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1 Introduction

In this paper, we will discuss the Hastings-Levitov model H L(«a) for random
growing clusters K,,, where 0 < o < 2 is a parameter, as well as modifications
of this model. Background on this model and its physical meaning is provided
in Section 2. The main object of this paper is a regularization RH L(«)
defined as follows (see Section 3 for the motivation and interpretation and
Section 4 for a picture). Let K; be the unit disc and construct K, ,; from
K, by attaching a new ”particle” via conformal maps: If ¢, denotes the
conformal map from A = {|z| > 1} onto C\ K, then ¢p,11 = ¢, 0 hy
with a random conformal map h, from A into A. The natural choice is
hn(2) = uyhs, (2/uy,) with a randomly chosen point u,, on the unit circle and
the conformal map hg of A\ [1,1 + d]. The "random size” 4, of the new
particle is defined by first setting

ei(u, 8) = inf{e > 0; €|@}((1 + €)u)| = o},
(0 > 0 is small and kept fixed) and then setting
On = 6172, (uy, 6)2/2.

Thus for @ = 0 we compose random rotations of a fixed map, whereas for

a = 2 we have a version of diffusion limited aggregation DLA.

*Partially supported by NSF Grants DMS-0201435 and DMS-0244408.
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We prove the existence of the scaling limit of HL(0) (Theorem 1) and
describe this limit in terms of the Lowner equation in Section 4. We then
analyze the size of the RH L(«)-cluster. In Section 5 we show that for o = 0
the Hausdorff dimension is 1 (Theorems 2 and 3). In Section 6 we show that,
with the appropriate interpretation, the dimension behaves at most like 142«
for small o (Theorem 5). In Section 7 we prove that the ”dimension” near
o = 2 is strictly greater than 1. We finally consider the deterministic limiting

version, following Carleson and Makarov, in Section 8.

2 The Hastings-Levitov model

In the last few decades, physicists have observed that many phenomena lead
to objects of similar fractal geometry. Typically, these phenomena show
growing clusters of various kinds. They appear for instance as electrodepo-
sition, colloidal aggregation, in the study of lightnings or cracks, in tumoral
growth or bacterial colonies .

Beginning with Eden in the 60’s, the models proposed to explain these
phenomena are random growth models. This means that we model the pro-
cess as an increasing sequence of compact sets K, in space, K,,; being
obtained from K, by randomly choosing a point on the boundary 0K, and
by attaching a given object at this point. The questions are of course

1) What is the probability law for the choice of the boundary point?

2) What object do we attach?

This problem makes sense in any dimension. However, we will exclusively
deal with the planar case where we can use the powerful tools of geometric
function theory.

Even if all the apparently unrelated experiments show the same rough
shapes, some differences appear: clusters are nearly round in Eden’s model
while they look almost arcwise affine in the lightning situation. This means
that some parameters are needed in the answers of the two questions in

order to explain the differences. This is precisely the purpose of the Dielectric



breakdown model (DBM), a one parameter family of growth processes defined
as follows:
1) The probability law for the choice of the boundary point is given by

[VGo(2)|"|dz]
dpP, =
" ok, VGa(2)|"|dz]

where G, is Green’s function (potential) of K,, with pole at oo and |dz| is
arclength.

2) The added object is a fixed one ( a disk or a segment for instance).

The parameter n varies from 0 to 1.

The case n = 0 is Eden’s model. The boundary point is chosen under
uniform (wrt arclength) law and simulations show round clusters.

The opposite case n = 1 is a version of DLA (diffusion limited aggrega-
tion). The probability law is harmonic measure with pole at infinity which
is also known to be hitting probability for Brownian motion: this makes this
model a very natural one for all phenomena with diffusing particles such as
electrodeposition for instance.

Models based on diffusing particles are called Laplacian. Equivalently,
they are the models for which the probability law is harmonic measure at
infinity (but the objects may change as we shall see, so that Laplacian growth
models generalize DLA).

Laplacian growth models are also easy to simulate. In the DBM family,
only the n = 1-case gives rise to such a model. This is the reason why Hast-
ings and Levitov [1] proposed a one-parameter family of Laplacian growth
models as a substitute to DBM family.

