘)O = %
=>
LXOwO = (1X0 od+de 1X0)w0
= dlxowo
= don0 = 0.]

MO=TM
Wy = Wp




where L is a degenerate lagrangian per §22.

24.2 EXAMPLE To realize this setup, take

MO=Z
W = Sy
ag = — dHg,

where L. is a degenerate lagrangian per §23.

Iet M c MO be a submanifold, i:M - M0 the inclusion. Write

ot (M;M) in place of D" (M 5M; 1)
(cf. §13).
Dl (M,;M) in place of D

l(MO;M:l)

Then there is a canonical pairing
1 o
U7 (MM X Dy (My;M) > C (M) .
Let
= Lo am s - 1
Ker(wolM) =X, €D (MO,M).(u)O|M) (X5,X) =0V X €D (M)}

™M

Denote by (u)0|M)l7 the map Dl M) ~ D o

1 (My:M) which sends X to (wOIM) x,—).

24.3 LEMMA The range of (wolM)b consists of those o € D, (M;M) such that



<KEr(w0|M),u> = 0.
PROOF The annihilator of

4

(wy 10”7 (0" ()

is comprised of those X0 € Dl (M;MO) with the property that
1
<Xy (wo M (X,—)> =0V X €D (M

or still,

_ 1 ;
(wOIM) (XprX) =0 VXeED M.

Ann((wolm)b(vl ™)) = Ker(mO[M)

Ann Ann ( (wOIM)[?(Dl ))

(w0 0% 00

I

Ann Ker (wOIM) .

Consider again the equation

Since wg is not surjective, the relation
< > =
Ker W rlg 0

need not be true, so let

0



We assume that Ml is a submanifold. Put

wp = wg My, oy = oMy
and consider the equation
Wy = Oy
Xl 1 1

where now Xl € Dl (Ml) . If oq is in the range of w'7, the process stops. Otherwise,
let

M, = J[xl € M) :<Rer wy,ay> (%) = 0}
and continue on, generating thereby a chain of submanifolds

eee M2 —*Ml -*MO.

If at the kth stage,
<Ker u)k,otk> =0

on all of Mk’ the procedure ends since by construction 3 Xk € Dl (Mk) :
1kak = O

Mk is called the final constraint manifold.

[Note: Conceivably, M could be empty or discrete, possibilities that we
shall simply ignore.]

On the final constraint submanifold Mk' we have
“_ =
xk“’k %
1
for same Xk e (Mk). T.e.:

(wo M) (% —) = oM,



this being an equality of elements of Dl (MO;Mk) . Let lkMk - M0 be the inclusion -—

then v X € Dl(Mk).

(g ) G530 = (g (i) 0

Il

(ocole) (X) = (ifoy) (X),

1Xk(i]two) = j.]*éoco.
[Note: 1In general, the set of Xk for which
kT %
is strictly contained in the set of Xk for which

1xk(i]"£w0) = il’;ao.]

24.4 REMARK If
Z € D'0L) N Ker (wy|m),

. 1
then, as a functional on D (MO;Mk) '

(wy M) (Z,— =0,

hence



This failure of uniqueness is called gauge freedam.]

24.5 EXAMPLE let M, be the submanifold of 'I‘*1_34 determined by the conditions

0

Pl-q4=p3=p4=Oandtakeforwothepullback

4 \
%0 = 4 i
ixQ 1”6 (_E dpi/\dq)
i=1
= ap adg’ + dg*rag’,
iO:M0 -+ T*}3_4 the inclusion — then

rarﬂ<w0=4

andKermois spannedby§—3. let o, = - dd,, where
oq

and consider the equation

- _ 1
1X0w0 = dHO (XO e (MO)).
. 1 2 3 4 . .
Using 9,9 ,9 ,9 /P; as coordinates on MO' write
4 .
0 i90
X, =f =—+ I A —.
0 "% 4o ag
Then
1, (dp Adql) = qul - Aldp
X0 1l 1
iy (dq4/\dq2) = A4dq2 - Aqu4
0



_ .l 1, 4.2 2 4
1X0w0— .Adpl+qu +Adg -Adg .
On the other hand,
2 2 2 3,3
diy = (p; -~ q)dp; + (@ - pjldg + gdq.
Restricting the data to M; = {q3= 0} and comparing 1, wy with - dH,, we find that
0
Al=pl-q2,A2=0,A4=pl-q2,f=0,ﬂ'1us
x,= (o, - Cg+ip+adli,
0 1 1 4 3
le| g g
A3 being undetermined. Now choose A3 = (0 - then
_ 2 ] d
Xl—(pl-q) (—‘]-_"'”-"71')
oq oq

is tangent to Ml' so the algorithm terminates at this point.

Expanding on 23.29, if HZ does not admit global dynamics, then the resolution

is to set the constraint algoritlm into motion:

o', ' ", .. .

