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Abstract

In this note, we provide an answer to a question of D. Mejia and Chr.
Pommerenke, by constructing a hyperbolically convex subdomain G of
the unit disc D so that the conformal map from D to G maps a set of
dimension 0 on JD to a set of dimension 1.

1 Introduction and statement of the result

A subdomain G of the unit disc D in C is hyperbolically convex if it is convex
with respect to the hyperbolic metric of D. These domains are just intersections
of hyperbolic halfplanes. Conformal maps from I onto hyperbolically convex
domains have been systematically studied beginning with Ma and Minda ([2]
and [3]), see the papers [4], [5] and [6] by Mejia and Pommerenke for further ref-
erences. Hyperbolically convex domains appear naturally in various situations
such as the Hayman-Wu problem, where Brown-Flynns theorem (the boundary
of hyperbolically convex domains has length < 72) has been used by Fernandez,
Heinonen and Martio [1] to obtain the bound 472 for the Hayman-Wu constant
(see [8] for the best bound to date and for references).

In [4], Mejia and Pommerenke proved that, for conformal maps f of I onto
hyperbolically convex domains,

dim f(A) < 1

if A C Thasdim A < 1 and if f(A) is uniformly perfect. They asked (Conjecture
3in [5]) if the assumption of uniform perfectness can be omitted. We will answer
this question to the negative by proving

Theorem 1. There is a hyperbolically conver domain G C D and a set A C T
with dim A = 0 and dim f(A) = 1.
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Figure 1.1: The second approximation to the hyperbolically convex domain G.

Our domain is of Schottky type (meaning that the complement of G is a
union of disjoint hyperbolic halfplanes; see [4] and Theorem 2 therein). The
inductive construction of the domain G as a descreasing sequence of hyperboli-
cally convex domains G, is slightly easier to describe in the upper halfplane H :
Fix a sequence €1, €2, ... of small positive numbers and positive integers ny, ns, ...
(to be determined later). Next, construct a Cantor-like set S C [0,1] C R in the
following way: Set Sop = [0,1]. Suppose that Sy has already been constructed

and consists of N, = nins - - -ng intervals IJ( ) of size
S = (6162 - -Ek)/(nlng - -nk).

Form Si41 from Sy, by replacing each of the I ](k) by ny41 equally spaced subin-

tervals I§’“+” of size sg41 = (€162 -€kt1)/(N1na - -Ngg1). Set
_ (k)
s=Nyn®.
k J

For instance, the middle-third Cantor set is the special case n, = 2 and g, = 2/3.

Denote the “removed” invervals by R§k+1), 1<¢< (ngy1 — Dng -+ -ng. For an
interval I C [0,1], let D(I) be the open halfdisc in H with diameter I. Set

Ge=D(o, )\ |J JD®&E™)

1<m<k j

G =G,
see Figure 1.1.

Fix a point zg € G. Let g respectively g denote the conformal map of Gy,
respectively G onto D normalized by gx(20) = 0 and g (20) > 0. Because G
is a simple curve, g extends continuously to G. We will show that appropriate

and



choice of the parameters ¢ and ny, yields a set S of dimension 1 such that g(.5)
has dimension 0, proving the theorem (with f = ¢! and A = ¢(S)). More
precisely, we will prove

Theorem 2. If
1
| =o(——= k
ogng o(\/a) as k — oo,
then
dim g(S) = 0.

On the other hand, if
1
log o= o(logng) as k — oo,
k

then
dim S = 1.

Theorem 1 follows immediately by taking any pair of sequences &, ny that
satisfies both conditions, for instance ¢j, = 1/k* and ny = exp(Vk).

It was realized in [4] that domains of Schottky type are the ” critical domains”
for the validity of the dimension distortion property: Mejia and Pommerenke
proved (Theorem 2 of [4]) that dim A < 1 would imply dim f(A) < 1 for all hy-
perbolically convex f if dim A < 1 implies dim f(A) < 1 for those hyperbolically
convex f that are of Schottky type. Notice that our domain G is of Schottky
type, so that the assumption of their Theorem 2 does not hold.

The phenomenon responsible for the strong dimension-distortion is the fol-
lowing: If € is very small and I is one of the I J(-k), then near I the domain
G, looks like a half-strip, whose sides are the two geodesics ending in the end-
points of I. Therefore the harmonic measure of I seen from zg is exponentially
smaller than the size s of I. For our set S to have the properties dim S =1
and dim g(S) < 1 we will need e — 0. Thus S cannot be uniformly perfect, in
accordance with Theorem 3 of [4].

2 Proofs

The letter C' denotes various constants whose value may change even within a
line. Recall the definition of S from Section 1 and assume that &; < % for all

j. Denote I J(k) the (smaller) arc of G that has the same endpoints as I J(k). Fix
zo € G.

