Dimension distortion of hyperbolically convex maps

S. Rohde*
Department of Mathematics
University of Washington

Abstract

In this note, we provide an answer to a question of D. Mejia and Chr. Pommerenke, by constructing a hyperbolically convex subdomain G of the unit disc $\mathbb D$ so that the conformal map from $\mathbb D$ to G maps a set of dimension 0 on $\partial \mathbb D$ to a set of dimension 1.

1 Introduction and statement of the result

A subdomain G of the unit disc $\mathbb D$ in $\mathbb C$ is hyperbolically convex if it is convex with respect to the hyperbolic metric of $\mathbb D$. These domains are just intersections of hyperbolic halfplanes. Conformal maps from $\mathbb D$ onto hyperbolically convex domains have been systematically studied beginning with Ma and Minda ([2] and [3]), see the papers [4], [5] and [6] by Mejia and Pommerenke for further references. Hyperbolically convex domains appear naturally in various situations such as the Hayman-Wu problem, where Brown-Flynns theorem (the boundary of hyperbolically convex domains has length $<\pi^2$) has been used by Fernández, Heinonen and Martio [1] to obtain the bound $4\pi^2$ for the Hayman-Wu constant (see [8] for the best bound to date and for references).

In [4], Mejia and Pommerenke proved that, for conformal maps f of $\mathbb D$ onto hyperbolically convex domains,

$$\dim f(A) < 1$$

if $A \subset \mathbb{T}$ has dim A < 1 and if f(A) is uniformly perfect. They asked (Conjecture 3 in [5]) if the assumption of uniform perfectness can be omitted. We will answer this question to the negative by proving

Theorem 1. There is a hyperbolically convex domain $G \subset \mathbb{D}$ and a set $A \subset \mathbb{T}$ with dim A = 0 and dim f(A) = 1.

^{*}Partially supported by NSF Grants DMS-0201435 and DMS-0244408.

Figure 1.1: The second approximation to the hyperbolically convex domain G.

Our domain is of Schottky type (meaning that the complement of \overline{G} is a union of disjoint hyperbolic halfplanes; see [4] and Theorem 2 therein). The inductive construction of the domain G as a descreasing sequence of hyperbolically convex domains G_n is slightly easier to describe in the upper halfplane \mathbb{H} : Fix a sequence $\varepsilon_1, \varepsilon_2, ...$ of small positive numbers and positive integers $n_1, n_2, ...$ (to be determined later). Next, construct a Cantor-like set $S \subset [0,1] \subset \mathbb{R}$ in the following way: Set $S_0 = [0,1]$. Suppose that S_k has already been constructed and consists of $N_k = n_1 n_2 \cdots n_k$ intervals $I_i^{(k)}$ of size

$$s_k = (\varepsilon_1 \varepsilon_2 \cdots \varepsilon_k)/(n_1 n_2 \cdots n_k).$$

Form S_{k+1} from S_k by replacing each of the $I_j^{(k)}$ by n_{k+1} equally spaced subintervals $I_\ell^{(k+1)}$ of size $s_{k+1} = (\varepsilon_1 \varepsilon_2 \cdots \varepsilon_{k+1})/(n_1 n_2 \cdots n_{k+1})$. Set

$$S = \bigcap_{k} \bigcup_{j} I_{j}^{(k)}.$$

For instance, the middle-third Cantor set is the special case $n_k=2$ and $\varepsilon_k=2/3$. Denote the "removed" invervals by $R_\ell^{(k+1)}$, $1 \le \ell \le (n_{k+1}-1)n_1 \cdots n_k$. For an interval $I \subset [0,1]$, let D(I) be the open halfdisc in $\mathbb H$ with diameter I. Set

$$G_k = D([0,1]) \setminus \bigcup_{1 \le m \le k} \bigcup_j \overline{D(R_j^{(m)})}$$

and

$$G = \bigcap G_k$$

see Figure 1.1.

Fix a point $z_0 \in G$. Let g_k respectively g denote the conformal map of G_k respectively G onto \mathbb{D} normalized by $g_k(z_0) = 0$ and $g'_k(z_0) > 0$. Because ∂G is a simple curve, g extends continuously to \overline{G} . We will show that appropriate

choice of the parameters ε_k and n_k yields a set S of dimension 1 such that g(S) has dimension 0, proving the theorem (with $f = g^{-1}$ and A = g(S)). More precisely, we will prove

Theorem 2. If

$$\log n_k = o(\frac{1}{\sqrt{\varepsilon_k}}) \quad as \quad k \to \infty,$$

then

$$\dim g(S) = 0.$$

On the other hand, if

$$\log \frac{1}{\varepsilon_k} = o(\log n_k) \quad as \quad k \to \infty,$$

then

$$\dim S = 1$$
.

