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A ZETA FUNCTION FOR Z‘-ACTIONS

D. A. LIND

ABSTRACT. We define a zeta function for Z%-actions a that generalizes
the Artin-Mazur zeta function for a single transformation. This zeta func-
tion is a conjugacy invariant, can be computed explicitly in some cases,
and has a product formula over finite orbits. The analytic behavior of the
zeta function for d > 2 is quite different from the case d = 1. Even for
higher-dimensional actions of finite type the zeta function is typically tran-
scendental and has natural boundary a circle of finite radius. We compute
the radius of convergence of the zeta function for a class of algebraic Z*-
actions. We conclude by conjecturing a general description of the analytic
behavior of these zeta functions and discussing some further problems.

1. INTRODUCTION

Let ¢: X — X be a homeomorphism of a compact space and p,(¢) denote

f the number of points in X fixed by ¢*. We assume that p,(¢) is finite for all
& 2> 1. Artin and Mazur (1] introduced a zeta function (4(s) for ¢ defined by

m

Cp(s) = cxp(i P () s”).

n=1 n

Bowen and Lanford [2] showed that if ¢ is a shift of finite type, then (4(s)
s a rational function. This was extended to the case when ¢ is an Axiom A
d&ffeomorphisin by Manning [11] and to finitely presented systems by Fried
8 J. If ¢ is expansive then an elementary argument shows that (4(s) has radius

e o convergence at least exp(—h(e)), where h(@) is the topological entropy of
¥ @ Finally, the zeta function has the product formula

£02)

Cols) = T —

SR

it where the product is over all finite orbits v of ¢ and || denotes the number
k of points in .

i The purpose of this paper is to define an analogous zeta function for Z%-
E actions generated by d commuting homeomorphisms. First some notation.
Let o be an action of Z% on X. For n € Z? let o denote the clement of this
action corresponding to n. Denote the set of finite-index subgroups of Z® by
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434 ERGODIC THEORY OF Z* ACTIONS

L4, For L € La let py(a) be the number of points in X fixed by a” for all
n € L. The index |Z4/L| of L in Z% is denoted by [L]. Note that when d = 1
we have L = {nZ : n > 1}. We generalize (1.1) to d > 1 by replacing the
sum over n > 1 by the sum over L € L4. This leads to our definition of the
zeta function of « as

(1.3) Ca(s) = exp( > %‘f—)s“l).

LeLy

In this paper we establish some basic properties of the zeta function of
a Z4-action, and compute this function explicitly for a number of examples.
Even the trivial Z2-action on a point has the “interesting” zeta function

= 1

o0
1= =X p(ms",
n=1

n=1

where p(n) is the number of partitions of n. This formula goes back to Euler,
and was the starting point for proving the asymptotic formula

p(n) ~ exp (m/?n/B )

developed by Hardy and Ramanujan [5]. We prove an analogue of the product
formula (1.2) in §5, and provide evidence for the conjecture that when d > 2
the zeta function is typically meromorphic for |s| < exp(—h(a)) and has the
circle |s| = exp(—h(«a)) as its natural boundary.

Another approach to generalizing the zeta function to Z4-actions was taken
by Mathiszik in his dissertation [12], which was never published. There he
counts multiples of the period of a point, not the lattices contained in the
stabilizer of the periodic point, leading to a different function. The definition
(1.3) was stated independently by Ward in the preprint [16].

2. DEFINITION AND BASIC PROPERTIES

Let o be a Z%action on X, and L4 denote the collection of finite-index
subgroups (or lattices) in Z% For L € L4 put [L] = |Z%/L], and let

pa)=|{r€ X :a"zt =z foralln € L}|,
which we will assume to be finite for all L € L.
Definition 2.1. The zeta function of the Z%action « is defined as
19 =e 5, 2 )
ret,

When d = 1 note that £, = {nZ : n > 1} and that pnz(a) = p.(¢), where
¢ = ' is the generator of . Hence the zeta function of a Z-action generated
by ¢ is just the Artin-Mazur zeta function of ¢.

The zeta function is obviously a conjugacy invariant for Z*-actions.
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For A € GL(d, Z) define the Z*action a” by (a?)" = a*". The following
shows that the zeta function is independent of a choice of basis for Z9.

Lemma 2.2. Let a be a Z%action and A € GL(d, Z). Then (,(s) = Cqa(s).