We are now describing the Hastings-Levitov model HL(«). A general
method to generate an increasing sequence of (random) connected sets K, is
as follows: Assuming that C\ K, is connected, there exists a unique Riemann
mapping (that is, holomorphic and bijective) ¢, : {|z| > 1} — C\K,,

normalized so that at infinity we have
bn
©n(2) :cnz-l-an—l-;—i-..., ¢y, > 0. (2.1)
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The image of (normalized) Lebesgue measure of the unit circle under ¢, is
precisely harmonic measure with pole at infinity, so that choosing a point on
0K, at random with respect to harmonic measure is the same as choosing
x = @p(u) where u is chosen at random on the unit circle with respect to

arclength. Now K, is constructed by defining ¢, directly as

On+1 = Pn © hn;

where h,(z) = unhs, (2/un), u, being the randomly chosen point on the unit
circle, d,, a positive real parameter, and h; is a conformal map from {|z| > 1}
into itself. Obvious choices for hs are

— (strike model) the Riemann map between {|z| > 1} and {|z| > 1}\[1, 1+
J].

— (bump model) the Riemann mapping between {|z| > 1} and {|z| >
1\ Ds, Ds being the closed disk centered on the positive real axis orthogonal
to the unit disk and with radius 4.

This way of defining the growth has the advantage of being rigorous: in
the DBM model it may be impossible to stick a given object at a given point
or it can be done in several different manners. The disadvantage is that we
do not control the shape of K, 1\K,; only the size can be controled by an
appropriate choice of the parameter 9,,.

Hastings and Levitov defined for 0 < o < 2 the Laplacian growth model
(strike or bump) HL(«) by

O = 8]} (n) 2. (2.2)

Heuristically, the size (diameter) of the "added object” is then of the order
of [, (un)['~/2
made in order that local area growth expectation in the bump model is the
same for DBM(7) and H L(n+1), these authors believing that this assignment
implies similar geometry. Thus HL(«) serves as a Laplacian substitute for
DBM for the values a € [1,2]|, o = 2 corresponding to DLA and oo = 1 to
Eden’s.

(we think of § as a small but fixed constant). This choice is



Even without physical significance, the models H L(«) for o € [0, 1] turn
out to be interesting as we shall see. Moreover, HL observed an interesting
phase transition at o = 1, the growth passing at this point from a steady
state to a turbulent one, at least as observed on simulations.

After modifying the HL model in the spirit of Carleson-Makarov [2], we
will prove some rigourous results which confirm, if they do not prove, this
observation. Before we proceed, we introduce deterministic growth models

associated to random Laplacian models.

3 Deterministic models associated with HL
growth models.

From now on we will always consider the ”strike” model for HL(c). In this
model it can easily be shown that

hs(z) = (1+ ANz + ... (3.1)

where

A o O 5 small
—Jie s .
VT g’ O ohe

The deterministic model associated with this random model is obtained by

first taking dy small, obtaining the asymptotics (see [3])

Z2+ Uy,
2 — Uy

Pny1(2) ~ on(2) + @ (2) An2

and then averaging over the unit circle. We then obtain the continuous
equation

0 , vy —aZ tu|dul

—i(z) = zp4(2 u)| T ———.

5:0:2) = 26(o) [ )

This equation is closely related to the Lowner equation. Recall that if (K});>0
is a (continuously) increasing sequence of full connected compact subsets of



the plane, then there exists a one-parameter family (y;) of positive measures
on the unit circle such that if ¢, denotes the Riemann mapping of C\ K; then

Z—Uu

@) = 2600 [ Z 2 dputu). (32)

Conversely if () is a one-parameter family of measures such that ¢ — |||
is absolutely continuous then there exists an increasing corresponding family

(K;) of compact subsets of the plane.

It follows that the H L(«) processes correspond to a Lowner process for
which the family (u;) satisfies the equation

dpn(u) = |} (u)] “|dul. (3-3)

Such an equation need not have a solution.

