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; My purpose here is to briefly discuss the influence of spectral The 1

E 1 theory on the study of measure preserving transformations, and then transform

X to indicate how spectral invariants may play a role in deciding (measure }

. . . . . . operator
whether a given measure preserving transformation is isomorphic to P
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o ; a smooth one. As part of this discussion, I give a simple construc- phic trans

tion of a diffeomorphism of the two dimensional torus which has an properties
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g p interest in the recent work of Anosov and Katok on constructing ral invar

diffeomorphisms with prescribed ergodic behavior. isomorphic.
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2. Spectral Theory of Measure Preserving Transformations realizes ti

In the following X will denote a measure space with a entropy ir

E ﬁ o-algebra of measurable subsets on which a probability measure u is A tra
'?. i defined. To avoid unpleasant and needless pathology, we require X W(E) =0 o
: : to be a so-called Lebesgue space, namely that X be measure isomor- only funct
i. f phic to the unit interval equipped with Lebesgue measure. For an means that
f‘ ; axiomatic treatment of Lebesgue spaces, see Rohlin [17]. All of UT !

;? é "naturally occurring" measure spaces are Lebesgue. In th
.i' A one-to-one and onto transformation T of one measure space invariant.
j; i to another is said to be measurable if T_l(E) is measurable when- trum PT ¢

-

ever E 1is. T 1is called measure preserving if T—l(E) and E such that

unit circ

have the same measure. The objects of study in ergodic theory are

f ﬁ measure preserving transformations of a space onto itself. Two A goc

such transformations, T ‘acting on X and T' acting on X', are , sional tor

B! essentially the same from this point of view if there is a measure then trans
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preserving transformation ¢: X > X' such that ©®(Tx) = T'(¢x) for
almost every x € X. The basic problem of ergodic theory is to
find ways of detecting whether two transformations, specified in
perhaps very different ways, are.isomorphic. Historically,
spectral invariants have played a key role in this study.

The idea of using spectral theory to study measure preserving
transformations goes back to Koopman [13]. He observed that a
(measure preserving) transformation T of X induces a unitary
operator U; on LZ(X) by the formula (UTf)(x) = f(Tx). Isomor-
phic transformations induce unitarily equivalent operators. Thus
properties of the induced operators which are unitary invariants
are the same for isomorphic transformations. These so-called spec-
tral invariants allow us to prove that some transformations are not
isomorphic.

The importance of these invariants becomes clear when one
realizes that for over two decades, until Kolmogorov introduced
entropy in 1958, they were the only useful ones known.

A transformation T 1is ergodic if whenever T(E) = E, then
B(E) = 0 or 1. This is easily equivalent to the property that the
only functions in L2(X) invariant under Up are constant. This
means that T 1is ergodic if and only if 1 1is a simple eigenvalue
of U, , so that ergodicity is a spectral invariant.

In the same spirit, the point spectrum of Urp is a spectral

invariant. Recall that a complex number A 1is in the point spec-

trum PT of UT if there is a nonzero eigenfunction f € L2(X)

such that UTf(xf Af(x). P is a subgroup of the multiplicative

T

unit circle group T .
A good example to keep in mind is translation on the n-dimen-
sional torus group Tn =T %X *+* x T with Haar measure. If Ai € T,

then translation on Tn by (Al,...,An) is a measure preserving
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transformation whose point spectrum is the subgroup of T

generated
by Al,...,xn. This translation is ergodic if whenever integers m.
are such that ATl PN X:n = 1, then all the mj = 0. In this case
the Ai are said to be independent over the rationals. The eigen-

functions for this translation are just the multidimensional exponen-
tials (the characters of ﬂp), and since these span Lzarn), the
point spectrum comprises the entire spectrum.
Koopman's idea is completely successful in this type of situa-
tion. Say that an ergodic transformation T has discrete spectrum
2

if the eigenfunctions of UT span L7 (X).

Discrete Spectrum Theorem. If S and T are transformations

with discrete spectrum, then S 1is measure isomorphic to T if

and only if Ug is unitarily equivalent to U, . Furthermore, this

T

occurs if and only if Ps = Pp.

It can also be shown that any countable subgroup of T is the
point spectrum of a transformation with discrete spectrum, and that
every discrete spectrum transformation is isomorphic to a transla-
tion on a compact abelian group. For further details, see Halmos
[91.