Proof. For L € Ly let AL = {An:n € L}. Then L «— AL is a bijection
from L, to itself, and [AL] = [L]. Clearly
pL(aA) = pAL(a),

and the result now follows. O

If Y C X is a-invariant, let a|Y denote the restriction of o to Y.

Lemma 2.3. Let Y, Z C X be compact a-invariant sets. Then

Capyuz(s) = %

In particular, if Y and Z are disjoint, then

Capyuz(s) = Cajy (8)Caiz(s)-
Proof. For L € L4 it is elementary that
pu(alY U Z) = pu(alY) + pu(elZ) - pr(alY N 2),

and the result follows from the definition of the zeta function. O

3. EXAMPLES

In this section we compute the zeta function for some specific Z?-actions.
For th_ls we require a parameterization of L,. A convenient one for our pur-
poses is

b
(3.1) ng{[g C}ZZ:aZI,CZI,OSbSa—I}.

The Hermite normal form for integral matrices, discussed in the next section,
shows that this gives a complete listing of the lattices in Z?, with cach lattice
listed exactly once.

We also use the familiar power series

[e o} n

(3.2) —log(1—t)=>" ©

n=1 n
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Example 3.1. Let « be the trivial Z2-action on a single point. Then p(a) =
1 for all L € Lo. Hence using the parameterization (3.1) of L, we see that

a=1c=1b=0 a=1c=1
oo
= exp(Z —log(1 — s“))
a=1
> 1
- H 1-—s"

We denote this zeta function by m,(s). As noted in §1, m2(s) is the classical
generating function for the partition function, i.c.,

It is known that this function is analytic in |s| < 1 and has the unit circle
|s| = 1 as its natural boundary [5].

Example 3.2. Let a be the full Z? k-shift. This means that X = {0,1,...,k-
1}%" and « is the natural shift action of Z* on X. Suppose L € L. Then a
point in X that is fixed by all o" for n € L is determined by its coordinates
in a fundamental domain for L, and all choices there are possible. Hence

prla) = klH.

Since p; (o) depends only on the index of L, a calculation similar to Example
3.1 shows that here

60(6) = T 7= = maks)

Note that k() = log k, so that (,(s) is analytic in [s| < exp(—h(a)) = 1/k
and has the circle |s| = exp(—h(a)) as its natural boundary.

Example 3.3. Let X = {0,1,...,k—1}%, and ¢ be the shift Z-action on X.
Define the Z2-action @ on X by a{™" = o", so that « is generated by the
identity map and o. This Z?-action is clearly conjugate to the Z? shift action
B on

Y = {y €{0,1,...,k — 1}Z2 CYij = Yigr,, forall g, j € Z}.

We will compute (5(s) = (a(s).
Let
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wherea > 1,¢c>1,and 0 < b < a— 1. A point y € Y that is fixed by g»
for all n € L is determined by its coordinates yo0, ¥o,1, ---, Yo.c-1, and the
choices for these are arbitrary. Hence p, () = k°. Thus

a=1c=1b=0 €
oo 00 ksa Cc

:exp<zz( ) )
a=lc=1 €

= exp (Z —log(1 — ke“))
a=l1

= 1 1
B aI:Il 1—ks® (1 —ks)(1—ks?)(1 —ks)...

Observe that h(a) = 0, but the factor 1 — ks in the denominator shows that
Ca(s) has a simple pole at 1/k. This shows that the radius of convergence of
(o may be strictly smaller that exp(—h(«)). In fact, the product development
above for (,(s) shows that it has poles at

{Le?"'ij/”:0<j<n—1 n>1p.

{;/E — — ) -

Hence (,(s) has infinitely many poles inside the unit disk, and these poles
cluster to the unit circle. It follows that (,(s) is meromorphic in |s| <
exp(—h(e)) = 1 and has natural boundary |s| = exp(—h(a)) = 1.

Example 3.4. Let F, = {0,1} be the field with two elements, and
X ={z€F} :zi;+ i1+ =0foralli,j € Z}.