Here (cf. 24.2),



In more detail, one supposes that there is a solution valid on same sub-

manifold ' < £ which is described by secondary constraints. Such a solution

need not be tangent to £'. One then has to pass to a sulmanifold " ¢ &' where

the solution is tangent to %', I" being described by tertiary constraints. And

so forth... . For a physical system with reasonable dynamics this process
terminates at a submanifold ZO c I described by certain constraints and on which

the equation

can be solved (but, of course, it need not be true that Trﬁ(zo) = M).

To make matters precise, let us suppose that ' is a submanifold of I of
dimension (n + k) + (n - k'), wheren < k' < n + (n + k) (thus the codimension of
' waret. Zis (n+k) - ((n+k) + (n~-k")) =k' - n and the codimension of I'
w.r.t. ™ is 2n - ((n + k) + (n - k')) = k' = k). In addition, we shall impose

a regularity condition, viz. that 3 Xt EC(T™) (T =n+ 1,...,k') such that

'=ZIn ﬂX;l(O)
T

with

1] 1
%dXTlO‘::OVG e z'.

[Note: The X, are called secondary constraints.]

24.6 REMARK Initially,

' = {0 € Z:<Ker 0 0}

z'de> (o)

and, by construction,



" = {ot € Z,‘:<Ker(QZ|Z'), dHZ]Z:'>(o') = 0}.
To say that there are no tertiary constraints amounts to saying that %' = 1",
thus the final constraint submanifold is ¢' itself. So, 3 XZ' € Dl(Z') :
Q|2 Kpvr —) = - dH [T,

this being an equality of elements of Dl(Z;Z') . Dbut

= 1% 1 o1
QZ' lZ'QZ(lZ"Z - 7).
Then
o, T T B
where Ho, = H.|I' (observe that dHy, = d(HZIZ') = d(i¥,H;) = i%,dH

" 7Y 7aHy) -

24.7 EXAMPLE Take M = 1_32 and let

Lha® vt v?) = 5 wh? v 3 @h %
Then
-1 0 -
W(L) = '
_ 0 0 |
thus k = 1. Because
E‘T = vl, QEZ = 0,
v ov

there is one primary constraint, viz.

1 .2
o(q7,97 /Py sPy) = Pye
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So
1 2
L= {(qd,q9"psP,) :p, = 0},
And
— _ 1
QZ = dpl/\dq
_1 2_ 1,122
wﬂz—f(pl) 5 @) q.
Given
X = £ %———+Al§—T+A23—§E gy,
p1 3q oq
we have
1
1, O = 1, (dp,Adq™)
XL X, 1
= faq" - A'dp,.

Accordingly, Ker QZ is spanned by —3-—2— - But

od

12.1

- - 2
dily, = p,dp; - 99 4q

hence

L' = {0 € L:<Ker QZ'dHZ>(O) = 0}

2
{(ql,q rPlro) :ql = 0}~

Therefore %' is described by the secondary constraint

1 2 1
x{a ,q 'pl'pz) =q .
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However A Xs € Dl(Z'):

(212" (X

Z" _) = - dI{le"

To proceed, it is necessary to impose the tertiary constraint Py = 0. To confirm
this, let us determine I" which, by definition, is the set of c' € I':

<Ker(QZ|Z'),dHZ|Z'>(0’) = 0.

Let
T X=F gp + a2 1+A23—7evl(z;z')
1 ple| g
Y=Gg—p—+323—2e iy
_ 1 oq
Then
X € Ker(QZ\Z')
iff vV Y,
dp]_/\dq1 X,Y) =0
<=
dpy (0dq’ (¥) = dp (VT (®) = 0
<=>
F-0 - Gl = 0
=>
al = 0.
Since

-
delz - pldpll
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it follows that

d 29
<F — + A" —, p,dp,> = Fp
3D, o 1L 1

is zero for all F precisely at those ¢' at which Py = 0. Moreover the dynamics

on " are trivial. Indeed,

1 Q12" = 0 = da.|z".

[Note: Consider the constraints of the preceding example:
P, = 0 ——- primary
g = 0 —— secondary

P = 0 ——= tertiary.

Then
l’ l ’ 2’ 2 ! '
pl’p:! 14 pl’q 4 p:!’q b

APPENDIX

There are physically reasonable lagrangians that lead to constraints beyond
the tertiary level.

Thus let M = 53 and put

L=3 (vh%+ HY 1@+ @ % - .
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Since
1 0 0o
W) = 6o 1 o0
0 0 0

has constant rank k = 2, it follows that dim Z =n +k =3 + 2 = 5, the primary

constraint being P, = 0. Therefore

Q. = dpl/\dql + dpzAdqz.

z
So, if
3 .
3 0 i9
Xo=f, =—+f, —+ I A —r,
LooTlopp T20p) i o
then
_ 1 2 1 _ a2
IXZQZ = fldq + fqu A dp:L A dp2.