For a = 0 it does. The solution is then simply

©i(z) = po(e'z)

and the growth process consists of the growth of K by equipotentials. This
is a very smoothing growth process.

For oo = 2 the equation (3.3) is the one driving Hele-Shaw flows and it
is known to be ill-posed: in particular no solution exists if 0K is not real-
analytic and even if a solution exists, it may stop to exist after some finite
time.

As usual with ill-posed problems, some regularization is needed to ensure
existence of solutions for all times. Recently Carleson and Makarov [2] pro-
posed such a regularization, consisting in replacing |;(u)|™2 by €(u, §)? in

the equation (3.3), where
ei(u, 6) = inf{e > 05 €|} ((1 + e)u)| = 6}.

We recover the initial equation by taking formal limit as § — 0 in the regu-

larized equation with some time change.
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We propose here to adopt this regularization for HL(«) growth. We
will denote by RH L(«) the random growth model obtained by replacing the
definition (2.2) of HL(«) by

O = 617 2¢,, (u, 6)*/2. (3.4)
With this definition the models RHL(0) and RHL(2) really appear as

”dual” models: For RH L(0), at each step, we travel on a random external ray
of the unit circle until we reach distance § from the circle while for RH L(2)
we do the same thing but on a randomly chosen external ray of K, until
we reach distance ¢ from K, (this last statement is a corollary of the Koebe
distortion theorem).

We will also consider deterministic RH L(a)) models; they are the Lowner
processes such that

due(u) = €(u, 0)*|dul.

We conclude this paragraph by a remark; the Carleson-Makarov regular-
ization is certainely not canonical and we will feel free to modify the definition
of € for our purposes. All the definitions that we will use will share the same
feature: we recover H L(«) by taking formal limit as 6 — 0.

One of the questions of the theory is to find a “natural” regularization.
In particular, the Carleson-Makarov regularization is very different from the
usual ”physical” regularizations consisting in adding surface tension.

4 The scaling limit of HL(0)

In this section, we will prove that the scaling limit of HL(0) exists, and we
will give two descriptions of this limit (one using the Lowner equation). For
convenience, we will work with the strike model. Fix 6 > 0 and recall the
definition of HL(0): K,, = 0¢,(A), where

¢n =hiohyo..0h,, (4.1)
hj(z) = ujhs(z/u;) with random u; € T, and hs : A — A\ [1,6] is the

conformal map normalized by hs(z) = (1 4+ A)z + O(1) near oo, for some
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Figure 1: Samples of K,, with n = 10,100,500 and 1000.

A > 0. We will denote by C,, = ¢(¢y)
the z-coefficient of ¢,, and by A, = a(¢y,)

term in the series of ¢,,. Now q2~5n = (¢n — An)/C,, is a normalized univalent

(1 + X\)™ the capacity of K,, i.e.

lim, , ¢, (2) — z the constant

function, and

K, = 0¢,(A) = L(Kn —A,)=1{% _CA" :

. z € K}

is a translated and scaled copy of K. Because diameter and capacity of
connected sets are comparable, this is essentially the same as scaling by
diameter.

Let ¥, denote the usual space of normalized univalent functions on A,
that is functions ¢(z) = z + O(1/z) analytic and univalent in {|z| > 1}. We

equip Yo with the topology of locally uniform convergence. Because Y is



compact, this topology is induced by the metric

d(f,g) = max|f(z) — g(2)|.

2]=2

The random process (4.1) induces a measure P, on Xy. This is just the
image of the product of (normalized) Lebesgue measure on T under the map
On ¢ (U1, Ugy ey Up) —> an from T" into ¥y. Denoting ¢ the Lebesgue measure
on T normalized by ¢(T) = 1, we thus have P, = ¢" oo, '. The following
theorem gives a precise version of the statement that the scaling limit of
HL(0) exists.

Theorem 1. There is a probability measure Py, on ¥g such that the sequence

of measures P, converges weakly to Py.