Then X is a compact group with coordinate-wise operations, and it is invari-
ant under the natural Z? shift action . This action was originally investigated
by Ledrappier (8], who showed that it was mixing, but not mixing of higher
orders.
Let
_ e b2
L= {O } 22,
where a > 1, ¢ > 1, and 0 < b < a— 1. We compute p, () using some linear
algebra over F,. A point z € X that is L-invariant must have horizontal
period a, so is determined by an clement y from the vector space Fy. Let I,
denote the a x a identity matrix and P, the a x a permutation matrix corre-
sponding to the cyclic shift of elementary basis vectors of Fy. The condition
of L-periodicity of x translates to the condition

(I + P)y = Pa_b y.
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Hence
(3.3) pa) = lker((L1 + P,)° — Pa"’)l.
For example, if a =3, b= 1, and ¢ = 1, then
001
P.=1{1 00
010
and 111
(L, +P)-Pt=|111
111
The kernel of the latter has dimension two over Fy, so that for this L we have

prla) =4 )
Formula (3.3) allows computation of (4(s) to as many terms as we like. A

calculation using Mathematica gives the first terms to be

Ca(s) = 145 + 257 + 45° + 65" + 9s° + 165° + 2457 + 35s% 4 545°

4 78510 4+ 1105 + 16252 + 2265 + 317s™ + 446s'° + 61256 +....

Such calculations do not, however, reveal the analytic properties of (4(s). For
this we next employ other ideas to show that (,(s) has radius of convergence
one and the unit circle as natural boundary.

We first estimate the size of p, (@) in terms of [L].

Lemma 3.5. Let o be the Z? shift action on
X={zeF¥ i+ zip;+zijun =0 forallije€ Z}.
Then there is a constant C such that for all L € Ly we have that
(3.4) pp(a) < 26VIH,
Proof. Let L € L,. We first show that there is a nonzero vector v € L
such that ||v|| < 9\/@» where || - || denotes the Euclidean norm on R? and

9 = \/4/m. Let B, be the ball of radius 7 in R? around O, and A be an

integral matrix such that AZ* = L. If B, N L = {0}, then A~N(B,) is a
convex, symmetric region in R? that does not contain any nonzero vectors in
Z2. By Minkowski’s theorem [6, Thm. 37] we have that

area(A’l(Br)) < 4.

Since det A = [L], it follows that
2

%<4, or T<0m.

Hence the ball of radius #,/[L] must contain a nonzero vector v in L.
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Next, consider the strip S of width 2 about the line segment [0, v]. If
z € X is L-periodic, then its coordinates in S determine by periodicity those
in the strip of width 2 about the line Rv, which in turn determine the rest
of the coordinates by use of the defining relations for points in X and L-
periodicity. Hence the number of L-periodic points in X is bounded above by
the number of possible configurations in S. Since the the number of lattice
points in S is bounded by a constant times ,/[L], the estimate (3.4) now
follows. O

Continuing with Example 3.4, the parameterization (3.1) of £, shows that
the number of L € L, with [L] = n equals o(n), the sum of the divisors of n.
Trivially o(n) <142+ ---+n < n? so that

> pue) <n?o20V
{L€Ly:[L)=n}

It follows from the Hadamard formula that the series for {,(s) has radius of
convergence one.

We next show that (,(s) has the unit circle as natural boundary. For this,
we first claim that the estimate (3.4) is sharp in the sense that no power of
(L] strictly less than 1/2 will work for all L. Let

L,=2"-1)Zz& (2" -1)Z,

so that [L,] = (2" — 1)2. The expansion of (1 +¢)*"~! mod 2 is ©7_5' /. It

then follows from (3.3) that p;, () equals the number of elements in F7" ~*
whose coordinates sum to 0, which is half the cardinality of FZ"~'. Hence

1 _on 1
5) pi(a) = 52" = 12Vl
verifying our claim.
Suppose that {,(s) were rational, say
?:l(]‘ — /\,‘S)
;'=1(1 ~ 1;s)

It follows from calculus that we would then have
1 k
(3.6) Y pla)=u - DA
=1 =1

{LGLz:[L]:n}
Now (,(s) is analytic in |s| < 1, so that |u;| < 1 for all j. Furthermore, {,(s)
does not vanish in |s| < 1, being the exponential of a convergent power series
there, so that |A;| < 1 for all 7. Thus (3.6) would imply that p(a) < k + !
for all L € Ly, contradicting (3.5). This proves that (,(s) is not rational.
The product formula, which is proved in §5, shows that the Taylor series
of ¢.(s) has integer coefficients (see Corollary 5.5). A theorem of Carlson [3]

Ca(a) =
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(cf. Polya [13]) asserts that an analytic function whpse Taylf)r series has in-
teger cocefficients and radius of convergence one is cither rational or has the
unit circle as natural boundary. For (o(s) we have just ruled out the first
alternative. Hence (4(s) is analytic in |s| < 1 and has the circle [s]| =1 as its

natural boundary.