These facts give a very satisfying classification of transforma-
tions with discrete spectrum. However, as soon as the transforma-
tion has any stronger mixing properties such as weak mixing (see [6]
for a definition), the point spectrum reduces to {1} and so is use-
less for classification. Indeed, all Bernoulli shifts have
unitarily equivalent induced operators and so are indistinguishable
from the spectral point of view. éince there are nonisomorphic
Bernoulli shifts, spectral invariants are useful but far from

complete.
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3. Smooth Transformations

Let M be a compact, connected, smooth (i.e., Cm) manifold,
and suppose that T 1is a smooth diffeomorphism of M which
preserves a smooth measure u, so that uy is given by a smooth
positive density function on M. The manifold M now becomes the
measure space we called X in Section 2, and the o-algebra is the
u-completion of the Borel o-algebra on M generated by the compact
sets. A measure preserving transformation is defined to be smooth
if it is measure isomorphic to such a diffeomorphism. Certain
smooth systems, arising from the Hamiltonian flow on the energy
surface of a mechanical system, were the original motivating exam-
ples of ergodic theory. An immediate question is: Are all ergodic
transformations smooth? Or has ergodic theory, by throwing away
the differentiable structure of the original examples, greatly
enlarged the class of objects it studies?

The only definite result in this direction is that smooth
transformations have finite entropy. A good source for the defini-
tion of entropy and related results is Billingsley [6].
Kouchnirenko [14] first proved this fact by using the isoperimetric
inequality (see Arnold and Avez [4]). Bowen [7] has given a neat
proof that the entropy of T 1is bounded above by

max {0, dim M Iat TXM"}, where the norm on the derivative is

*Sup_cy
taken with respect to a suitable Riemannian metric on M.

The example in the previous section of translation T on T by
the element (xl,:..,xn) is certainly smooth.

The rank of Poov written rk Pro is defined to be the largest
number of elements in PT which are independent over the rationals.

Since Pq for the torus translation is generated by {Al,...,An}, it

is eaéy to check that rk Pp < ny where n is the dimension of the

manifold .
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Up until about five years ago, in all smooth cases which could

be checked, it turned out that

(1) rk Pp < dim'M .

Indeed, Kolmogorov observed this in his address to the 1954 Inter-
national Congress of Mathematicians [12], and it was conjectured to
be generally true by Arnold and Avez [4; Appendix 16].

If the eigenfunctions of the diffeomorphism T are assumed to
have certain smoothness properties, then finite bounds for rk PT
are known. We give below a simple proof that (1) holds if the eigen-
functions are once differentiable. Avez [5] has shown that it holds
under the assumption of mere continuity of the eigenfunctions, and
under the same hypothesis Arnold and Avez [4, Appendix 16] have
shown that rk Pg < dim Hl(M;R), the bound being the first Betti
number of M.

Unfortunately, as was already known to Kolmogorov in 1953 [11],
there are smooth systems with everywhere discontinuous eigen-
functions. Since examples seem to be available only in Russian, we
give below a construction of this phenomenon on Tz. Such badly
behaved eigenfunctions obstructed further progress on the problem.
Then about five years ago Anosov and Katok [3] published some con-
structions of diffeomorphisms which demolished the conjecture (1),
but they left many guestions open. We will describe their main
re;ult, and point out some areas which remain murky.

Let us first prove (1) for the point spectrum of well behaved
eigenfunctions. Let D, be the subgrouﬁ of PT consisting of

eigenvalues corresponding to once differentiable eigenfunctions.
Theorem. If T 1is an ergodic diffeomorphism of a manifold M,

then rk D; < dim M.

Proof: Let {Al,...,Ar} C.'DT be independent over the rationals.
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Choose differentiable eigenfunctions fj for A.. Since T 1is

]
ergodic, lfj] is constant almost everywhere, hence everywhere by

continuity. Normalize the eigenfunctions so that [fj| = 1 on M.
Define a map F: M » T° by F(x) = (£,(x),..., £ (x)). Notice that
F(Tx) = (Al,...,Ar)'F(x). Hence invariance of M under T implies

PA) .

that the image F (M) is invariant under translation by (Al,... r

Rational independence of the Ai implies that the powers of
(Al,...,Ar) are dense in T'. Since F(M) is compact and invariant
under a dense set of translations, it must be all of T'. Wow F is
a differentiable onto mapping, so that the dimension of the range
is bounded by the dimension of the domain. This gives r < dim M,

which proves the result.