Remark: Because of the one-to-one correspondence of normalized conformal
maps and their image domains (respectively the complement of the image),
we can and will view P., as a measure on the space of filled compact sets K.
Proof: Consider the “reversal operator” R, : T" — T", defined by R, (uy, ug, ...u,) =

(Un, Un_1, -.., u1). Because R, preserves £", we have
-1
P,=/0"0o(0,0oR,) .

In other words, for the random sets K, it does not matter in which order we
compose the random maps h,. This is, of course, special to HL(0). We want
to show that o, o R,, converges uniformly on T*°. To make this more precise,
define the map 7, : T® — ¥, by

Tn(u1, Ug,y ...) = (hpohy_10...0hy — A,)/Cy = 0y 0 Ry (g, ..., Uy)

so that

/le'e} —1
P, =001, ".

Write ¢, = h,o...ohy and f =hy,0...0 by /(1 + /\)(m_"). Because

6(2) — elg)2 — a(9)] < T

2|



for all ¢ univalent in A and all |z| > 1, we have

f o % - wn f C C
_ =" "7 _a(=) < < —.
Therefore o
d(Tn(u), Tm(u)) < ol 1<n<m, ueT*®
and the Theorem follows immediately. O

An alternative description of P, and P, can be based on the Lowner
equation. Consider the Léwner equation (3.2) with driving measure dy;
being the Dirac measure at £(t),

gole) = 2 5, (4.)

where & : [a,b] — T is a piecewise continuous function. The initial value
problem (4.2), p,(z) = z for all z € A, is known to have a unique solution. If
we change the initial condition to ¢, (2) = g(z) for a univalent function g in A,
the solution simply is (g o ¢;)(z). Intuitively, composition of conformal maps
corresponds to concatination of the Lowner driving term. More precisely we
have

Lemma 4.1. Let £€9) : [0,b;] — T be piecewise continuous, j = 1,2. If <p§j)

are the solutions to (4.2), go(()j)(z) =z, j=1,2, then gp,()i) ogog)

(4.2) with £(t) = ED () X(0,61] () + E@ (¢ = b1) X[by br+6) (2)-

Notice that the conformal map hs is the solution to (4.2) with £ = 1 and
t =log(1+ A) = 7. It follows that our function ¢, from (4.1) is the solution
with

18 the solution

n—1

£(t) = ZX[kT,(k-{—l)T)uk:;

k=0
and therefore the rescaled map qAﬁn is the solution with

n—1

§(t) = ZX[(k—n)T,(k—n+1)7)uk

k=0
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and the initial value ¢,(2) = 2/C,, for t = —nr. The reason why we have
introduced the shift in time becomes apparent below. Let X denote the space
of piecewise continuous functions & : (—oo, 0] — T. With £ we will associate
a conformal map ¢, € ¥ as follows: For £ € X,t; < 0 and every prescribed
conformal map g of A, the initial value problem (4.2) (to <t < 0), @1, = 9,
has a unique solution in A. Writing ¢:(2) = @re,4(2) = a(t)z + ..., it follows
that a(t) = a(t) so that a(t) = a(tp)e'~*. Assuming that the z—coefficient
of g is €' we thus have the usual normalization a(t) = €'. Using the Koebe
distortion theorem and (4.1), it is easy to see that the limit of ¢; as ty — —o0
exists and is independent of the choices of g. Denote this limit ¢, ¢, then we
obtain a map L : X — X by setting L(£) = ¢i=o,.

Set t, = klog(1+ A) and consider the subset X, of X consisting of those
functions that are constant on the intervals [txi1,%;). In other words, the

members of X, are the functions

o0

f(t) = Z Xltet1tr) Uk

k=0

with u; € T. The random choice of the u; induces a probability P on Xeo
(this is nothing but £*° on T, of course). We equip both X, and ¥ with the
(metrizable) topology of uniform convergence on compact subsets. Then it
is not hard to see that L is continuous and that the above P, on ¥, converge
weakly to the image measure P, of P under L. A proof can be based on
Theorem 1 and the following observation:

In order to realize our random maps ¢, as solutions to the LE over the
time interval (—oo,0] (instead of the interval [—n7,0] as above), denote
k(z) = z + 1/z the conformal map from A onto C\ [-2,2]. Notice that
k is the solution to (4.2) with £(¢) = 1 for ¢t € (—o0, 0]. Therefore ko ¢, is the
solution to (4.2) with £(¢) = X(—oo,ta] + S, X[txs1,tx)Uk» and the rescaling of
k o ¢, — ¢, converges to 0 with n — co. We leave the details to the reader.
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5 HL(0) clusters are one-dimensional

We will show that the limit clusters of HL(0) are one-dimensional. More

precisely, the goal of this section is to prove

Theorem 2. The measure Py, on ¥ is supported on the set of those confor-
mal maps ¢ for which 0p(A) has Hausdorff dimension 1, Py (dim0¢(A) =
1)=1.

As in Section 4, let us fix 6 > 0 and denote by C,, = (1+ \)™ the capacity
of K, = 0¢,,(A). We will also denote L,, the length of K, so that K is the
unit circle, Ly = lo = 2n and L, = ly + ... + [, with

146
lny1 = Lpy1 — Ly = / |¢In(7" Uy )|dr.
1

For a conformal map ¢ of A (or D) we will denote
2m

U(¢) = £(0($(A))) =lim [ |¢'(re™)|dt < oo.

r—1 0

This is finite if and only if 9(¢#(A)) has finite length (1-dimensional Hausdorff
measure). It equals the length if the boundary is a simple closed curve, and

in general satisfies

%2(@ <length (0(¢(A)) < £(¢),

see ([6], Section 6.3). In particular we have L, < £(¢,).
We will begin with the case that § is large. In this case we even have
the stronger result that the limit clusters have finite length, bounded by a

constant depending on 4 only:

Theorem 3. There is a constant Oy such that for 6 > 0y and all choices of

U1y, U2y ooy Up,

L, <C(6)C,.
Consequently length 0(¢p(A)) < C(0) for Px-a.e. .
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The proof is based on a modification of the following fact: In a simply
connected planar domain C C, the length of every hyperbolic geodesic is
bounded above by the length of the boundary. Notice that the slit K, — K,
is a hyperbolic geodesic in G = C \ K, but that co € G so that we need to
use the following variant:

Lemma 5.1. There is a universal constant C such that
length ¢([u, 2u]) < CE(9)
forall p € ¥ and all u € T.

Proof: We will reduce the claim to the case of a geodesic in a domain C C.
Without loss of generality we may assume u = 1. It follows from ([6], Section
9.5) that there is a constant C' and a point v = e* with 7/2 < ¢t < 7 such
that both length ¢([v, 2v]) < C¥(¢) and length ¢([v, 20]) < C4(¢). It follows
that the image ¢(S) of the sector S = {re” : 1 <r < 2,—t < s < t} has
boundary of length < C"¢(¢$) and the lemma follow from observing that the
arc ¢[1,2] is a geodesic of ¢(S) (by symmetry). O

The area theorem ([6], Section 1.3) shows that |¢’(z)| is uniformly bounded

in {|z| > 2}. As an immediate consequence we obtain.
Lemma 5.2. There is a universal constant C such that
length ¢([2u,ru]) < C(r — 2)
forall g € X,u €T and r > 2. O
Proof of Theorem 3: By Lemmas 5.1 and 5.2 we have for § > 1
Lny1 = Ly, + length ¢([u, (14 6)u]) < L, + CL, + CCH(6 — 1)
and therefore

Loyt 1+CL,
Cori 1+ AC,

+C'.
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It follows that L,, < C(9)C,, if we choose dy so that A > C for § > &, . Hence
(¢y,) is uniformly bounded, and thus the same is true for £(@) for all limit
functions. |

We now turn to the case of small §. We do not know if Theorem 3 still

holds. But it is easy to estimate the expected length:

Theorem 4. There is a constant C = C(6) such that
E(L,) <CC,

for all n. Furthermore

: L,
lim sup =0

nsoo Cpy/log(Cy)(loglog(Cy,))

almost surely, for all n > 0.