4., CALCULATION FOR TRIVIAL Z*- ACTIONS

In this section we explicitly compute the zeta function m4(s) of the trivial
Z4-action on a point. For d = 1, equation (3.2) shows that

1
1—s

m(s) =

In Example 3.1 we showed that

e 1
WQ(S) = H n’
n=1 l—-s

The functions m4(s) play a central role in the product formula in §5.
Let @ be the trivial Z4-action on a point. Then p;(a) =1 for all L € Lq.

Hence

ral5) = Cals) = Cxp(Ezd i s“"> = exp (}: calt) s)
where
(4.1) eq(n) = \{L € Lg:[L] = n}l

To compute eq(n) we use the Hermite normal form of an integer matrix
(see [10, Thm. 22.1}).

Theorem 4.1 (Hermite). Every lattice in L4 has a unique representation
as the image of Z% under a matrix having the form

a b12 b13 . bld

0 a9 b23 N l)2d
(42) 0 0 az ... qu ,

0 O 0 ... aq

whcreai21forlgigdandogb,-jga,-—lfori+1_<_j§d. O

This result provides a convenient parameterization of L4, generalizing that
of L we described in equation (3.1). It also shows how to inductively compute

the eq(n) as follows.
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 To= o[ s [ 5[ o [ 5[ o] ]
d=1 1 1 1 1 1 1 1 1 1 1
2 1 3 4 7 6 12 8 15 13 18
3 1] 7] 13 35 31 91 57 155 130 217
4 1115} 40| 155| 156 600 400 1395 1210 2340
5 1131121 651 781 { 3751 {( 280111811 (11011 | 24211
6 1163|364 |2667 | 3906 | 22932 | 19608 | 97155 | 99463 | 246078

TABLE 1. Values of e4(n)

Proposition 4.2. Let eq(n) be the number of lattices in Z¢ having index 7.
Then

(4.3) ealn) = 3 eus (z) K

kin

Proof. Suppose that L € L4 is the image of Z¢ under the matrix in (4.2).
Then [L] = ajas ... aq4-1a4, so that a; divides [L]. Let k = a;. Each of the
iz, D13, ..., byq can assume the values 0, 1, ..., k — 1, giving k%' choices
for the top row. There are ey_;(n/k) choices for the remaining part of the
matrix. Summing over all divisors k of n gives (4.3). O

For example, we have trivially that

1 ifn=1,
@M =10 itn>2

Then (4.3) with d = 1 gives ¢;(n) = 1 for all n > 1, and next with d = 2 that
e2(n) = o(n), the sum of the divisors of n. Table 1 lists some values of eq(n).

It follows from (4.3) that the sequence {eq(n) : » > 1} is the Dirichlet
product of {eq4_;(n) : n > 1} with the sequence {n“~':n > 1}. Inductively
this shows that {eq(n) : n > 1} is the Dirichlet product of the sequences {n°},
{n'}, ..., {n®'}. Now the Dirichlet generating function of {n*} is

e k oo 1

== ~ (s = k),

s s—k
1 n=1

where ((s) denotes the Ricmann zeta function (sce [6, §17.5]). Since the
Dirichlet generating function of the Dirichlet product of sequences is the prod-
uct of their Dirichlet generating functions, we sce that

‘i: i’%l) = C(s)C(5 — 1) C(s — d+ 1).

This provides an explicit representation of the eq(n).
We next estimate the growth rate of eq(n) as n — co.
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Proposition 4.3. Let eq(n) be defined as in (4.1). Then
(4.4) ea(n) < .

Proof. Since e(n) =1 foralln > 1, the estimate (4.4) is certainly valid for
4 = 1. Assume inductively that it holds when d > 2 is replaced by d — 1.

Then by (4.3),
n\" =1 d+1
n d—1 - d—1 < d —<n ,
cd("')::LFCd—l(E>k S%(k) k <mn k};lk <
completing the inductive step and the proof. O

To compute m4(s), we make use of the following observation.