Accordingly, Ker QZ is spanned by 3—3- . On the other hand,
og

1,2 2 1 3,,1.2 2.2
Hg“i(‘le’pz)*'z‘q((q) + (@) -1)

13,1, 23,2 1 2 2,2
dHy, = p;dp; + pydp, + 9 qdq + q’qaq +§((ql) + (@? - Dag’.

Thus

Zl

{oc € Z:<Rer Q dHZ>(o) = 0}

ZI

{(ql,qz,q3.plrp2) @+ @)% =1

I.e.: 1I' is described by the secondary constraint (ql)2 + (q2)2 = 1 and there

IXFQZ = - dH;,
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133 233 d 2
=-qd9 55-~99 5ot p) 1 tp, — -
L Py Py Lot 2,2

X

But XZ is not tangent to I' unless we impose the tertiary constraint plql + p2q2 = 0.

To see that this agrees with what is predicted by the theory, it is necessary

to consider ", the set of g' € I':

<KEI(QZlZ‘),dHZ[Z'>(o') = 0.

Iet

- d d 3 i29 1

Lopg 7209 a1 aqt
3 5 23 13 1
Y=6G, =—+G, =—+-q —=+qg —5 €D ().

_ 1op;, 727, Sqt 3"

Then
X € Ker(QZIZ')

iff v Y,

dp Aaq (X,¥) + dp,Adg” (X,Y) = 0

<=>

2

_ 1
- g Fl + qu2 = G

2
IA + GZA
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G, and G, being arbitrary. But

1 2

13.1 . 23, 2
GHy|2' = pydp; + Pdp, + g°dg + g ay,

hence

¥ —
<x,de|z > = pF; + pF,

vanishes for all X € Ker (QZ‘Z') at those ¢':
PiFy + PFy =0

subject to

- qul + q]FZ = 0.

The condition
1 2
p;g + Pa # 0

allows only the trivial solution Fl = Fz = 0, thus the tertiary constraint is
1 2
P9 +p,a = 0.
Recall now that

XZ = - qlq3 L - q2q3 %p—"+ pl a_l'+ p2 "B——z'e 01(272')
2 g aq

and put

t = L
X lez .

Then Xé € Dl(Z‘;Z") but X% is not tangent to r", thus it will be necessary to

impose yet another constraint. Consider

3 5 3 5
A—+B-—~—+C=—+D—€ET ,2'.
q 5q° 9Py P, O



l1e.

To figure out the conditions on A,B,C,D which guarantee that this vector is in

T 2", let
o]
1 2 1 2
£(q7,q97,P /Py =PI + Pya .
Then
- of  _ of
—_T P r '_'2' P
S .
?f _ ql of _ q2
o = , — =
_ Bpl 8p2
=>
vf- (A,B,C,D)
= plA + p2B + qlC + q2D.
Therefore
) ] 2 )
A + B + C +D €T "
'} 1n
Bql aqz Py sz o}
iff

plA + p2B + qlC + qu = 0.

In our case:

13 23
A=pl,B=p2,C=—qq,D=—qq,

so the next constraint is
2 2 3 1,2 2.2
Py to, —q (@) + (g)7) =0
or still,

Py Py =q .
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Additional computation shows that there are no other constraints.

the final constraint submanifold I, < I is described by

0
- 2 2
@H?+ D=1
1 2
g +pga =0
2.2 3
_ pl + pz - q r
hence ZO is two dimensional.
We have
I>x'> "o ZO
with
X, € DM(5;1")
X! e oMz
So, if X, = Xélzo, then by construction,
1
X, € D (ZO)
and
1X0(QZ[ZO) = - dHZlZO,

Therefore

this being an equality of elements of Dl (Z;ZO) (or Dl(zo) » provided the data is

pulled back to %).

The integral curves of X5 depend on two parameters 6,w and are given by
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ql(t) = cos(wt + B)
q3(t) = wz,
2 .
g (t) = sin(ut + 0)
pl(t) = - @ sin{wt + 9)

w cos{wt + 9).

Py (t)

N.B. In the situation at hand, there is no gauge freedom, i.e., XO is unique.
To see this, it suffices to note that the pullback of
dp Adql + dp Adq2
1 2
to ZO is nondegenerate. Thus define a map
£:10,21[ x R » ZO
by the prescription

-1 2 . 3 2
g =cos b, q =sinb, g =uw

B

Py - w sin 9, p2=wcose.

Then

d(~ w sin 9)ad cos 9 + d(w cos B)ad sin 6

(- sin 6 dw - w cos O d8)A(~- sin 8)do

+ (cos O dw — w sin 8 dB) A{cos 8)ds

1

(sin26 + cosze)duv\de = dwadg.

Turning to the physical interpretation, the above lagrangian is that of a
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particle of unit mass moving on a circle of radius 1 in a two dimensional plane

spanned by ql,q2 with q3 being the force necessary to make the particle stay on
the circle.