Lemma 2.1. For all j and k we have

k
. 1
w(2071§k)) < Kyexp(—Kz ) 61{)7
=1

ﬂ

where Ky is a universal constant and Ky depends on zy and G only, but not on
jork.



Proof: Fix an interval [ = I }f"). Denote r, the length of the intervals Rg.k).
Then (ng4+1 — 1)Tky1 + Ngy1Sk+1 = Sk so that we have

1—-éppa Ek+1
+1o s Skt

Th+1 = ey — 1 _— Sk = Sk41-
It follows that

Skl < Ppg1 := /Tht15k+1 < Tht1 < Sk- (2.1)
Let T' denote the family of all curves v in G that join a small (fixed) circle

centered at zo with I J(k). By conformal invariance of the modulus M (T') and by

Pflugers theorem (see for instance [7], Chapter 9) we have

w(z0, 1) < Cexpl(— ),
where C' depends on zp and the circle but not on j or k. Consider the strips
Sk = {x+iy: s <y < hg}. It follows from (2.1) that they are pairwise disjoint.
For 1 < k < kg, denote @)y, the component of G N Sy that separates I from zg.
(We will assume without much loss of generality that Szo > h1). Each Qy is,
or is contained in, a topological quadrilateral bounded by two horizontal line
segments (top and bottom) and two circular arcs (sides) of circles of diameter
at least ry. The length £ of the top is maximal if both sides come from circles
of diameter 7. Because both circles are separated by an interval I J(k) of size sy,
it follows that

C< sk +2(rk/2 — 1/ (rr/2)* — hE)
and it thus follows from (2.1) using /1 —z > 1 — z that
£ < 5sg.

Denote (), the smallest rectangle containing Qx: It has horizontal sides of length
£ and vertical sides of length hy — si. Every curve v € T has to pass through
each of the Q). (1 <k < ko) and therefore (e.g. [7], Proposition 9.3)

1 >k0 1 _ko k—Sk ko . ko
MO 2 M@ = G Es— E

k=1
where the last inequality follows using /s = (ng/exr)(1 — ex)/(ng — 1). The
Lemma, follows from Pflugers theorem, with Ky = 7/(5v/2). |

s\
ﬂ\

Proof of Theorem 2: For every k, we have

S) c [JaIM).

J

By Lemma 2.1, the arc g(f](k)) has length

k
1
Lir < 2mK7exp (—K» Z —).



For every a > 0,

k k
1 1
5, < Cning - --ng exp (— Ko —)=C (n[ exp (—K2a—))
and the assumption logn; = 0(\/%_3,) implies that the factors go to zero as j — oo.
Thus dim ¢(S) < a.

To prove that dim S =1 if log(1/e;) = o(logn;), fix & < 1 and consider the
measure g on S defined by

1

Iy -~
u(Z;™) ——

for all j and k. The theorem follows at once from Frostman’s Lemma if we can
prove that, for every interval I, we have

w(I) < CalI|° (2.2)

To this end, let k& be such that sg1 < |I| < sg. Because ry > sy, there is only
one index j such that I](k) NI#Q. Let t =|I|/sx < 1. Then I can intersect at

most tng41 + 2 of the ngy1 subintervals I [(Hl) of I ](k). Therefore

1
I < (tng1 +2)———. 2.3
D) < (tnpgs +2) 23)
By assumption,
1 1-«a
log— < logn,
€p
for p large enough, so that
1 g1€2- € \* N
— < C|——) =Cs}.
nlnz---nk n1n2.-.nk
Now (2.3) implies
p(I) < Otsy +2s711) < O 21| +2/1)%)
and (2.2) is proved. O

References

[1] J. L. Ferndndez, J. Heinonen, O. Martio Quasilines and conformal map-
pings, J. Analyse Math. 52 (1989), 117-132.

[2] W. C. Ma, D. Minda, Hyperbolically convez functions, Ann. Polon. Math.
60 (1994), no. 1, 81-100.



[3] W. C. Ma, D. Minda, Hyperbolically conver functions II, Ann. Polon.
Math. 71 (1999), no. 3, 273-285.

[4] D. Mejia, Chr. Pommerenke, Hyperbolically conver functions, dimension
and capacity, Complex Var. Theory Appl. 47 (2002), no. 9, 803-814.

[5] D. Mejia, Chr. Pommerenke, Hyperbolically convex functions, Analysis and
applications—ISAAC 2001 (Berlin), 89-95, Int. Soc. Anal. Appl. Comput.,
10, Kluwer Acad. Publ., Dordrecht, 2003.

[6] D. Mejia, Chr. Pommerenke, On the derivative of hyperbolically convex
functions, Ann. Acad. Sci. Fenn. Math. 27 (2002), no. 1, 47-56.

[7] Chr. Pommerenke, Boundary behaviour of conformal maps, Springer
(1992).

[8] S. Rohde, On the theorem of Hayman and Wu, Proc. Amer. Math. Soc.
130 (2002), no. 2, 387-394.