Theorem 1 follows immediately by taking any pair of sequences ε_k , n_k that satisfies both conditions, for instance $\varepsilon_k = 1/k^2$ and $n_k = \exp(\sqrt{k})$.

It was realized in [4] that domains of Schottky type are the "critical domains" for the validity of the dimension distortion property: Mejia and Pommerenke proved (Theorem 2 of [4]) that $\dim A < 1$ would imply $\dim f(A) < 1$ for all hyperbolically convex f if $\dim A < 1$ implies $\dim f(A) < 1$ for those hyperbolically convex f that are of Schottky type. Notice that our domain G is of Schottky type, so that the assumption of their Theorem 2 does not hold.

The phenomenon responsible for the strong dimension-distortion is the following: If ε_k is very small and I is one of the $I_j^{(k)}$, then near I the domain G_k looks like a half-strip, whose sides are the two geodesics ending in the endpoints of I. Therefore the harmonic measure of I seen from z_0 is exponentially smaller than the size s_k of I. For our set S to have the properties dim S=1 and dim g(S) < 1 we will need $\varepsilon_k \to 0$. Thus S cannot be uniformly perfect, in accordance with Theorem 3 of [4].

2 Proofs

The letter C denotes various constants whose value may change even within a line. Recall the definition of S from Section 1 and assume that $\varepsilon_j < \frac{1}{2}$ for all j. Denote $\hat{I}_j^{(k)}$ the (smaller) arc of ∂G that has the same endpoints as $I_j^{(k)}$. Fix $z_0 \in G$.

Lemma 2.1. For all j and k we have

$$\omega(z_0, \hat{I}_j^{(k)}) \le K_1 \exp(-K_2 \sum_{\ell=1}^k \frac{1}{\sqrt{\varepsilon_\ell}}),$$

where K_2 is a universal constant and K_1 depends on z_0 and G only, but not on j or k.

Proof: Fix an interval $I = I_{j_0}^{(k_0)}$. Denote r_k the length of the intervals $R_j^{(k)}$. Then $(n_{k+1}-1)r_{k+1} + n_{k+1}s_{k+1} = s_k$ so that we have

$$r_{k+1} = \frac{1 - \varepsilon_{k+1}}{n_{k+1} - 1} s_k > \frac{\varepsilon_{k+1}}{n_{k+1}} s_k = s_{k+1}.$$

It follows that

$$s_{k+1} < h_{k+1} := \sqrt{r_{k+1}s_{k+1}} < r_{k+1} < s_k.$$
 (2.1)

Let Γ denote the family of all curves γ in G that join a small (fixed) circle centered at z_0 with $\hat{I}_j^{(k)}$. By conformal invariance of the modulus $M(\Gamma)$ and by Pflugers theorem (see for instance [7], Chapter 9) we have

$$\omega(z_0, \hat{I}_j^{(k)}) \le C \exp(-\frac{\pi}{M(\Gamma)}),$$

where C depends on z_0 and the circle but not on j or k. Consider the strips $S_k = \{x+iy: s_k < y < h_k\}$. It follows from (2.1) that they are pairwise disjoint. For $1 \le k \le k_0$, denote Q_k the component of $G \cap S_k$ that separates I from z_0 . (We will assume without much loss of generality that $\Im z_0 > h_1$). Each Q_k is, or is contained in, a topological quadrilateral bounded by two horizontal line segments (top and bottom) and two circular arcs (sides) of circles of diameter at least r_k . The length ℓ of the top is maximal if both sides come from circles of diameter r_k . Because both circles are separated by an interval $I_j^{(k)}$ of size s_k , it follows that

$$\ell \le s_k + 2(r_k/2 - \sqrt{(r_k/2)^2 - h_k^2})$$

and it thus follows from (2.1) using $\sqrt{1-x} \ge 1-x$ that

$$\ell < 5s_k$$
.

Denote Q_k' the smallest rectangle containing Q_k : It has horizontal sides of length ℓ and vertical sides of length $h_k - s_k$. Every curve $\gamma \in \Gamma$ has to pass through each of the Q_k' $(1 \le k \le k_0)$ and therefore (e.g. [7], Proposition 9.3)

$$\frac{1}{M(\Gamma)} \ge \sum_{k=1}^{k_0} \frac{1}{M(Q'_k)} = \sum_{k=1}^{k_0} \frac{h_k - s_k}{\ell_k} \ge \sum_{k=1}^{k_0} \frac{h_k}{5s_k} \ge \frac{1}{5\sqrt{2}} \sum_{k=1}^{k_0} \frac{1}{\sqrt{\varepsilon_k}},$$

where the last inequality follows using $r_k/s_k = (n_k/\varepsilon_k)(1-\varepsilon_k)/(n_k-1)$. The Lemma follows from Pflugers theorem, with $K_2 = \pi/(5\sqrt{2})$.

