CONSTRUCTION OF THE REAL NUMBERS

We present a brief sketch of the construction of $\mathbb R$ from $\mathbb Q$ using Dedekind cuts. This is the same approach used in Rudin's book Principles of Mathematical Analysis (see Appendix, Chapter 1 for the complete proof). The elements of $\mathbb R$ are some subsets of $\mathbb Q$ called cuts. On the collection of these subsets, i.e. on R, we define an order, an addition, and a multiplication. We show that $\mathbb R$ endowed with this relation and these two operations is an ordered field. Each rational number can be identified with a specific cut, in such a way that $\mathbb Q$ can be viewed as a subfield of R.

Step 1. A subset α of $\mathbb Q$ is said to be a cut if:

- 1. α is not empty, $\alpha \neq \mathbb{Q}$.
- 2. If $p \in \alpha$, $q \in \mathbb{Q}$, and $q < p$, then $q \in \alpha$.
- 3. If $p \in \alpha$, then $p < r$ for some $r \in \alpha$.

Remarks:

- 3 implies that α has no largest number.
- 2 implies that:
	- If $p \in \alpha$ and $q \notin \alpha$ then $p < q$.
	- If $r \notin \alpha$ and $r < s$ then $s \notin \alpha$.

Example: Let

$$
\alpha = \{ p \in \mathbb{Q} : p < 0 \} \cup \{ p \in \mathbb{Q} : p \ge 0 \text{ and } p^2 < 2 \}.
$$

Note that α is a cut. In fact:

- 1. $\alpha \subset \mathbb{Q}, 1 \in \alpha$ thus $\alpha \neq 0$, and $2 \notin \alpha$ thus $\alpha \neq \mathbb{Q}$.
- 2. If $p \in \alpha$, $q \in \mathbb{Q}$, and $q < p$, then either $q \leq 0$ and so $q \in \alpha$, or $q > 0$ which implies $p > 0$. But since $p \in \alpha$, then $p^2 < 2$. Since $0 < q < p$ then $q^2 < p^2$. Therefore $q^2 < 2$, i.e. $q \in \alpha$.

3. If $p \in \alpha$, either $p \leq 0$ or $p > 0$. If $p \leq 0$ then (3) is satisfied with $r = 1$. If $p > 0$ and $p^2 < 2$ then (as shown in class) $r = \frac{2(p+1)}{p+2}$ satisfies $0 < p < r$ and $r^2 < 2$. Thus $r \in \alpha$, and (3) also holds in this case.

Step 2. Let R be the collection of all cuts of Q. For $\alpha, \beta \in \mathbb{R}$ define $\alpha < \beta$ to mean α is a proper subset of β , (i.e. $\alpha \subset \beta$ but $\alpha \neq \beta$). R is an ordered set with relation \lt defined above.

Step 3. The ordered set R has the least-upper-bound property. Let A be a nonempty subset of R which is bounded above. Let $\gamma = \bigcup_{\alpha \in A} \alpha$. Then $\gamma \in \mathbb{R}$ (i.e. γ satisfies (1), (2) and (3)), and $\gamma = \sup A$. Step 4. If $\alpha, \beta \in \mathbb{R}$ define

$$
\alpha + \beta = \{r + s : r \in \alpha \text{ and } s \in \beta\},\
$$

$$
0^* = \{p \in \mathbb{Q} : p < 0\},\
$$

and

 $\alpha^* = \{p \in \mathbb{Q} : \text{there exists } r > 0 \text{ such that } -p - r \notin \alpha\}.$

 $\alpha + \beta$, 0^{*} and α^* are cuts. The axioms for addition hold in R, with 0^{*} playing the role of 0, and α^* playing the role of $-\alpha$.

Step 5. After proving that the axioms of addition hold in \mathbb{R} for the operation defined in Step 4, one can show using the cancellation law that

If
$$
\alpha, \beta, \gamma \in \mathbb{R}
$$
 and $\beta < \gamma$, then $\alpha + \beta < \alpha + \gamma$.

Step 6. Initially we define multiplication for positive real numbers. Let $\mathbb{R}^+ = \{ \alpha \in \mathbb{R} : \alpha >$ 0^{ast} . If $\alpha, \beta \in \mathbb{R}^+$ define

$$
\alpha \beta = \{ p \in \mathbb{Q} : p \le rs \text{ for some } r \in \alpha, s \in \beta, r > 0, s > 0 \},
$$

$$
1^* = \{ p \in \mathbb{Q} : p < 1 \},
$$

and

$$
\alpha_* = \{p \in \mathbb{Q} : p \le 0\} \cup \{p \in \mathbb{Q} : p > 0 \text{ and there exists } r > 0 \text{ such that } \frac{1}{p} - r \notin \alpha\}.
$$

 $\alpha\beta$, 1^{*} and α_* are cuts. The axioms for multiplication hold in \mathbb{R}^+ , with 1^{*} playing the role of 1, and α_* playing the role of $\frac{1}{\alpha}$, for $\alpha > 0^*$. Note that if $\alpha > 0^*$ and $\beta > 0^*$ then $\alpha\beta > 0^*$. One also checks that the distributive law holds in \mathbb{R}^+ .

Step 7. We complete the definition of multiplication by setting $\alpha 0^* = 0^* \alpha = 0^*$, and by setting

$$
\alpha \beta = \begin{cases}\n(-\alpha)(-\beta) & \text{if } \alpha < 0^*, \ \beta < 0^*, \\
-[(-\alpha)\beta] & \text{if } \alpha < 0^*, \ \beta > 0^*, \\
-[\alpha(-\beta)] & \text{if } \alpha > 0^*, \ \beta < 0^*.\n\end{cases}
$$

The products on the right were defined in Step 6. Having checked the axioms of multiplication in \mathbb{R}^+ it is simple to prove them in $\mathbb R$ by repeated applications of the identity $\gamma = -(-\gamma)$. The proof of the distributive law is done by cases.

THIS COMPLETES THE SKETCH OF THE PROOF THAT R IS AN ORDERED FIELD WITH THE LEAST-UPPER-BOUND PROPERTY.

Step 8. We associate with each $r \in \mathbb{Q}$ the set

$$
r^* = \{ p \in \mathbb{Q} : p < r \}.
$$

 r^* is a (rational) cut, thus $r^* \in \mathbb{R}$. The rational cuts satisfy the following relations:

- $r^* + s^* = (r + s)^*$.
- $r^*s^* = (rs)^*$.
- $r^* < s^*$ if and only if $r < s$.

Step 9. Step 8 says that the rational numbers can be identified with the rational cuts. This identification preserves sums, products and order. Thus the ordered field $\mathbb Q$ is *isomorphic* to the ordered field $\mathbb{Q}^* \subset \mathbb{R}$ whose elements are the rational cuts.

THIS IDENTIFICATION OF Q WITH Q[∗] ALLOWS US TO REGARD Q AS A SUBFIELD OF R.