Proof: From
144
e = [ lonGrun)ldn
1

we obtain

l§+1§5/ ¢! (ruy)|*dr

(121]1Ky) <5// (ru)|*dr|du| = §1.

Let us define 9(z) = 1/¢,(1/2) : 9 is holomorphic and injective in the unit
disk sending 0 to 0. Changing variables we get successively

// [ ( w| dwdw // dvdv
<<t [¢(w) <|w|<1}) 21|7)|

But ¢'(0) = 1/C,, so that, by the Koebe distortion theorem,

// dvdv 002.
oz —2ilv]"
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It follows that

E(lny) <C Gy

and thus
E(ln—l—l) S C Cn

so that we obtain
E(Lp) = E(lo) + ..+ E(l) <C ) _ C; = CCh.
§=0
We also get that
C

nlog(n)i+n

P > \/Iog(C, ) logToB(C)) ™) <

An application of the Borel-Cantelli Lemma yields
Ly,

lim sup <0
n—00 Cn \/log(Cn) (log log(cﬂ))1+n

a.s., and the theorem follows. O
Proof of Theorem 2: Fix € > 0 and denote N(¢, K) the minimal number of

discs of radius € needed to cover K. Then Theorem 4 shows that

E(N(e, Ky) < &

€

for all n, and we obtain
~ C
E(N(e, K)) < —
€
for the limit clusters of HL(0). Another application of the Borel-Cantelli
Lemma easily implies that the Minkowski- and hence the Hausdorff dimen-

sion of K is one, almost surely. a
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6 Regularized Hastings-Levitov models with
small a.

As we have just seen the capacity C,, of K, grows exponentially when a = 0.
Our first task is to show that for a small, the capacity still grows fast but
not exponentially.

But first we slightly modify the definition of € : Since C,, > 1 for all n it
is clear that (|z| — 1)|¢),(2)| > ¢ > 0 for |z| > 2. From now on we fix 0 < ¢
and we define € by the following stopping time construction, as in [4]. We
consider the decomposition of the unit circle into dyadic intervals. If I is
such an interval with order k we denote by (; its center and z; = (1+27%)(;.
We then define €(u) = €,(u,d) = 27% where k is the order of the minimal

dyadic interval containing v and such that

2 F g (2r)] = 6.

Notice that by distortion theorems it remains true that e(u)|o'((14€)u)| ~ 6.
To establish a lower bound for C,,, we combine (3.1) and (3.4) to write

Cn+1 - Cn 2

s N O Al P

C n

Using the Holder inequality with » > 0 to be fixed later gives

Cn+1 - C, §2«

E( K,) ~ 8 “E(ey) 2 ———
C, E(en™)r

~J

and we obtain

k>0
where for k > 0, Ey = {u; €,(u) = 27%}; to estimate the Lebesgue measure

of this set we write, using a parameter p > 0 to be fixed later

215 ~ [ (2l el < [ [+ 24l
Ey T
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In order to estimate this last integral mean, we introduce as before the func-
tion

where we have now dropped the subscript n. We then have, using the obvious

change of variable and Koebe inequality

V()

Using then Clunie-Pommerenke theorem (see p.178 of [6]) we get that

P
|du|.

62k | By | < oo /

T

|E,| < K(gfpcggk(ﬂ(p)fp)

with 8(p) = 3p? + 7p3, the constant K depending only on p. Notice that
B(p) = o(p) as p — 0, and this is the only thing we will need in the sequel.
Combining everything we obtain

E(en") < K57CY (Z 2"“""”’“")_”) | o1

k>0
In order for this inequality to be meaningful we need that
o T
p—Bp)——>017—a—-——=>0,
r p

where 7 stands for pr. For any 7 > « we can find (using 5(p) = o(p)) a small
p > 0 such that

Blp) 17—«
P T
and subsequently a (large) value of r such that pr = 7. We have thus proved

Proposition 1. For every n > 0 there erists K = K(n) such that for n > 0
and o > 0,

Cn—l—l - Cn

E( c

K,) > K&,
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This proposition implies that at the level of expectations, C,, increases
at least as fast as n'/®. To obtain an almost sure result we again use a

Borel-Cantelli-type argument. First of all we recall
E(en™) < K(r,p)d PC?, r,p > 0.