§25. FIRST CLASS SYSTEMS

Iet (M,Q) be a symplectic manifold of dimension 2n (M connected).
Suppose that C ¢ M is a closed connected submanifold. Assume: 3 @u €C (M)
(u=1,...,k (k < n)) such that
c=n ()70
u
with
Ad® = 0
(S
on C.

Put

- % I .
wc lCQ (1C.C—>M)

and impose the a priori hypothesis that the rank of We is constant, hence that the
pair (C,wc) is a presymplectic manifold. Therefore Ker Wa is integrable (cf. 15.20),

so there is a decomposition

Ci a generic leaf of the associated foliation.
Next, introduce
(16t < mc.

Then C is said to be first class if

(TC)* < ™.
N.B. Consequently,

- i
Ker W = (TC) .



In what follows, we shall take C first class.

Let £ € C (M) — then £ is said to be a Dirac cbservable if X. is tangent

to C.

[Note: As usual, Xf is the hamiltonian vector field attached to f.]

25.1 REMARK In the context of §23, the Dirac observables are precisely

the £ € C°°(T*M) which are first class (w.r.t. I).

25.2 IEFEMMA A function £ & Cm(M) is a Dirac observable iff Vv yu,

{f,%}lc = 0.

[The argument used in 23.22 is clearly applicable here as well.]

In particular: Vv u',u",

|
o

{Qu!'q)un}lc -

o =15 £ | 0
{%”u} p'u"u’

f“p.uu ec @) (cf. 23.14).

Fix a positive definite quadratic form K and let

= Ly
M=5K 700,

-1

Q
I
K

(0.



[Note:

aM|c = 0.]
25.3 IEMA v £ ecC (M),
{£,M}|C = O.
PROOF In fact,
{£,M}C = (x20|C
= dM(X,) [C
= 0.

25.4 IEMMA Iet f € CT(M) — then f is a Dirac observable iff

{£,{£,M}}|C = 0.

PROOF We have

{£,{£,M}}
=L £, 1£,5"% o 1}
5 1Ly, 1y

1 0y
7 {EX{E,0 0 })

_ 1 Hv
= 5 {£,K ({f,@u}cpv + {f,@v}%)}



1 _uv
5K ({f,{f,@u}¢v} + {f,{f,¢v}®u})

1 v
5 K ({f'{f’cbu}}q)\) + {f,cb\)}{f,cbu}

+ {f,{f,cb\)}}@11 + {f,®u}{f,@v})

{f,{(£,M}}|C

= HV
= ({£,0 HOK({£, 2 }C).

Therefore

{f,{f,l‘_’_l}}'c =0
iff

{f,@l}lc = o,...,{f,¢k}[c =0
or still,

iff £ is a Dirac observable (cf. 25.2).

Iet H € C (C) — then H is said to admit global dynamics if 3 XH € Dl(C):

1XHwC = - dH.
25.5 I1EMMA If H admits global dynamics, then H is constant on the Ci’

hence is a first integral for Ker Wo-



PROOF  Suppose that X is tangent to C,, thus X € (IC) 1 and

XH = dH(X)

wA (X)

"y

- wc (}(H'X)

Ii

we (X, %)

= O.

In general, the quotient C/Ker Wo does not carry the structure of a c”
manifold. However, let us assume that it does and that the projection

m:C > C/Ker W

is a fibration.

N.B. Under these circumstances, one calls C/Ker W the reduced phase space

of the theory.
Write (NZ for C/Ker W == then there is a 2-form w_ on C~: such that
C
w, = T*w_.
C c

To see this, let ;(l’xz be two vectors tangent to x € C. Choose a point x in

the leaf Ci lying over x and let Xl,X2 be two vectors tangent to x:

- Xy = mX

X

I

=
*

=

2



Set

w~|~(}~§ X)) = w.| (X,X,).
Cxlz C'x"1'"2

25.6 IFMMA w. is welldefined.
C

PROOF We have to show that the definition is independent of the choice of

x and the choice of Xl'XZ' First, W is constant along a leaf: V 2 € ('I'C)l,
szc = (‘1‘Z ed+de 1Z)wc = 0.
Secord, if
- ;(l = MYy
B }22 = Tr*Yz,
then
- Y, =X + 72
_ Y2 = X2 + Z2,
where 7,,%, € (TC)*. Therefore

wclx(Yl,Yz) = “’clx(xl + Zp,X, + Zz)

wC'x(Xl’XZ) ’

25.7 IEMMA w_ is symplectic.
c



PROOF

Then

The function H projects to a function H e c’(C) (cf.

Suppose that for some )~(0:

~

ww(io,i) =0V X.
C

there exists a unique X_ € Dl (E):

H

1X~wc~: = ~ dH.
H

And finally X is the projection of any X

H

1, W, = = dH.

XHC

25.8 REMARK All Dirac observables project to C.

25.5).