Lemma 4.4. Let 3 be a Z?~!-action and « be the Z%action defined by

Then
e o\ ed—2
Ca(s) = T Go(sM)*
k=1
Proof. Consider a (d —1) x (d — 1) matrix
as b23 e bgd
0 az ... bgd
B = . . .
0 0 SN Q4

in Hermite normal form. We can form all d x d matrices A in Hern?ite normal
form containing B as the lower right principal minor by appending tz B 1a
top row of the form [k bz bz ... bi4), where k > 1 and O <bh; <k-1,
and making the remaining entries in the left column 0, forming

k bz bis ... bua
0 a 1)23 e l)gd
A= 0 0 as ... bgd
0O 0 0 ... aq

Note that since o100 is the identity, we have that

T’Azd(a) = pyga-1(B)
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for all choices of k and the b;. Hence

oo k-1

5) = ex & Pr(B) m
Cn,(b)—u\p< > Z S v i S ])

MeLy_y k=1 b12=0 big=0

kT (B) win
= exp( > L PMAT) k(M)
MeLgy_y lgl k[Af]

fed =2

0 (B)  kyin
(:xp( Z ][1\([’3)(5 )( ])

MeLy_,
L\ Ld=2
Cﬂ(sk)k . O

0o
=11
k=1

oo
=11
k=1

This lemmma implies, for example, that if o is the Z2?-action generated by
the identity on X and ¢: X' — X, then

k=

—
t
Il

-

and also in Example 3.3. A general version of this argument leads to the
following formula for m4(s).

Theorem 4.5. Let my(s) denote the zeta function of the trivial Z%-action
on a point. Then the Taylor series of m,(s) has radius of convergence one.
Furthermore, 74(s) has the product expansion

(4.5) ma(s) = ﬁl . 1

_ S“)fd—l(”)’
where ¢q4(n) is defined in (4.1) and the product converges for |s| < 1.

Proof. By Proposition 4.3 we know that 1 < eq(n) < n4*!. Hence the series

(o o]
’l/)(S) _ Z er‘l(n) s"
n=1 n
has radius of convergence one. Furthermore, lim,_,;- ¥(s) = co. Hence the
Taylor series of m4(s) = e¥(*) has radius of convergence one.
We have already seen that (4.5) is valid for d = 2. Suppose inductively
that it is valid when d > 3 is replaced by d — 1. Lemma 4.4 applies to the
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trivial Z4action o and the trivial Z4 '-action 4. Hence using the lemma and
Proposition 4.2, we obtain

kd-2

(1 _ s‘»’”)‘¢’d~2(”)

18
13

k 1

1
A

n

Il

e o]
L\ ed—2
ma(s) = H W:lal('qk)k =
k=1

oo

= H (1-s™m)" Sk Ca-a(m /R KA

m=1 m=1

(1 _ S"’)‘“d-—l("l)’

8

where the estimate (4.4) shows that our manipulations are valid when [s| < 1.
This verifies (4.5) for d, completing the proof. O

Proposition 4.6. For d > 2 the function 7,(s) has the unit circle as natural
boundary.

Proof. Theorem 4.5 shows that the Taylor series for mq(s) has integer coeffi-
cients and radius of convergence one. Also, an easy consequence of Proposi-
tion 4.2 is that eq(n) > n for d > 2, so that e4(n) — oo as n — oo. The
same argument as at the end of Example 3.4 shows that 74(s) is not a ratio-
nal function for d > 2, and the same use of Carlson’s theorem as there then
proves that m4(s) has the unit circle as natural boundary. O

5. THE PRODUCT FORMULA

Our goal is this section is to generalize the product formula (1.2) for single
transformations to Z%actions c. We begin by considering the case when a
has exactly one finite orbit.

Proposition 5.1. Let v be a finite set and a be a transitive Z%-action on .
Then
Ca(s) = ma(s™).

Proof. Let H = {n € Z?: o"z = z for all = € v}. Since 7 is finite, H € Lq.
Now « acts transitively on 7, so that I is also the stabilizer subgroup of each
element of v, so that |y| = [H]. Hence for L € L4 we have that

[ L
P =0 itrLgH.

Since [H]/[L] = 1/|H/L|, we sce that

<a<s>:exp( )3 [[Z] [”)

(LeLy: LCH)

:Cxp( T ﬁ@mywu)

{LeL4: LCHY
= my(s?y = 7,(s"). O
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In order to determine the validity of the product formula, we need to first
find the radius of convergence of the Taylor series for (,(s). To do this, we
introduce the following quantity.

Definition 5.2. Let a be a Zaction. Define the growth rate of periodic
points of « as

g(«) = limsup logp,(a = lim sup ! logp, ().
(Lo L] n=oo 13, [L]

Theorem 5.3. Let a be a Z%action, and assume as usual that p, (@) is

finite for every L € L4. Then (,(s) has radius of convergence exp(—g(a)). In

particular, if there is a number 6 > 1 for which p, (o) < 68 for all L € Ly,

then (. (s) is analytic for |s| < 671.