Next we can write, for any v > 0 and n > 0

Y 2—a atn
3

P((Cpsr — C)C&11 < n 7 |Ky) = Plen™ > nt6 7 Cn™ |Ky).

Setting n = pr — «, this last quantity is bounded from above by
K(r, p)(Sng/(n7/’5(27”)/70,(f+")/r < K(p,r,6)n "

. We choose n = o*/?, r = 5\/a and 7y = 6y/a. We then have p—(p)—< > 0
and the above probabilities form a convergent series. Now the Borel-Cantelli
lemma implies that a.s there exists a constant K such that for all n,

(Cpyq — C)CO=1 > K™,
Integrating these inequalities we obtain

Proposition 2. If a < 1 is small enough, then a.s. there exists K > 0 such

that for all values of n,
C, > Knal-7va),

It is now easy to obtain an estimate of the dimension in this case; it
suffices to do so to derive an estimation of L,, in terms of C,,. The estimate

proven for o = 0 is still valid, i.e.
E(l|Ky) < CCy,

because ¢, is bounded from above by a fixed constant. Fix n > 0. By Borel-

Cantelli, a.s there exists K > 0 such that for every n
1+(247) —2 ~

We have thus obtained the
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Theorem 5. For small o and for B > «, almost surely there exists a constant
K > 0 such that for every n > 0,

1428 _
L,<KC, “™°.

In other words the ”dimension” of the limit object behaves at most like
1+ 2a near o = 0. In particular the dimension tends to 1 as « tends to 0.
To end this section, we observe that we can easily obtain a reverse in-
equality for C),. Indeed, the Beurling theorem [5] implies that ¢, < CCy, 12
and thus by summation
C, < Cn*°.

7 The case o > 1.

For n > 0 let us call N(n) the first time that C, > 2" and T'(n) the time
necessary to reach Cj = 2"*! from N(n). We have

N(n)+T(n)

Z €p ~ 1.

k=N(n)
In this expression € = € (u1, .., ux) = €x(past, ux). We then use a deep result
of Carleson-Makarov [2]:

Theorem 6. There exists C,c > 0 such that

) 5 1+¢
< — .
[ entu 671l < C(Cn>

Using this and the fact that Cy > 2" in the time interval considered, we
easily get that
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_ ~14c : . . . .
We put 3 = a+£¢. The Bienayme-Chebychev inequality then implies that

2ns N 1 8 5 C
P(T(n) < F) < P(%yyq+ -+ 6N+[%'§] > 5) <O 52 <
2n8

Now the Borel-Cantelli lemma implies that almost surely T'(n) > =5 even-

tually. It follows that the time necessary to reach capacity 2" is > 2™ for n
large and B’ < 3. We deduce the

Theorem 7. If o > ﬁ there exists 8 > 1 such that for RHL(«) almost

surely Cy, < k'8 for k large enough.

As above, the intuitive interpretation of this result is that the dimension

of the limiting normalized cluster is > 5 > 1.

8 The deterministic case.

We again use the Carleson-Makarov regularization, € being the largest r» > 0
such that
ele!((1+ )| = .

Lemma 8.1. If Log|¢'| has a small Bloch norm, then € is a Lipschitz function

of 8 with small norm.

Recall that the Bloch norm of the holomorphic function b : {|z| > 1} —
Cis

1815 = sup{(|z| = D)'(2)], 2] > 1}.
If ¢ is holomorphic and injective in {|z| > 1} then the Koebe theorem implies
that ||log¢'||s < 6. Conversely, a well-known injectivity criterium says that
¢ is injective if || log ¢'||s < 1.
Proof: (Lemma): We simply differentiate with respect to € the relation
e(0)*¢' (1 + €(0))e”)2' (1 + €(6))e”) = 6

to obtain
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€(0)(1+ e(H)Re(%((l +e)e)) = (1+ e)eIm(%((l + €)e'?)).