Furthermore,



APPENDIX: KINEMATICS OF THE FREE RIGID BODY

To establish notation, let

~ s0(3)

{A € GL(3,R):AA" =TI, det A = 1}

{X € g(3,R):X + X' = 0},

so(3)

the "71" standing for transpose -- then so(3) is the Lie algebra of SO(3).

A.1 RAPPEL The arrow 1_33 > 50(3) that sends

X = (xl,xz,x3)
to
B 0o - x3 x2 -
X = x3 0 - xl
- x2 xl 0

is an isomorphism of the Lie algebra (133,X) with the Lie algebra (so(3),[ , 1):

~

(x xy) [;<,§;] (x,y € 133) .

It is equivariant in the sense that vV A € S0(3),

ax) =t xerd).

[Note: Equip so(3) with the metric derived from the Killing form, thus



K(X,Y) = - LY (XY € 50(3).

Then the arrow x -~ X is an isometry:

<y = k&3 (ky €R).]

The tangent bundle TSO(3) admits two trivializations, viz.

AtTSO(3) ~ SO(3) x so(3) (left)
p:TSO(3) -+ SO(3) x so(3) (right).
To explain this, view GL(3,R) as an open subset of 53)(3 — then the tangent space

of GL(3,R) at a given point is naturally isomorphic to g€(3,R). Since SO(3) is
contained in GL(3,R), it follows that the elements of TZSO(3) are matrix pairs

(A,X). One then puts

AAX) = a,a )

o(a,X) = (B, 1),

[Note: To check, e.g., that alxe so(3), fix a curve t > A(t) such that
A(0) = A, A'(0) = X — then

A(t) 'A(t) = I

A TA(E) + A AR) =0



X'A+AX=0

§|
o

-
i

_ (ATX) T

it
e
i

- a1

N.B. The classical terminology is that

A~]3( is the body angular velocity per X

7t is the spatial angular velocity per X.

It is also traditional to write

- ?z ~ body
for a generic angular velocity
o spatial
at A, hence
~ 0 -9 o2
— §= Q3 0o - Ql > (91'92,93)
-t o o
-0 - w3 wz -
- b= w3 o - wl <—> (wl,wz,w3) .
- w2 u)l 0




Suppose that A:I + SO(3) is a curve -- then its lift to TSO(3) is given by

£ AE),A[L).

Write
- " -1
Q) = A(t) "A(t)
A . ....l
_w(t) = AR)AR) .
Then
Tt Q)
_ bt wl)

. 3
are curves in R°.

A.2 EXAMPIE If

cos ¢(t) cos 6(t)

A(t) = cos ¢(t) sin O (t)
_ - sin ¢(t)
then
- 0
Q) = - $(t)
- é(t) cos ¢(t)
SO

Q(t) = (- 6(t) sin ¢(t),

sin ¢(t) cos 6(t)
sin ¢(t) sin O (t)

cos ¢(t)

b (t)
0

- 6(t) sin 6 (t)

sin 9(t)

0

6(t) cos ¢(£)
B(t) sin ¢(t) | .

0

8(t) cos ¢(t), - 6(£)).



[Note: Analogously,

- 0 - 8(t) ¢ (t) cos 0(t)
o(t) = 6 (t) 0 4(t) sin 6(t)
- $(t) cos 8(t) - $(£) sin 6(t) 0

w(t) = (- 6(t) sin 6(t), ¢(t) cos 8(t), 6(£)).]

A rigid body is a pair (E,u), where E < 1_33 is compact and ¢ is a finite

(%3]

Borel measure on _I_<3 with spt u = One calls

u(E) = S5 du(g)

the mass of the body, its center of mass then being the point

_ 1
fe = iy Uz B0,

[Note: F;C is the unique point for which

I2(E = £Au(®) = 0.]

A.3 EXAMPLE A particle of mass m is a special case of a rigid body.

suppose the particle is situated at a point EO € 133 and take u = md

spt p = {EO} and the center of mass is

B =m @Ey) =




The inertia operator of a rigid body (Z,u) about a point x, € I_{3 is the

0
linear map

defined by

T 00 = Tz (8 =gl x (5 = xp))au(e).

[Note: We have

(€ = xghx{x x (g = x4))
_ 2
= |g - XO‘ X = < = x5,%> (£ = %4).]

A.4 EXAMPLE Keeping to the setup of A.3,

Ixo(x) = m(EO - XO)X(X X (Eo - XO)) .

Let (al,az,a3) be the camponents of a = EO - Xq = then the matrix of IX is
0
(a2)2 + (a3)2 _ alaz _ ala3
o _ azal (a3)2 + (al)z _ a2a3
- a3al - a3a2 (al)2 + (8-2)2

and its eigenvalues are

{m|a|2, m|a|2, 0}.




A.5 IEMA IX is symmetric, i.e., V Xy sX

’
0 2

<Ix (xl) K> = <Xl'Ix (x2)>
0 0
and positive semidefinite, i.e., V x,
<Ix0(x) x> = 0.