Proof. By Proposition 4.3, the number of L € £, with index n is polynomial
in n. It then follows easily from the Hadamard formula that

_ oy (@)
'I/)(S) Lgd [L] s

has radius of convergence p = exp(—g(a)). Also, since the Taylor coefficients
of 1(s) are nonnegative, we see that lim,_, ,- ¥(s) = oco. It now follows that
Ca(s) = e¥0) has radius of convergence p = exp(—g(a)). O

We are ready for the main result of this section.

Theorem 5.4 (Product Formula). Let a be a Z%-action for which g(a) <
0o. Then

(5.1) Cu(s) = [T ma(s™),

where the product is taken over all finite orbits v of & and this product
converges for all |s| < exp(—g(a)).

Proof. Enumerate the finite orbits of « as v, 72, ... . Lemma 2.3 and
Proposition 5.1 show that (5.1) is valid for the restriction of & to v; Uy, U

.. 7 for all n > 1. Since everything in sight converges absolutely for |s| <
exp(—g(a)), a standard argument shows that letting n — oo proves (5.1) in
general. O

Corollary 5.5. Let o be a Z%action for which (,(s) has a positive radius of
convergence. Then the Taylor series for (,(s) has integer coefficients.

Proof. Theorem 4.5 shows that the Taylor series of 74(s) has integer coeffi-
cients. The corollary now follows from the product formula. O



446 ERGODIC THEORY OF Z* ACTIONS

6. ALGEBRAIC EXAMPLES

In this section we investigate the zeta function for some Z?-actions of
algebraic origin. A general framework for studying such actions was first
given by Kitchens and Schmidt [7); see [15] for a systematic exposition.

Let Ry = Zuf',...,uf'] be the ring of Laurcnt polynomials in d com-
muting variables. For u = (u1,...,uq) and n = (M1y... na) € Z¢ put
u" = ul ... uy?. A polynomial f € Ry then has the form

flu) = 3 eg(mput
nezd

where ¢;(n) € Z and all but finitely many of the ¢;(n) are zero. Let T =R/Z
bhe the additive torus and S = {e? it ¢ € T} beits multiplicative counterpart.

For cach [ € R4 put
Xy = {x € T2 . Z cr(n)Tyyn =0 for allk € Zd}.

nezd

Then X is a compact group under coordinate-wise operations. The Z¢ shift
action oy on Xy is defined by (a}T)k = Tin- Each of is clearly a continuous
automorphism of X. In the framework of 7] the system (X, ay) corresponds
to the Rg-module Rq/(f).

Let us say that f € Rais expansive if it has no zeros on S?. For example,
p(w,v) = 3+ u+ v is expansive since |3 +u+v| >3- [u| - |v| > 1 provided
Similarly, q(u,v) = 3 —u —vis also expansive. There is

lul = |v| = 1.
d_actions. A special case of work of

4 natural notion of expansiveness for Z
Schmidt [14] is that ay is expansive if and only if f is expansive.
We next turn to entropy (sce Appendix A of [9] for definitions). For

0 # f € Ry define the Mahler measure of f to be

M(f):(‘xp(/sdloglf|> :exp(/ooo--~/Ooolog|f(c2”“‘,...,ez”it“)ldtl...dtd>.

By [9, Thm. 3.1}, the topological entropy of ay is given by h(ays) = log M(f).
For instance, it is casy to verify that for p(u,v) = 3+ u+v and q(u,v) =
3 _ 4 — v we have that M(p) = M(q) = 3, so that h(a,) = h(c,) = log3.
For L € Lq put ||L]| = min{|n|] : n € L \ {0}}. Then ||L|| — oo means
that “L goes to infinity in all directions.” By [9, Thm. 7.1], if f is expansive

then

1
WMar) = lim — logp(ay).
(6.1) W(ar) T gp(ar)

However, there are other ways for [L] — oo without ||L|| — oo, and the
growth rate for periodic points can be strictly larger for these. For instance,
in Example 3.3 we have that

1
lim — lOg pZ(DnZ(a) = log k’

n—oo n,
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while it is easy to verify that

lim -—1—

ILli~oo [L] logpy(a) = h(a) = 0.