4. Discontinuous Eigenfunctions

Our construction uses measure preserving flows, so we begin
with some preliminary material. A measure preserving flow
{Tt: t € R} on a measure space X is a collection of measure
preserving transformations satisfying the group property T T = Ts+t
together with the measurability assumption that (x,t) hﬁ-Ttx is a
jointly measurable transformation from X x R to X. A function
Y: X » R is an eigenfunction for {Tt} with eigenvalue A € R if
w(Ttx) = exp(iAt)y(x). This function is therefore an eigenfunction
for each Tto with eigenvalue exp (iAtO).

We can build such flows from transformations by using the fol-
lowing suspension technique first introduced by von Neumann [15].
Suppose B 1is 3 measure space and T: B - B 1is measure preserving.
Let f£: B - (0,®) be measurable. There is a natural measure on the

the region X = {(x,y): x € B, 0 <y < £(x)} under the graph of f

obtained by restricting to X the product of the measure on B with

Lebesgue measure on R. The flow {St} on X defined by moving a
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point (x,y) vertically at unit speed until y = f(x), identifying
(x,£(x)) with (Tx,0), and continuing to flow vertically at (Tx,0),
is measurable and measure preserving. {St} is said to be the flow
built under the function £f with base transformation T. Ambrose and
Kakutani [2] have shown that all measure preserving flows can be put
into this form.

In this construction, if B 1is a manifold, T a diffeomor-
phism of B, and f a smooth positive function on B, then X
becomes a manifold M by identifying (x,f(x)) with (Tx,0), i.e.,
by gluing the top and bottom edges of X together using f. Also,
{s,} is a smooth flow on M.

A complex valued function on a manifold is everywhere discon-
tinuous if on every open subset it does not agree almost everywhere
with a continuous function. The function has an essential discon-
tinuity at a point if it is not equal almost everywhere to a func-
tion continuous at the point.

The construction of an everywhere discontinuous eigenfunction
for a smooth ergodic transformation proceeds as follows. Using a
function constructed via harmonic analysis, we produce a measurable
but not continuous conjugacy ¢ between an irrational flow {St} on
T2 and a smooth flow {Tt} on a manifold M diffeomorphic to o2,
Then an exponential eigenfunction for {St} carries over under ¢ to
everywhere discontinuous eigenfunction for {Tt}. A proper choice

of t then gives the ergodic diffeomorphism T = Tt desired.

0

We now switch to additive notation on T, it beigg considered as
[0,1) with addition modulo 1. For the sake of clarity, suppose
first that we can find a function ¢: T - [0,1) and w € T such that

¢ (x+w) - ¢(x) 1is smooth, while exp (2mi ¢(x)) has an essential
discontinuity at 0. We will later modify the argument to handle

unbounded ¢, and then construct such a function. Put g(§) = ¢ (&+w)-
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- ¢(£) + 1, a smooth positive function on T. Let {St} acting on X
be the flow built under the constant function 1 with translation on
T by w as base transformation, and {Tt} acting on M be the smooth
flow built under g with the same base transformation as {St}.

A typical point in X is denoted by (x,y), and one in M by (&,n).
There is a natural map x = B(£) from the base of {Tt} to that of

{s, }.

t
We will define a conjugacy ¢: M -+ X using ¢. Basically, ¢
restricted to the base of {Tt} is ¢ o B, and then ¢ extends to all

of M by using the flow. More precisely,

) (B(E) ,n+d(B(E))) if 0 <n < 1-6(B(E)) ,
e(g,n) =
(B(E)+w,n+¢ (B(E))-1) , 1if 1-¢(B(&)) <n < gl&) .

It is easy to check that ¢ maps orbits to orbits and preserves
the direction and speed of the flow. An easy argument using
Fubini's theorem shows that ¢ 1is measurable and measure preserv-
ing. Hence ¢ is a conjugacy between {Tt} and {St}.

Let X be the eigenfunction for {St} defined on X by
x(x,y) = exp (2wiy). Then ¢y = x°¢ 1is an eigenfunction for {Tt}
with eigenvalue 1. Now y(&£,0) = exp (2mi ¢(B(&))) has an essential
discontinuity at B = 0. But since ¥ o T, = [exp (2mit) ]y, this
discontinuity can be translated by {Tt} along the orbit of (0,0),
which is dense in M. Thus in every open subset of M the eigen-
function has an essential discontinuity, so that it is everywhere
discontinuous.

Unhappily, it is not easy to find a bounded discontinuous
function ¢ on T such that ¢ (x+w) - ¢(x) is smooth. Below we will
produce a necessarily unbounded ¢ and an irrational w € T for which
¢ (x+w) - ¢(x) is smooth, bounded in absolute value by 1/4, and such
thaé exp (2mi ¢(x)) has an essential discontinuity at 0.