PROOF First write

<Ixo (xl) ,x2>

<(g - x0)><(xl x (§ = xo)),x2>dn(€)
= fE <X % (g - xo), Xy X (& - x0)>du(<€)

<% 0 (& = xp)x(x, x (& = x4))>du(€)

[1}

= <xl,Ix0 (x2) >,

Then take x

1 = ¥y = X to get

<Ixo (%) , x>

Jg <x x (5 = xg),x > (8 - x4)>dp(E)

\%

0.

Therefore the eigenvalues of I, are real and nonnegative.
0



A.6 IEMMA If I, has a zero eigenvalue, then the other two eigenvalues
0

are equal.
[Note: IX has a zero eigenvalue iff ¥ is contained in a line through xo.]
0

A.7 IEMA If IX has two zero eigenvalues, then = = {xo}.
0

A.8 REMARK If there is no line through X that contains the support of yu,

then Ix is an isamorphism.

Take x, = EC and write I, in place of I

2

(]
Q
~~
L3
it

IE £ x (x x g)du(g)

W (B, x (& x £)).

In the case of a particle go of mass m, y =m§_ , hence

)

Io(x) m(gy * (x % £5)) — m(gy X (x x &)

A.10 REMARK Given Xgr



I, (x) = IC(X) + u(E)(C x (x xC)).

0
E.g.: Takex0=0-—thenc=- o’ SO
Io(x) = fE £ x(x x g)du(§)
= Ic(x) + u(E) (- ‘Ec X (x x - EC))
or still,
Ic(x) = IE £ x (x x g)du(g)

- u(B) (E,LC X (x x EC)),
in agreement with A.9.
[Note: Bear in mind that

I5(E = EJA(E) = 0.]

Let us now consider the description of the free rotation of an isolated
rigid body (Z,u) about a fixed point, which we take to be the origin in R>, and,
to minimize trivialities, we shall assume that IO is positive definite.

Define a lagrangian

L,:TSO(3) + R
by

1
Ly(B,X) =5 <I 2,0

[Note: Recall that Q depends on (A,X) via the prescription

Al = sAz.]
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Explicated,
%qog,m = % fE <g x (@ x &) ,>du (&)
=27, lax &%
or still,
1

1
5 <Igu =3 <I %%

1l -
+ 5 (<R x £L,0 X £

N.B. S0(3) operates to the left on TSO(3) and relative to this action, L0

is invariant.
A.1ll1 REMARK Define an inner product <,>, on 1_33 by

—

XK y>q = Jp <x X g,y ¥ £>du(E).

Transfer it to so(3), viewed as the tangent space to the identity of SO(3), thence
by left translation to the tangent space at an arbitrary point of SO(3). Call

99 the left invariant riemannian structure resulting thereby —— then its "kinetic

energy" is LO' i.e., in the notation of 8.4,

1
Lo = 7 9"

Consequently, L0 is nondegenerate.

[Note: The metric connection VO associated with 9o is left invariant, thus,
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on general grounds, induces a bilinear map

so(3) x s0(3) + so(3)

or still, a bj_.linear map

viz.

-1

(x,y) ->%(x><y) +%I0 (XXIOy+y><on).]

A.12 IEMMA We have

42 + (£3)? - gle? o
I, =/ - &%t )% + &h? - &% au () -
_ N o hH? + (%2

A.13 EXAMPIE Take for = a ball of radius R centered at the origin and

suppose that p has a spherically symmetric density: du(g) = p(|£])dg —— then

I 0 o0
I, = o I o0 |,
0 0 I _
where
2
3T = 2/ o(lg]) |g]%ag

STTfIg p(r) r4dr.



12,

Therefore

[o2]

_8rm R 4
I—§-f0 p(r)rdr.

If the mass distribution is actually homogeneous, i.e.,

then I = —Fz;mRz, hence the inner product <,>0 arising from the choices m = g—,

R = 1 is the usual inner product on 1_33.

A.14 EXAMPLE Take for £ a cone with vertex at the origin and of height h

above the glgz-plane (53 = h('lri) (0 < r <R)). Assure that the mass distribution

is homogeneous, thus p = 3m/TrR2h and the center of mass is at (0,0,2—11) . Here, the

off diagonal entries in A.l2 are obviously zero, so

Il 0 0
Io = 0 I2 0
0 0 I3

and by an elamentary calculation, one finds that

2
I, = (3/5)m<%— + h?)

(]
Hl

(3/10)mR2.

(=
It

Using A.9, one can then compute the matrix representing I, which is necessarily
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diagonal:
->‘1 0 0o
I = 0 Ay 0
—_0 0 >\3 ~
In the formula
Eo X (e % &4)

<€cl £C>X - <€CIX>€CI
successively insert

x = (1,0,0), (0,1,0), (0,0,1).