Fo'r the' Z%-actions a; we will explicitly determine the growth rate of periodic
points in terms of the Mahler measure of f on compact subgroups of §¢

Let C4 denote the collection of all compact subgroups of S¢, and X, C e
be the subset of infinite compact subgroups of S¢. For K E,G define tk ‘
Mahler measure of f over I{ to be - *

Mic(f) = [ Toglfl,

where the integral is with respect to Haar measure on K. By definition
)

M(f) = Ms«(f).

Theorem 6.1. Let f € Ry be an expansive polynomial and a; be the as-

. d .
Zomated Z‘-action. Then the growth rate of periodic points for o, is given
y

(6.2) g(ay) = sup log Mk(f).
KeX,

Furthermore, there is a Iy € Xy for which g(ay) = log Mg, (f).
Before proving this result let us give two examples.

Example 6.2. (a) Lpt d =2, Ry = Z[u*',v*!], and p(u,v) = 3+ u+v. As
noted‘ above, p(u,v) is expansive. In order to compute g(e,), we first observe
:ﬁat 3f f(u) =f Znelzd cr(n)u” € Ry has |ef(0)] = [f(0)] > Tpxolcs(n)]

en Jensen’s formula shows that M(f) = |c;(0)]. Hence M :n3 t ,
h(ap) =log3. Observe that 0 ) S0 that

Msx(13(p) = M(4 +u) = 4 = M) xs.

We show that the subgroups S x {1} and {1} x S give maximal Mahler
measure for p over all subgroups in X3, so that by Theorem 6.1 we have that
9(ay) = log4 and so (o, (s) has radius of convergence 1/4.

To see this, first note that any K € X, is cither all of S? or is 1-dimensional
In the latter case the connected component of the identity in I is the image‘
of a rational line under the the exponential map R? — S%. Hence there is a
vector (a,b) € Z?%\ {0} and a finite subgroup 2 of roots of unity in S? such

that
K = U U (we%iat’nezmbt).
teR (w,n)eN

Hence

/19|
Mk (p) = ( H M(3 + wu® + 7}11,"))

(win)e
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Our observation above using Jensen's formula shows that

3 ifa#0and b#0,
(6.3) M(3 + wu® +qu’) = {3+ w] ifa=0and b#0,
1347 ifa#0and b=0.

Thus My (p) is the geometric mean of numbers all of which are less that or
cqual to 4, so that My (p) < 4 forall K € K,. This proves that g(cy) ='log 4.

Hence ,, () has radius of convergence 1/4. It is conjectured that it has
the circle of radius 1/3 as natural boundary. Also, (6.3) shows that S x {1}
and {1} x S are the only subgroups K in K, for which My (p) = 4.

(b) Again let d = 2, but now use q(u,v) =3 —u—v. As boforc, q(u, v)
is expansive and M(q) = 3. We claim that My (q) < 3 for all K € XK. By
(6.3), we need only consider subgroups of the form S x €2, or €2, x S, where
§),, is the group of nth roots of unity in S. But for these,

-1 4 1/n
Msxa, (q) = Ma, xs(q) = (H M(3 - omik/n u)>

k=0
n-1
— H l3 _ e27rik/ni1/n — (371 _ 1)1/n S 3.
k=0

This proves that g(a,) = log3, so that Ca,(8) has radius of convergence 1/3.
It is conjectured that it has the circle of radius 1/3 as natural boundary.

Proof of Theorem 6.1. Denote the annihilator of L € L4 by K, = Lt € G,
= [L]. Proposition 7.4 of [9) shows that

plag) = I IS (@)l

By duality, | K,

welvy,
Hence | |
—ogpy(ey) = = > log|f(w)| = log M, (f)-
[L] ’ |1\L wely, .

It is casy to see that C; is compact with respect to the Hausdorft metri.c
on compact subsets of S% Since f is expansive, it follows 'that log | f] is
contimuous on S¢, so that the function K +— log My (f) is contintous on Ca.