Now the result follows from the implicit function theorem as soon as ||Logy'||s <
1. O

To proceed, we must use the reverse Lowner equation. For a function
holomorphicin {|z| > 1} we will write D f(z) = zf'(z). Up to a multiplicative
factor, this coincides with 0/060. Recall the equation driving RH L(«):

0 z+u N
pRg = 2z A}, At:/Tz—uet(u) |du.

We deduce, writing b, =Logy},

%bt = 1)141/L + At + AtDbt

from which it follows that

0 . _ ,
a(btogotl):DAtogotl—i-Atoaptl.

The corollary of this study is the following functionnal equation satisfied by
bti

bi(2) = bolis 0 o1(2)) + / (DA, + A)(07" 0 0i(2))ds.

To exploit this equation we notice that DA; is the Poisson integral of the

function

al€e® ! + H(e* ™))

where €' stands for derivative with respect to 6, while H is the Hilbert trans-
form. We already know that whenever ||Logy|ls < k < 1 then ||| < C(k).
To estimate €*~! we use the inequality in [6], p.125 to obtain:

21



Lemma 8.2.

(o) seselty)™

Proof: The quoted inequality gives

L ((1 + €)e”)] _
K < < K
ce® < 50 < (Ce

and the lemma follows after multiplication by e. O
We deduce that

1—
1—

o el2)

Egle]

Similarly A; — 1 is the Poisson integral of the function

(e*—1)+ H(e* - 1)

and we have, again whenever ||Logy}|| < k < 1,

e = 1l < ctejatos( %)

The preceeding estimates and the boundedness of the Hilbert transform from
L to BMO imply the

Lemma 8.3. If | Logy}||ls < k < 1 then

C(t)\ =+
DA+ Adlguo < Ca( )

For the definition and properties of BMO(T), see [7],[6].

Lemma 8.4. Whenever || Logy}|| < & < 1 we have, fort > 1 and o/ > «,

C'(H)CH)¥ > Co%.
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Proof: It starts with the identity

W [
Cm)—/qum.

Then the fact that ¢, is Lipschitz implies that the reasoning of (6.1) goes

through, and the lemma follows. O
We are now ready to state our result. Lets us define

M (t) = sup{||Log#il ppror s < t}-

Then, by the John and Nirenberg theorem ([7]), there exists C, €y > 0 such
that if M(t) < € then

Vb€ BMO(T), Vs < t, [|bo (¢, 0 ) guro < ClIbtll saros

and ||[Logyl||s < k < 1 for s < t.

On the other hand, and this is the "raison d’étre” of the introduction
of BMQO in this context, there exists M > 0, 0 < ¢; < ¢y such that if
|ILogy'|| o < € then (T) is a Lavrentiev or chord-arc curve (see [6]) with
a parameter less than M. In particular it is a rectifiable curve with length

bounded from above by 3M xdiameter. Let us then assume that

€1
ILogwoll garo < Yo

Let 7 be the first time that M (7) = ¢, then

/OT (DA, + A) o (¢, o y)(.)ds

<Cé T a/ C(s) =R ds.
BMO 0
Since

1 —
Y 1-al-r)+E

11—k 11—k

and since, by Lemma 8.4

C(t)"T°% < §TTRC(t),

23



we get that
/ O(s) TR ds < 51°‘—~/ C'(s)C(s) TR ds < C§ TSR C(r) %,
0 0

It follows that

We have thus proved the

Theorem 8. For every k < 1 there exists n > 0 such that if || Logpp||saro <
n and diam(py(T)) ~ 1 then ¢ (T) will stay uniformly chord-arc until its

diameter reaches a value of the order of 6oL,

This theorem means that the closer a is to 0 the longer we have to wait
until the tongue phenomenon of Hele-Shaw flows appears. This result com-
bined with the dimension estimate for small « in random growth RH L(«)
confirms the Hastings-Levitov statement that the flow is steady if o < 1.

On the other hand, Carleson-Makarov’s result ([2]) easily goes through
for « close to 2. This, together with the results above also confirm H-L claim
that RH L(«) is turbulent for o ~ 2.

However, the present study does not give any hint for what happens if «
is close to 1.
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