Then it follows that

— 2
_ _ 3h2 _ 2 h%
>‘1 =1 m(4 )" = (3/20)m(R™ + 7
A, =1, - m(§l‘—)2 = (3/20)m(R2 + ﬁ)
27 72 4 - 4
and
_ 2
>\3 =I5+ (3/10)mR".

Determine I, € Dl(T§_Q_(3)) per 8.12.

A.15 THEOREM Let

Y(t) = (AL),AL))
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be a curve in TSO(3). Put

a(t) = A TAc).

Then v(t) is an integral curve of I“L iff Q(t) satisfies Euler's equations, i.e.,
0

iff

Ia(t) = Ia(t) x a(t).

A.l6 REMARK The projection TS0 (3) :TSO(3) -+ SO(3) of the integral curves

of I‘L are the geodesics of (S0(3) ,go) (cf. 10.6) and these are what the motion
0

should follow. Define now the Euler vector field I’O:B3 - 1_13 by

-1 3
Tt =15 (Ige x &)  (EER).

Then a curve t - £(t) is an integral curve of 1"0 iff

E(E) = (Thg g
or still, iff

TE(E) = TE(R) x E(t).

One can thus view A.l5 as providing an alternative description of the motion,

which turns out to be more amenable to explicit computation.

Define a function

1:50(3) + R

I(A,X) = AT Q.

0
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[Note: 1 is called the angular momentum of the system.]

A.17 IEMMA T is constant on the trajectories y of I‘L .
0

PROOF Consider the restriction of 1l to such a v:
t > A(t) IOQ(t) .

Then

AT Q)

AT Q) +AB IR

Pl(t)IOQ(t) + A(t) (IOQ(t) X Q(t))

AR INE) +Al) (T2(6) x 2(t)

A(t) (Q(t) x IOQ(t)) + A(t) (IOQ(t) X Q(t))

= 0.

[Note: Therefore the components of II are first integrals for I'L (cf. 1.1).
0

Another first integral for T_ 1is EL (cf. 8.10):
Lo 0

B (v() = Ly(Y(t)
0

1
5 <IOQ(t) S(E)>

1

5o
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is
1-n3-32a2 - + 23

= (1=-x=-0c)21-2+2) =0,
the solutions to which are

1n . _1n
g 3%

An unnormalized eigenvector per I1 is (1,1,1), hence lies along the diagonal of

the cube. On the other hard, eigenvectors per 12 = I3 constitute a subspace of
dimension 2 perpendicular to the diagonal.
[Note: From the definitions,

£ £

_ L
EC - (71 '2': 'z’)o

Claim: The eigenvalues of IC are

{mez me2 m?,z}
5 6 6

r r

In fact, thanks to A.9,

I.(E) = T,(Ex) —mlE, * (£ x EQ))

T, (60

Ea

me?
6
Now let A € {EC}J' - then

£ % (A% E)
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= <£C’EC>A - <gC'A>€C

So, applying A.9 once again,

_ - 2
IC(A) = IO(A) (3/4)mL™ A

(11/12)me2A - (3/4)me2h

2
ml
_—6‘—‘ A-]

Put

- ) 2 2

2.2 2.2 2.2
+ I.Q, + 1393.

L= Ly + 10,

Then 2E and L are first integrals for T', (cf. A.18).

0

Turning to the solutions of the Euler equations, we shall consider three

cases.
Case 1: Il = I2 = I3.
Case 2: Il = 12 z I3.
Case 3: Il < I2 < I3.
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The first case is trivial: 3 constants Cl,Cz,C3 such that

@ =Cyr 0y =Cor 23 =C3.

As for the second case, we have

% - (T3 - ) =0
and
Q; = 0.
So 93 = C3 and matters reduce to
T 6 -ca,=0
522 +C =0,
where
c =(Il ; 13)C3 .
1

Eliminating 2y gives

- 2
the general solution to which is
Ql = K sin(Ct + 1)

for certain constants K and t. And then

Q. = K cos(Ct + 1).

2
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N.B. Here
- 2 2 2
2E = Il(Ql + 92) + 13C3
- I.C 12
2 1
=I.K +1
1 3 ~ ]:l - I3 _
I.I
= Il(K2 + 13 5 C2)
(I, - I,)
1l 3
and, analogously,
2
I
L =12 + 3 4.
1 (T. - T )2
1 3
Therefore
2 1l
K" = ——"——r (L - 2I,E)
Il(Il I3) 3
while
I, -1I
c?=2_3 ore-1.
IZI 1
173

The third case is more complicated but doable, the details being a bit messy.
Suffice it to say that explicit solutions can be given in terms of the Jacobi

elliptic functions sn, cn, dn.
[Note: In 1_23, consider the differential equations
X = yz

~x%y (0 <k<1).