‘ Let us indicate how to modify the definition of ¢ if ¢ is
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unbounded. Basically, we use more of the orbit of {St} to wrap the
graph of ¢.
For any real number a, let [a] denote the greatest integer in
a, and {al the fractional part of a. We then define
8¢ : (e+ [0 (B(E))Iw, n+ {d(B(E))}) , if 0 < n <1 - {¢(B(E))},
e (E+[9(B(&))Jwtw,nt{o(B(E))}-1) if 1-{¢(B(&))}< n< g(&).
The same arguments as before show that ¢ is a conjugacy between
{Tt} and {St}. ¢ reduces to the previous conjugacy if 0 < ¢ < 1.
We also have as before that Yy = x°% is an everywhere discontinuous
eigenfunction for {Tt}.
To obtain an ergodic diffeomorphism, choose tO such that
exp (2ﬂito) and exp (Zﬁitow) are independent over the rationals.
Then StO is isomorphic to translation on T2 by (exp(2ﬂit0),
exp (2ﬂit0w)), and so is ergodic. Since Tto is isomorphic to

S , T = Tt is the required diffeomorphism.
0 0

The problem of finding a suitable ¢ and w was considered by
Furstenberg [8] in a somewhat different context. Our solution is

parallel to his. Write the Fourier series of ¢ as

6 (x) ~ Z c, eZﬂinx .

-0

If h(x) = ¢(x+tw) - ¢(x), then

h(x) ch(eZHinw_l)eZNinx

If w 1is abnormally well approximable by rationals, the factor

-

e2“inw - 1 becomes small often enough to force smoothness of h
while at the same time allowing the cn's to be large enough to force
an essential discontinuity of f at 0.

The Fourier series we consider willbe lacunary. For any
the function
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1 .
o(x) = 7} exp (2min, x)
k#0 k k

. . 2 . . . . .
is in L (T). However, ¢ has an essential discontinuity at 0 since
the Cesaro sums of the Fourier series of ¢ diverge at 0. By replac-

ing ¢ with an appropriate multiple, we can guarantee that

exp (2mi ¢(x)) also has an essential discontinuity at 0. We will
find nk,w such that
(2) ni]exp(Zﬂinkw) -1 >0 as k » =
for all s > 0. This forces h to have derivatives of all orders.
_ _ k+l _ 5 e
Let n; =5, n.,, =n , andput w = Zl 1/n, . Then if k > s+1,
s s+l o« 1 s+1 2 2
nk{nkw} = 0y '_Z n. < nk ( k+l} < Tho
j=k+1 J ny k

which proves (2) and also that |h| < 1/4. This yields the desired
¢ and w. -

We remark that such a ¢ cannot be bounded. The proof uses
lacunarity of the Fourier series of ¢ and the method of Riesz

products. Let
N

P (x) = TT (1 + cos Znnkx) .
k=1

Since the sequence {nk} is lacunary, the Fourier coefficient of PN
at 0 is 1, and at each ink is 5 Also, PN > 0 since each
factor is nonnegative. Suppose there were a C with |¢| < C. Then
we would have

-

- 00 as N > o ,

1
k

Il 2

1

1
¢(x) P (x) dx =

while
1 1 ;

1
’ f ¢ (x) PN(x) dxl <C f \PN(X)‘ dx = C J PN(X) dx = C .
0
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This contradiction shows that ¢ must be unbounded.

We finish by briefly discussing the recent work of Anosov and
Katok, and pointing out a few of the many still uncharted portions
of the field.

What Anosov and Katok have done in [3] is to construct, for any
given n =0,1,2,...,», a diffeomorphism whose point spectrum has
rank n on any manifold which admits a measure preserving action of
the circle group (such as the two dimensional disk). However, the
specific eigenvalues for these diffeomorphism are abnormally well
approximable by rationals, and have quite a specific form. Thus
while these examples destroy the original conjecture (1), arbitrary
rank is a long way from arbitrary spectrum.

Generally, very little is known about available ergodic
behavior for diffeomorphisms of a given manifold. For instance,
do the various counter exaaples constructed by Ornstein have smooth
versions? There are some known Bernoulli diffeomorphisms, such as
toral automorphisms (Katznelson [10]), and smooth Bernoulli flows,

such as geodesic flow on the unit tangent bundle of a manifold of

_negative curvature (Ornstein and Weiss [16]). However, can any

manifold support such Bernoulli diffeomorphisms or flows?
A negative answer would mean that there are topological restrictions
on the energy surface of a Bernoulli mechanical system, and this

could have physical consequences.
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