Suppose that K € Kg4. Then there are lattices L, € Lgq for which K, —
I¢ in the Hausdorfl metric. Since K is infinite, [L,.] — o0, so that

i = li —1—10 (o) < g(ey).
log My (f) = lim log My, (f) = lim ] o8P (o) = gley

This proves that supex, 108 My (f) < g(ay). '
To prove the opposite inequality, choose L, € K4 with [L,] = oo and
1

] logp,, (af) — g(ay).
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Since €4 is compact, the subgroups Ky, € S have a convergent, subsequence
{I\'L"j} converging to some Iy € Cq, where clearly Iy € Ky since [L,] — oo.
Then
log My, (f) = lim log My, (f) = lim —l-—logp, () = g(exy).
j—oo " n—=oo (L]

This shows that supycq, log M (f) = g(ay), and also that the supremum is
attained at I\Vy. O

7. QUESTIONS AND PROBLEMS

In the examples of Z%actions « considered thus far, the zeta function

(o ($) may have poles s with |s| < exp(—=h{«)) but {,(s) has natural boundary
[s|] = exp(=h(w)). The quantity h(e) enters as the growth rate

. 1
(7.1) p = limsup — log p, (@)

e (L]
as L goes to infinity in all directions. This leads to the main conjecture
regarding the analytic behavior of {,(s).

Conjecture 7.1. Let o be a Z%action and p be defined by (7.1). Then
(. (s) is meromorphic in |s| < ¢ and has the circle of radius e™” as natural
boundary.

When d = 1 the zeta function of a finitely determined system ¢ can be
specified by a finite amount of data, namely the zeros and poles of the rational
function (4(s).

Problem 7.2. For “finitely determined” Z%actions a such as shifts of finite
type, is there a reasonable finite description of {,(s)?

When «¢ = «y is one of the algebraic examples described in §6, the numbers
My ([f) for K € K, appear to play an essential role in describing ¢, (s). How
much do these number tell about the polynomial f € 1247

Problem 7.3. Suppose that f,¢ € Ry, and that M (f) = My (g) for all
I € X,. What is the relationship between f and g? Must f and ¢ dif-
fer by multiplicative factors that are monomials or generalized cyclotomic
polynomials?

Problem 7.4. Compute explicitly the zeta function of the algebraic exam-
ples «y discussed in §G.

Our zeta function Z%actions can be generalized, as for a single trans-
formation, to a “thermodynamic” setting by introducing a weight function
) g, DY g

0: X — (0,00), and defining

<,..o<s>:exp(2{ Ll ”(“k“’)}%)’

LeLy \zelixy (o) keZI/L



“450 ERGODIC THEORY OF Z¢ ACTIONS

where fix; () is the set of points fixed by «” for all n € L. We obtain the
usual zeta function (, by using the weight function § = 1. The following
(uestion was suggested to us by David Ruclle.

Problem 7.5. Compute explicitly the thermodynamic zeta function for the
2-dimensional Ising model, where « is the Z? shift action on the space of

configurations.
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THE DYNAMICAL THEORY OF TILINGS AND
QUASICRYSTALLOGRAPHY

E. ARTHUR ROBINSON, JR.

ABSTRACT. A tiling z of R™ is alinos! periodic if a copy of any patch in
z occurs within a fixed distance from an arbitrary location in z. Periodic
tilings are almost periodic, but aperiodic almost periodic tilings also exist;
for example, the well known Penrose tilings have this property. This paper
develops a generalized symmetry theory for almost periodic tilings which
reduces in the periodic case to the classical theory of symmetry types.
This approach to classification is based on a dynamical theory of tilings,
which can be viewed as a continuous and multidimensional generalization
of symbolic dynamics.

1. INTRODUCTION

The purpose of this this paper is to describe a natural generalization of
the standard theory of symmetry types for periodic tilings to a larger class of
tilings called almost periodic tilings. In particular, a tiling @ of R is called
almost periodic ! if a copy of any patch which occurs in z re-occurs within a
bounded distance from an arbitrary location in z. Periodic tilings are clearly
almost periodic since any patch occurs periodically, but there are also many
aperiodic examples of almost periodic tilings—the most famous being the
Penrose tilings, discovered in around 1974 by R. Penrose [18].

Ordinary symmetry theory is based on the notion of a symmetry group—
the group of all rigid motions leaving an object invariant. The symmetry
groups of periodic tilings are characterized by the fact that they contains a
lattice of translations as a subgroup. In contrast, for aperiodic tilings the
symmetry group contains no translations, and it is typically empty. Thus a
generalization of symmetry theory to almost periodic tilings must be based
on different considerations. In this paper we describe a generalization of sym-
metry theory that uses ideas from dynamical systems theory, applied ‘tiling
dynamical systems’. The simplest example of a tiling dynamical system con-
sist of a translation invariant set of tilings, equipped with a compact metric

Partially supported by NSI* DMS-9007831.
'Such tilings are also sometimes called repetitive or said to satisfy the local isomorphism
property. ‘The term almost periodic is used in the same sense as in topological dynamics.
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