]

z
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Then the triple

t > (sn(t;k), en(t;k), dn(t;k))

is the solution to this system subject to the initial condition (0,1,1) (if k = 0,
then sn(t;0) = sin t, cn(t;0) = cos t, dn(t;0) = 1). To see where this is going,

put

Q
0
—H

1 = Iifyr 4y = Iy, ug = 150,

and rewrite the Euler equations as

uy == ey = cy)uu,

(c:L - c3) ulu3

ug = - (o = Syluyu,,

the point of departure... .]

The motion of (5,u) is a geodesic w.r.t. the left invariant riemannian

€ TA SO(3). Translate X

structure 9- To exploit A.15, fix A, € 80(3), X
0

0 0 0

to so(3) and then to 33 to get Q Let Q(t) be the solution of the Euler

0*

equations subject to the initial condition {l- Pass to (t) — then

A(t) = A(E) QL)

is a system of linear differential equations with time dependent coefficients,
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the so-called reconstruction equation. Solve it for A(t), subject to A(0) = A

0'
thus
A(0) = A(O)QO
= a, (AOJ'XO)
= XO'
and so
Y(t) = (A(t),At))

is an integral curve of FL passing through (AO,XO) at t = 0.
0

N.B. This is what happens in principle. What happens in practice is, however,
a different matter, at least if one wants to be completely explicit. Case 3 is

particularly vexsome but Case 1 is simple. For then Q(t) is constant in time:

Q(t) = Q. v t, hence the solution is

0

~

tQO
A(t) = Aoe .

A.20 RAPPEL ILet {el,ez,e3} be the standard basis for 1_23 -— then {el,ez,e3}

is the standard basis for so(3).

The manifold SO(3) can be equipped with a muber of charts, all derived from
the notion of "Euler angle”, but the subject is potentially confusing due to the

variety of choices that can be made.
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Given ¢,6,y, put

c¢=cos¢ ce=cose cq):cosnp
~ s¢ = sin ¢ B Sg = sin 6 _ sw = sin ¢
Then
Tl 0 0 -
e')(p(q)el) = 0 cq) - S¢ r
0
_ % % _
ce 0 Sy
exp(eez) = 0 1 0 ’
_ - Sq 0 Cq ~
cw - SW 0
exp(we3) = SW cw 0
_ 0 0 1 .

A.21 IEMMA The map

] =mml x] -

R

[X]_ﬂlﬂ[

Ve

4
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that sends (y,9,¢) to

A(Y,8,¢) = eXP(we3)exp(ee2)exp(¢el)
is one-to-one and its image U321 is open.

[Note: The inverse

U321+]—1T,Tr[x]—lr~,1—;-[x]—']T,’IT[

can be computed in terms of atan(x,y), the 2-argument arctangent function.]

Therefore this data defines a chart on SO(3) with local coordinates y,8,¢.

[Note: Local coordinates on TSO(3) will be denoted by y,9,¢, ]

,Ve,V

Vw ¢.

Given A € Uspqr the entries of the associated triple (y,0,¢) are called its

3-2-1 Euler angles.

N.B. All told, there are 12 possible rotation sequences, namely:

1-2-1 2-1-2 3-1-3
1-3-1 2-3-2 3-2-3
1-2-3 2-3-1 3-1-2
1-3-2 2-1-3 3-2-1.

A.22 REMARK In the engineering literature, the 3-2-1 rotation sequence

is referred to as yaw-pitch-roll.

The 3-1-3 convention is also a popular choice:
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- A <—> (¢Ielw)

A= exp(q><;3)e}<p(9é1)exp(l!);3) '

where
0<¢p<2m, 0<B <m, 0<yY < 2m.
Consider a curve t -+ A(t) and pass to Q(t) = A(t)_lA
A(b = exp(¢(t)ey)

Ay = exp(8(t)e;)

A, = exp(p(t)ey).

Then

2t) = AAA )~

6 AAeA)

d_
W G gty

1.-1-1,.d

= By By By (0(gg Bg)BeRy
-4 : d
+ 6A¢(% Ae)Aw + qulxche (3$ Aw))
* .1 -1-1d

= A\V Ae Acb (ad—)— A¢)A6Alp

Aa—la—1,d P
+ eAw AG (Ee‘ Ae)Aw + IL).A\p (aw A‘P)'

A.23 ILEMMA We have

(t).

Put
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¢ sin 6 sin Y + 6 cos ¥

Q) = J)Sinecosw—ésinw

d>cose+11; .

A.24 EXAMPLE Take for E a uniform ball of mass m and radius R centered

at the origin, hence I = %—mR2 (cf. A.13). Iocally, in the 3-1-3 system,

Lo (6,6,9)

cos ) 2

N -

I{((v, sin 8§ sin ¢ + v

o) 6

+ (v sinecosw—vesj_nw)2+(v cose+v)2)

¢ ¢ v

or still,

1 2 2 2
Lo(cb,e,tp) =3 I(vq) + Vg + VlP + 2v¢vw cos 8).
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