
CONSTRUCTION OF THE REAL NUMBERS

We present a brief sketch of the construction of R from Q using Dedekind cuts. This is the
same approach used in Rudin’s book Principles of Mathematical Analysis (see Appendix,
Chapter 1 for the complete proof). The elements of R are some subsets of Q called cuts. On
the collection of these subsets, i.e. on R, we define an order, an addition, and a multiplication.
We show that R endowed with this relation and these two operations is an ordered field.
Each rational number can be identified with a specific cut, in such a way that Q can be
viewed as a subfield of R.

Step 1. A subset α of Q is said to be a cut if:

1. α is not empty, α 6= Q.

2. If p ∈ α, q ∈ Q, and q < p, then q ∈ α.

3. If p ∈ α, then p < r for some r ∈ α.

Remarks:

• 3 implies that α has no largest number.

• 2 implies that:

– If p ∈ α and q 6∈ α then p < q.

– If r 6∈ α and r < s then s 6∈ α.

Example: Let
α = {p ∈ Q : p < 0} ∪ {p ∈ Q : p ≥ 0 and p2 < 2}.

Note that α is a cut. In fact:

1. α ⊂ Q, 1 ∈ α thus α 6=, and 2 6∈ α thus α 6= Q.

2. If p ∈ α, q ∈ Q, and q < p, then either q ≤ 0 and so q ∈ α, or q > 0 which implies
p > 0. But since p ∈ α, then p2 < 2. Since 0 < q < p then q2 < p2. Therefore q2 < 2,
i.e. q ∈ α.
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3. If p ∈ α, either p ≤ 0 or p > 0. If p ≤ 0 then (3) is satisfied with r = 1. If p > 0 and

p2 < 2 then (as shown in class) r = 2(p+1)
p+2

satisfies 0 < p < r and r2 < 2. Thus r ∈ α,

and (3) also holds in this case.

Step 2. Let R be the collection of all cuts of Q. For α, β ∈ R define α < β to mean α is
a proper subset of β, (i.e. α ⊂ β but α 6= β). R is an ordered set with relation < defined
above.

Step 3. The ordered set R has the least-upper-bound property. Let A be a nonempty subset
of R which is bounded above. Let γ =

⋃
α∈A α. Then γ ∈ R (i.e. γ satisfies (1), (2) and

(3)), and γ = sup A.
Step 4. If α, β ∈ R define

α + β = {r + s : r ∈ α and s ∈ β},

0∗ = {p ∈ Q : p < 0},
and

α∗ = {p ∈ Q : there exits r > 0 such that − p− r 6∈ α}.
α + β, 0∗ and α∗ are cuts. The axioms for addition hold in R, with 0∗ playing the role of 0,
and α∗ playing the role of −α.

Step 5. After proving that the axioms of addition hold in R for the operation defined in
Step 4, one can show using the cancellation law that

If α, β, γ ∈ R and β < γ, then α + β < α + γ.

Step 6. Initially we define multiplication for positive real numbers. Let R+ = {α ∈ R : α >
0ast}. If α, β ∈ R+ define

αβ = {p ∈ Q : p ≤ rs for some r ∈ α, s ∈ β, r > 0, s > 0},

1∗ = {p ∈ Q : p < 1},
and

α∗ = {p ∈ Q : p ≤ 0} ∪ {p ∈ Q : p > 0 and there exits r > 0 such that
1

p
− r 6∈ α}.

αβ, 1∗ and α∗ are cuts. The axioms for multiplication hold in R+, with 1∗ playing the role
of 1, and α∗ playing the role of 1

α
, for α > 0∗. Note that if α > 0∗ and β > 0∗ then αβ > 0∗.

One also checks that the distributive law holds in R+.
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Step 7. We complete the definition of multiplication by setting α0∗ = 0∗α = 0∗, and by
setting

αβ =


(−α)(−β) if α < 0∗, β < 0∗,
−[(−α)β] if α < 0∗, β > 0∗,
−[α(−β)] if α > 0∗, β < 0∗.

The products on the right were defined in Step 6. Having checked the axioms of multiplication
in R+ it is simple to prove them in R by repeated applications of the identity γ = −(−γ).
The proof of the distributive law is done by cases.

THIS COMPLETES THE SKETCH OF THE PROOF THAT R IS AN
ORDERED FIELD WITH THE LEAST-UPPER-BOUND PROPERTY.

Step 8. We associate with each r ∈ Q the set

r∗ = {p ∈ Q : p < r}.

r∗ is a (rational) cut, thus r∗ ∈ R. The rational cuts satisfy the following relations:

• r∗ + s∗ = (r + s)∗.

• r∗s∗ = (rs)∗.

• r∗ < s∗ if and only if r < s.

Step 9. Step 8 says that the rational numbers can be identified with the rational cuts. This
identification preserves sums, products and order. Thus the ordered field Q is isomorphic to
the ordered field Q∗ ⊂ R whose elements are the rational cuts.

THIS IDENTIFICATION OF Q WITH Q∗ ALLOWS US TO REGARD Q AS
A SUBFIELD OF R.

3