Proof of Theorem 2: For every k, we have

$$g(S) \subset \bigcup_{j} g(\hat{I}_{j}^{(k)}).$$

By Lemma 2.1, the arc $g(\hat{I}_{j}^{(k)})$ has length

$$\ell_{j,k} \le 2\pi K_1 \exp\left(-K_2 \sum_{\ell=1}^k \frac{1}{\sqrt{\varepsilon_\ell}}\right).$$

For every $\alpha > 0$,

$$\sum_{j} \ell_{j,k}^{\alpha} \leq C n_1 n_2 \cdots n_k \exp\left(-K_2 \alpha \sum_{\ell=1}^{k} \frac{1}{\sqrt{\varepsilon_{\ell}}}\right) = C \prod_{\ell=1}^{k} \left(n_{\ell} \exp\left(-K_2 \alpha \frac{1}{\sqrt{\varepsilon_{\ell}}}\right)\right)$$

and the assumption $\log n_j = o(\frac{1}{\sqrt{\varepsilon_j}})$ implies that the factors go to zero as $j \to \infty$. Thus dim $g(S) < \alpha$.

To prove that dim S=1 if $\log(1/\varepsilon_j)=o(\log n_j)$, fix $\alpha<1$ and consider the measure μ on S defined by

$$\mu(I_j^{(k)}) = \frac{1}{n_1 n_2 \cdots n_k}$$

for all j and k. The theorem follows at once from Frostman's Lemma if we can prove that, for every interval I, we have

$$\mu(I) \le C_{\alpha} |I|^{\alpha}. \tag{2.2}$$

To this end, let k be such that $s_{k+1} \leq |I| < s_k$. Because $r_k > s_k$, there is only one index j such that $I_j^{(k)} \cap I \neq \emptyset$. Let $t = |I|/s_k < 1$. Then I can intersect at most $tn_{k+1} + 2$ of the n_{k+1} subintervals $I_\ell^{(k+1)}$ of $I_j^{(k)}$. Therefore

$$\mu(I) \le (tn_{k+1} + 2) \frac{1}{n_1 n_2 \cdots n_{k+1}}.$$
 (2.3)

By assumption,

$$\log \frac{1}{\varepsilon_n} \le \frac{1 - \alpha}{\alpha} \log n_p$$

for p large enough, so that

$$\frac{1}{n_1 n_2 \cdots n_k} \le C \left(\frac{\varepsilon_1 \varepsilon_2 \cdots \varepsilon_k}{n_1 n_2 \cdots n_k} \right)^{\alpha} = C s_k^{\alpha}.$$

Now (2.3) implies

$$\mu(I) \le C(ts_k^{\alpha} + 2s_{k+1}^{\alpha}) \le C(t^{1-\alpha}|I|^{\alpha} + 2|I|^{\alpha})$$

and (2.2) is proved.

References

- [1] J. L. Fernández, J. Heinonen, O. Martio Quasilines and conformal mappings, J. Analyse Math. 52 (1989), 117–132.
- [2] W. C. Ma, D. Minda, Hyperbolically convex functions, Ann. Polon. Math. 60 (1994), no. 1, 81–100.

- [3] W. C. Ma, D. Minda, Hyperbolically convex functions II, Ann. Polon. Math. 71 (1999), no. 3, 273–285.
- [4] D. Mejia, Chr. Pommerenke, Hyperbolically convex functions, dimension and capacity, Complex Var. Theory Appl. 47 (2002), no. 9, 803–814.
- [5] D. Mejia, Chr. Pommerenke, *Hyperbolically convex functions*, Analysis and applications—ISAAC 2001 (Berlin), 89–95, Int. Soc. Anal. Appl. Comput., 10, Kluwer Acad. Publ., Dordrecht, 2003.
- [6] D. Mejia, Chr. Pommerenke, On the derivative of hyperbolically convex functions, Ann. Acad. Sci. Fenn. Math. 27 (2002), no. 1, 47–56.
- [7] Chr. Pommerenke, Boundary behaviour of conformal maps, Springer (1992).
- [8] S. Rohde, On the theorem of Hayman and Wu, Proc. Amer. Math. Soc. 130 (2002), no. 2, 387–394.